Том 40, № 2

Март – апрель

1999

УДК 541.6+539.194

И.Л. ЗИЛЬБЕРБЕРГ, Г.М. ЖИДОМИРОВ

РАСЧЕТ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ХРОМАТ-ИОНА ПОЛУЭМПИРИЧЕСКИМ МЕТОДОМ NDDO/MC

Разработан новый полуэмпирический метод расчета возбужденных состояний комплексов переходных металлов, основанный на использовании метода конфигурационного взаимодействия, полуэмпирического метода NDDO/MC для получения основного состояния, специально подобранного из оптических спектров переходных элементов набора валентных spd-орбиталей слэтеровского типа вместе с соответствующими остовными интегралами. Метод тестируется в расчете электронно-возбужденных состояний хромат-иона. Получено хорошее согласие с экспериментальными энергиями вертикальных переходов, а также с результатами ab initio расчетов.

Полуэмпирические методы квантовой химии широко используются для исследования электронно-возбужденных состояний комплексов переходных металлов. В основном применяются методы, основанные на приближении INDO Попла. Так, получил широкое распространение метод ZINDO [1], входящий в популярный квантовохимический пакет программ HYPERCHEM. Аналогичный метод CINDO-E/S O.B. Сизовой с соавторами с успехом используется для расчета спектров сложных металлоорганических соединений [2].

В данной работе описан новый метод расчета возбужденных состояний металлокомплексов, состоящий из следующих основных компонент:

- 1) приближение нулевого двухатомного дифференциального перекрывания (NDDO) в расчете волновой функции основного состояния;
- 2) использование метода конфигурационного взаимодействия (КВ) для получения возбужденных состояний;
- 3) использование эффективных валентных орбиталей слэтеровского типа (ζ_{μ}) и остовных интегралов $U_{\mu\mu}$ ($\mu = s, p, d$), подобранных из оптических спектров переходных элементов на основе атомной модели с учетом КВ всех конфигураций $(spd)^n$ [3].

Метод реализован на основе программы NDDO/MC [4]. Преимуществом приближения NDDO в сравнении с методами INDO уровня является включение всех одноцентровых двухэлектронных интегралов. Это позволяет исключить искусственное вырождение некоторых многоэлектронных состояний при расчете высокосимметричных молекул, появляющееся вследствие отбрасывания части интегралов в приближении CNDO и INDO [1]. Другое важное преимущество приближения NDDO — учет двухцентровых кулоновских интегралов в сравнении с INDO, где все эти интегралы равны между собой и зависят только от типа атомов. Последнее приводит, во-первых, к недооценке (по сравнению с *d*-орбиталями) "отталкивания" диффузных *s*- и *p*-орбиталей металла от заполненных оболочек лигандов. Во-вторых, изотропное двухцентровое кулоновское отталкивание в INDO приводит

к тому, что расщепление d-оболочки в поле лигандов определяется фактически только резонансным взаимодействием. Это обусловливает слишком сильную зависимость энергий d—d-переходов от резонансного параметра, что является причиной разделения параметризации INDO на "спектроскопическую" и "геометрическую".

В методе NDDO/MC двухэлектронные интегралы рассчитывают аналитически в базисе *spd*-функций слэтеровского типа. Это сближает данный метод с неэмпирическими методами и позволяет рассчитывать как органические молекулы, так и соединения переходных элементов на одном уровне приближений. При этом

время расчета приблизительно пропорционально N^2 (где N — размер базиса), что является существенным преимуществом перед неэмпирическими методами, имеющими временную зависимость порядка N^4 .

В целях тестирования нового метода в данной работе были рассчитаны низшие возбужденные состояния хромат-иона ${\rm CrO_4^{2^-}}$. Это соединение, как и ${\rm MnO_4^{2^-}}$, является одним из наиболее интересных комплексов с электронной конфигурацией металла d^0 , хорошо изученных экспериментально и теоретически [5—7]. Параметры, подобранные для расчета хромат-иона, основаны на эффективных слэтеровских орбиталях, полученных из оптических спектров атомов (табл. 1).

Тетраэдрический комплекс CrO_4^{2-} был рассчитан с длиной связи Cr—O, равной усредненной экспериментальной величине 1,65 $\mathring{\triangle}$ [7]. Полученные орбитальные энергии в расчете основного состояния CrO_4^{2-} приведены в табл. 2.

В табл. 3 приведены результаты расчетов вертикальных переходов в хромат-анионе методом однократного КВ в рамках NDDO/MC. Для генерирования однократно возбужденных состояний использовано пространство, состоящее из занятых орбиталей $2t_2$, $2a_1$, 1e, $3t_2$, t_1 и всех свободных. Включение в активное пространство наинизших занятых орбиталей $1a_1$ и $1t_2$, а также диффузных 4s- и 4p-орбиталей не приводит к существенному изменению результатов. Для сравнения в табл. 3 приведены результаты ab initio расчетов в рамках теории SAC-CI [6], методом

Таблица 1 Параметры метода NDDO/MC

Параметр ¹	Cr	О
$-U_{ss}$, $\ni B$ $-U_{pp}$, $\ni B$ $-U_{dd}$, $\ni B$	50,93 40,44 79,32	104,668 ⁴ 79,758
I_s , $\ni B$ I_p , $\ni B$	6,766 3,870	32,33 15,79
I_d , $\ni B$ ζ_s , a.e.	8,240 1,32	- 2,1925
ζ_p , a.e.	1,32	1,9604
ζ_d , a.e. a_s , a.e.	$2,470 \\ 1,032349^2$	- 0,7107
a_p , a.e. a_d , a.e.	0,803030 1,018461	0,6967 -
$lpha, riangle^{-1} \ eta^{sp}$	-1,284 0,1	1,953647 0,858503
eta^d δ^{sp}	-0.05 0.638642^3	0,361358
δ^d	0,638642	_
s^{π} s^{δ}	1,0 1,0	1,065321 -

¹ Подробное объяснение обозначений параметров приведено в работе [4]. Данная параметризация получена для нулевой кулоновской дырки, использованной в [4].

² Масштабирующие множители, дающие слэтеровские экспоненты в расчетах матричных элементов КВ, равны подобранным из спектров атомов [3].

 $^{^3}$ Параметр, определяющий "степень" ортогонализации остовного гамильтониана, выбран равным $1-\delta^{sp}(O)$.

⁴ Параметры U_{ss} и U_{pp} выбраны так, чтобы обеспечить воспроизведение экспериментального сродства к электрону атома кислорода (1,465 эВ).

T а б л и ц а 2 Молекулярные орбитали ${\rm CrO_4^{2^-}}$ в основном состоянии 1A_1 в расчете методом NDDO/MC

Молекулярная орби- таль	Характер ¹	Энер- гия, эВ
Занятые орбитали		
$1a_1$	O(2s)+Cr(4s)	-29,02
$1t_2$	O(2s)+Cr(3d)	-27,50
$2a_1$	O(2sp)	-4,92
$2t_2$	O(2p)+Cr(3d)	-5,46
1e	O(2p)+Cr(3d)	-4,26
$3t_2$	O(2p)+Cr(3pd)	-2,91
t_1	O(2p)	-1,67
Незанятые орбитали		
2e	$\operatorname{Cr}(3d)$ – $\operatorname{O}(2p)$	6,41
$4t_2$	$\operatorname{Cr}(3d)$ – $\operatorname{O}(2p)$	8,38
$3a_1$	Cr(4s)	11,89
$5t_2$	Cr(4p)	12,25

¹ Знаки + и – обозначают связывающую и антисвязывающую комбинации орбиталей соответственно

переходного состояния (TS) на основе теории функционала плотности [7], а также экспериментальные максимумы полос поглощения [8]. Неэмпирические расчеты, цитируемые в данной работе, проделаны в расширенных валентно-расщепленных базисах, что, очевидно, дает отличную от полученной в данной работе картину распределения молекулярных орбиталей. Так, в расчетах Накатсуджи с соавторами низшими свободными орбиталями оказываются 4p- и 4sорбитали хрома, тогда как в нашем расчете ими оказываются (в полном соответствии с традиционными представлениями) расщепленные 3*d*-орбитали хрома (см. табл. 2). Для удобства сравнения электронных конфигураций, дающих наибольшие вклады в данное возбужденное состояние, в табл. 3 все обозна-

чения "привязаны" к молекулярным орбиталям, полученным в данной работе.

T аблица 3 Вертикальные переходы из основного состояния ${\rm CrO_4^{2-}}$ (в 1000 ${\rm cm^{-1}}$)

Состоя-	Данная работа (конфигурация)	SAC/SAC-CI [6] (конфигурация)	TS/DFT [7] (конфи- гурация)	Экспериментальный максимум поглощения [8]
1	2	3	4	5
${}^{1}A_{1}(t_{1}^{6})$	0,0	0,0	0,0	
$1^{1}T_{1}$	24,0 $(t_1 \rightarrow 2e)$	23,8 $(t_1 \rightarrow 2e)$	28,35 $(t_1 \rightarrow 2e)$	23,8 (слабый)
$1^{1}T_{2}$	27,6 $(t_1 \rightarrow 2e)$	27,5 $(t_1 \rightarrow 2e)$	29,37 $(t_1 \rightarrow 2e)$	27,3 (сильный)
$2^{1}T_{1}$	28,9 $(3t_2 \rightarrow 2e)$	31,4 $(t_1 \rightarrow 4s)$		
$1^{1}E$	28,3	33,1		
	$(1e\rightarrow 2e)$	$(t_1 \rightarrow 4t_2)$		
		$(t_1 \rightarrow 4p)$		
$1^{1}A_{2}$	25,3	36,9		
	$(1e\rightarrow 2e)$	$(t_1 \rightarrow 4p)$		
		$(t_1 \rightarrow 4t_2)$		
$2^{1}T_{2}$	37,3 $(1e \rightarrow 4t_2)$	33,6	39,02 $(3t_2 \rightarrow 2e)$	36,8 (сильный)
		$(t_1 \rightarrow 4p)$		
		$(t_1 \rightarrow 4t_2)$		

Окончание табл. 3				
1	2	3	4	5
$3^{1}T_{1}$	33,3 $(1e \rightarrow 4t_2)$	33,5 $(3t_2 \rightarrow 2e)$	38,8 $(3t_2 \rightarrow 2e)$	
$3^{1}T_{2}$	$40,7 (3t_2 \rightarrow 2e)$	$36,4 \ (3t_2 \rightarrow 2e)$	41,49 $(3t_2 \rightarrow 4s(Cr))$	(40,0) (плечо)
$2^{1}E$	43,9 $(1t_1 \rightarrow 4t_2)$	37,3 $(1a_1 \rightarrow 2e)$		
$2^{1}A_{2}$	45,9	46,5		
	$(1t_1 \rightarrow 4t_2)$	$(t_1 \rightarrow 4t_2)$		
		$(t_1 \rightarrow 4p)$		
		(1 <i>e</i> →2 <i>e</i>)		
$4^{1}T_{1}$	40,9	36,9	47,03 $(t_1 \rightarrow 4t_2)$	
	$(1t_1 \rightarrow 4s)$	$(t_1 \rightarrow 4p)$		
		$(3t_2 \rightarrow 2e)$		
		$(t_1 \rightarrow 4t_2)$		
$1^{1}A_{1}$	40,6	44,0		
	(1 <i>e</i> →2 <i>e</i>)	$(3t_2 \rightarrow 4p)$		
		$(2a_1 \rightarrow 4s)$		
		$(3t_2 \rightarrow 4t_2)$		
$5^{1}T_{1}$	45,1	45,8	$52,39 (3t_2 \rightarrow 4t_2)$	
	$(2t_2 \rightarrow 2e)$	$(3t_2 \rightarrow 4t_2)$		
		$(3t_2 \rightarrow 4p)$		
$4^{1}T_{2}$	$45,0 (3t_2 \rightarrow 4s)$	$41,2 (3t_2 \rightarrow 4s)$	$41,77 (t_1 \rightarrow 4t_2)$	
5^1T_2	50,2	46,3	$51,23 (3t_2 \rightarrow 4t_2)$	(50,0) (плечо)
	$(3t_2 \rightarrow 4t_2)$	$(3t_2 \rightarrow 4s)$		
		$(t_1 \rightarrow 4p)$		
		$(3t_2 \rightarrow 4p)$		
$6^{1}T_{2}$	52,0	48,8		55,6 (сильный)
	$(t_1 \rightarrow 4t_2)$	$(3t_2 \rightarrow 4p)$		
		$(t_1 \rightarrow 4t_2)$		
$7^{1}T_{2}$	70,3 $(t_1 \rightarrow 4p)$	52,3 $(2t_2 \rightarrow 2e)$		

Как видно из табл. 3, энергии вертикальных переходов, рассчитанные в данной работе, близки к экспериментальным максимумам полос поглощения. Отклонения энергий от соответствующих экспериментальных величин для состояний 1^1T_1 , 1^1T_2 , 2^1T_2 , и 3^1T_2 не превышают 700 см $^{-1}$. Лишь последняя интенсивная полоса поглощения с максимумом при 55560 см $^{-1}$ воспроизведена хуже. Так, состояние $4^{1}T_{2}$ по нашим расчетам оказалось на 5000 см $^{-1}$ ниже положения низкоэнергетического плеча (при 50000 см⁻¹) данной полосы. Однако в неэмпирическом расчете Накатсуджи с соавторами энергия этого состояния лежит еще ниже. Поэтому вслед за Накатсуджи мы относим лишь следующий разрешенный переход (в 5^1T_2) к описываемому плечу. Состояние 6^1T_2 также оказалось заметно ниже (на 3560 см⁻¹) экспериментальной энергии максимума при 55560 см⁻¹. С другой стороны, следующее состояние 7^1T_2 лежит существенно выше данного максимума.

Сравнение электронных конфигураций, определяющих то или иное возбужденное состояние, в данной работе и в расчетах методом SAC-CI позволяет сделать следующее заключение. Оказываются полностью идентичными конфигурации низколежащих состояний 1^1T_1 , 1^1T_2 и 3^1T_2 . Для большинства же высоколежащих возбужденных состояний электронные конфигурации в нашем расчете отличаются от тех, что дает SAC-CI. Здесь, по-видимому, сказывается различие используемых базисов и активного пространства в расчетах конфигурационного взаимодействия. Так, например, имеется отличие в отнесении близких по энергии экспериментальных максимумов поглощения при 36800 и 40000 см $^{-1}$. В нашем расчете состояние 2^1T_2 (отвечающее наиболее интенсивному переходу) связано с одноэлектронным переходом $1e \to 4t_2$, тогда как второй переход (малоинтенсивный) связан с переходом $3t_2 \to 2e$ (3^1T_2). При этом наш расчет дает удивительную близость к экспериментальным энергиям. Накатсуджи с соавторами получил энергию состояния 2^1T_2 на 3200 см $^{-1}$ ниже пика поглощения. Поэтому эти авторы относят следующее состояние 3^1T_2 ($3t_2 \to 2e$) к максимуму при 36800 см $^{-1}$ и лишь следующее состояние 4^1T_2 ($3t_2 \to 4s$) к плечу этой полосы при 40000 см $^{-1}$.

Как видно из расчетов Накатсуджи с соавторами многие многоэлектронные конфигурации низколежащих состояний соответствуют переносу электрона из занятых орбиталей в диффузные 4s- и 4p-орбитали хрома (например, в случае состояния 2^1T_2). Эти состояния, по-видимому, являются некоторым неизбежным искусственным порождением расширенного базиса и должны "уходить" вверх по энергии при учете многоэлектронных возбуждений. Сами авторы, однако, настаивают на реальности этих состояний, несмотря на отсутствие соответствующих экспериментальных подтверждений.

Результаты расчетов возбужденных состояний методом переходного состояния в рамках DFT, также приведенные в табл. 3 для сравнения, дают энергии состояний, как правило, завышенные на $2000~{\rm cm}^{-1}~$ по сравнению с экспериментом. Особенностью этих расчетов является близость энергий состояний T_1 и T_2 , порождаемых одной и той же конфигурацией. В данной работе, а также в расчетах методом SAC-CI подобные состояния разделены значительно больше. Такая близость разных по симметрии состояний кажется артефактом используемой в [7] для расчетов возбужденных состояний мультиплетной теории, основанной на DFT.

Сравнение результатов данной работы с теоретическими расчетами из "первых принципов", с одной стороны, а также с экспериментальным спектром поглощения — с другой, дает основание для вывода о возможности предсказывать энергии электронно-возбужденных состояний комплексов переходных металлов на количественном уровне в расчетах методом NDDO. Энергии переходов в нашем методе определяются в основном эффективными слэтеровскими экспонентами и соответствующими остовными интегралами. Последнее создает необходимую "свободу" подбора других параметров для воспроизведения геометрии и энергии связей основного состояния, не ухудшая расчеты спектров. В последующих работах мы представим результаты более подробных исследований возбужденных состояний оксианионов, включающих учет двукратных электронных возбуждений, а также расчет энергий возбужденных состояний при искажении геометрии комплексов.

Данная работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 97-03-33646 и 96-15-97571).

СПИСОК ЛИТЕРАТУРЫ

- Zerner M., Loew G., Kirchner R., Mueller-Westerhoff U. // J. Amer. Chem. Soc. 1980. 102. – P. 589 – 593.
- 2. *Сизова О.В., Панин А.И., Барановский В.И., Иванова Н.В.* // Журн. структур. химии. 1996. **37**. С. 206 210.
- 3. Зильберберг И.Л., Милов М.А., Жидомиров Г.М. // Там же. 1999. **40**. С. 3 12.
- 4. Filatov M.J., Zilberberg I.L., Zhidomirov G.M. // Int. J. Quant Chem. 1992. 44. P. 565 585.
- 5. Lever A.B.P. Inorganic electronic spectroscopy. Amsterdam—Oxford—New York—Tokyo: Elsevier Science Publishers B.V., 1984. 493 p.
- Jitsuhiro S., Nakai H., Hada M., Nakatsuji H. // J. Chem. Phys. 1994. 101. P. 1029 1036.
- 7. Stückl A.C., Daul C.A., Güdel H.U. // Ibid. 1997. 107. P. 4606 4617.
- 8. Johnson L.W., McGlynn S.P. // Chem. Phys. Lett. 1970. 7. P. 618 620.

Институт катализа им. Г.К. Борескова СО РАН 630090 Новосибирск пр. Акад. Лаврентьева, 5 E-mail:i.l.zilberberg@catalysis.nsk.su Статья поступила 13 января 1998 г.