ЗАТУХАНИЕ УДАРНОЙ ВОЛНЫ ПРИ СОУДАРЕННОЙ ПЛАСТИНЕ

А. П. Рыбаков
(Челябинск)

Распространение ударной волны, созданной в преграде ударом пластин, рассмотрим в тех же, что и в [2], предположениях. Приближенно считаем ударное сжатие изотропическим процессом. Распространение воли рассматриваем в гидродинамическом приближении без учета прочности, вязкости и теплопроводности. Кроме того, первоначально для простоты будем считать, что ударник и преграда выполнены из одного материала. Уравнение состояния этого материала можно представить уравнением [3]

\[p = \frac{c^2}{n} (\sigma^n - 1), \]

где \(p \) — давление; \(\rho \) — плотность; \(c \) — скорость звука; \(n \) — постоянная; \(\sigma = \rho/\rho_0 \) — сжатие. Индекс 0 обозначает принадлежность к начальному состоянию. Процесс рассматриваем в принятых в газовой динамике координатах: \(x \) — расстояние, \(t \) — время. Момент соударения совместим с началом координат.

При соударении пластины с преградой в обе стороны от контактной границы появляются ударные волны (фиг. 1). Из точки \((x_n, t_n) \) выходит ударной волной на тыльную свободную поверхность пластины ударника на пряма пойдет центрированная волна разрежения. Обозначим через 0 и 1 состояние материала перед фронтом и за фронтом ударной волны соответственно. Через 2 обозначим состояние материала после прохождения по нему волны разрежения. Введем дополнительные обозначения: \(D \) — скорость ударной волны; \(u \) — массовая скорость. Головная характеристика волны разрежения доходит до фронта ударной волны в точке \((x_m, t_m) \). Для волны, идущей вправо, постоянен инвариант Римана \(\lambda = \text{const} \) [4]. В таком случае

\[c = [(n - 1)/2]u + c_1. \]

Уравнение \(c_1 \) характеристики

\[(x - x_n)/(t - t_n) = c_0 + [(n + 1)/2]u. \]

Уравнение траектории фронта ударной волны до точки \((x_m, t_m) \) есть прямая ли-
ния \((x/t) = D = \text{const}\), после этой точки

\[
dx/dt = c_0 + \beta u.
\]

Здесь использовано известное соотношение между волновой скоростью \(D\) и массовой скоростью \(u\); \(c_0\) и \(\beta\) — постоянные коэффициенты, \(c_0\) имеет смысл начальной скорости звука при отсутствии фазового перехода.

Можно показать, что в рассматриваемом приближении изэнтропичности ударной волны выражение (3) следует из (1). При этом

\[
\beta = (n + 1)/4.
\]

Однако на практике для конденсированных тел линейного \((D - u)\) соотношении является подтверждением справедливости допущения изэнтропичности ударно-волнового сжатия конденсированных тел. Для сильных волн отклонение от линейности в \((D - u)\) соотношении является следствием невзрывчатости сильной ударной волны. Из (2) получим

\[
u = |2/(n + 1)|[x - x_n]/(t - t_n) - c_0|.
\]

Подстановка (4) в (3) даёт соотношение

\[
dx/dt = A + B(x - x_n)/(t - t_n),
\]

где

\[
R = 2\beta/(n + 1) = 1/2, \quad A = (1 - B)c_0 = c_0/2.
\]

Решение этого дифференциального уравнения имеет вид

\[
[x - x_n]/(t - t_n) = c_0\{1 - (1 - (x_m - x_n)/c_0(t_m - t_n))/(t - t_n)/(t - t_n)^{1/3}\}.
\]

Уравнение (5) описывает траекторию фронта ударной волны в зоне ослабления волновой разреженности после точки \((x_m, t_m)\). В диапазоне \(0 \leq x \leq x_m\) уравнение траектории фронта ударной волны есть прямая линия \(x = Dt\), и массовая скорость за фронтом волны остается постоянной \(u = u_0\). Величину массовой скорости на фронте в зоне ослабления волновой разреженности как функцию времени можно получить из (4), (5)

\[
u = u_0[1/(t_m - t_n)/(t - t_n)]^{1/3}.
\]

Если ударник и преграда выполнены из различных материалов, то центрированная волна разрежения с твёрдой поверхности ударника, преломившись, проходит в преграду. В этом случае можно найти новый угол \((x_m, t_m)\) преломлённой волны разрежения. Подстановка координат этого поляса в уравнения (5), (6) дает последние справедливые для случая соударения разных материалов.

Экспериментальные результаты работы [6] позволяют проверить справедливость различных формул затухания. Сравнение результатов расчета с опытными данными [6] приведено на фиг. 2. По оси абсцисс отложены экспериментальные значения массовой скорости \(u_0\), по оси ординат — расчетные \(u_0\).

Сплошная линия соответствует эксперименту. Цифрой 1 обозначены расчетные значения, полученные в [1] на основании гипотезы об убыли энергии в зоне ударной волны, 2 — результаты, определенные по формуле (6), 3 — значения массовой скорости, определенные по формуле, которая в наших обозначений в первом виде представляет зависимость массовой скорости от времени, полученную в [2],

\[
u = c_0(2/(n + 1))[1 + E(t - t_n)/(t_m - t_n)^{1/3}] + 1 - c_1,
\]

где

\[
E = 2(n + 1)/(u_0 + c_0)/(c_0 - 1) - 1.
\]
При вычислении по формуле (7) взяты следующие значения n, определенные по экспериментальным данным и снятию: для $Al = 4,5$, для $Pb = 5,2$, для $Cu = 5,05$ и для $Fe = 5,86$. Из работы [6] взяты значения величин t, x, u_1, c_1, значения c_0 для четырех металлов взяты из [7].

Как видно из фиг. 2, все три формулы затухания дают значения массивной скорости, близкие к экспериментальным. Козлов [1] отмечал, что расхождение между опытными и рассчитанными по его формуле значениями не превышает 13,5%. Отклонение результатов расчета по формуле (7) от опытных достигает 16,2%. Расчет по формуле (6) дает отличие от опыта, не превышающее 10%, а в большинстве случаев меньше 3—4%.

Таким образом, формула (6) дает несколько лучшее совпадение с экспериментом.

ЛИТЕРАТУРА

1. Козлов В. В. Два случая распространения ударной волны по металлу.— ЖТФ, 1966, т. 36, № 7, с. 1305.
4. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М., «Наука», 1966, с. 27.
5. Ландау Л. Д., Лифшиц Е. М. Механика сплошных сред. М., Гостехиздат, 1954, с. 460.