УДК 532.51

ВОЛНОВЫЕ РЕЖИМЫ НА ПЛЕНКЕ ВЯЗКОЙ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ, СТЕКАЮЩЕЙ ПО ВЕРТИКАЛЬНОМУ ЦИЛИНДРУ

С. Н. Саматов, О. Ю. Цвелодуб

Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090 Новосибирск

Рассматриваются аксиально-симметричные волны на поверхности вязкой ферромагнитной пленки жидкости, стекающей по цилиндрическому проводнику с переменным током. В этом случае кроме силы тяжести на пленку действует сила переменного во времени пространственно неоднородного магнитного поля. Толщина пленки предполагалась малой по сравнению с радиусом проводника. В длинноволновом приближении получено модельное уравнение для определения отклонения толщины пленки от невозмущенного значения. Приведены некоторые численные решения полученного уравнения.

1. Постановка задачи. Как известно, существенное различие течений ферромагнитной и обычной жидкостей обусловлено наличием объемной магнитной силы, направленной перпендикулярно скорости потока [1, 2]. Эта сила оказывает существенное влияние на устойчивость течения. В различных постановках задача о пленочном течении ферромагнитной жидкости исследовалась во многих работах. Так, в [3] рассмотрена задача о волновом режиме течения тонкого слоя магнитной жидкости, стекающего по вертикальному проводнику с постоянным током при умеренных числах Рейнольдса. В длинноволновом приближении получена система нелинейных дифференциальных уравнений, описывающая распространение осесиммметричных возмущений конечной амплитуды. Построены некоторые численные решения полученной системы.

В данной работе рассмотрено влияние магнитной силы, меняющейся со временем, на волновые режимы течения.

Исследуется течение тонкой пленки вязкой ферромагнитной жидкости, стекающей по вертикальному цилиндрическому проводнику в поле тяжести. Вдоль проводника течет переменный ток $I_0\cos(\omega_0 t + \phi)$. Закон намагничивания магнитной жидкости предполагается линейным. Будем рассматривать аксиально-симметричный случай, что обеспечивает отсутствие возмущения поля \boldsymbol{H} и магнитного скачка давления на свободной поверхности жидкости. В длинноволновом приближении в случае малых расходов (числа Рейнольдса порядка единицы) данную задачу удается свести к решению одного нелинейного дифференциального уравнения для определения отклонения толщины пленки от невозмущенного значения.

В квазистационарном приближении система уравнений Навье — Стокса, описывающая данное течение, имеет вид $[1,\,2]$

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v}\nabla)\boldsymbol{v} = -\frac{\nabla p}{\rho} + \nu\Delta\boldsymbol{v} + \boldsymbol{g} + \frac{\boldsymbol{f}}{\rho}, \quad \text{div } \boldsymbol{v} = 0.$$
 (1)

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 00-01-00849) и Международного фонда INTAS (код проекта 99-1107).

Здесь v — скорость; p — давление; ρ — плотность; ν — коэффициент кинематической вязкости; t — время; g — ускорение свободного падения; $f = \mu_0(M\nabla)H$ — сила, действующая на единицу объема ферромагнитной жидкости со стороны магнитного поля; μ_0 — магнитная постоянная; H — напряженность магнитного поля; M — намагниченность жидкости.

Введем цилиндрическую систему координат. Ось z, совпадающая с направлением силы тяжести, является осью симметрии проводника радиусом R. Границе невозмущенной свободной поверхности ферромагнитной жидкости соответствует координата $r = R + h_0$ (h_0 — толщина невозмущенной пленки).

Вне проводника магнитное поле, создаваемое линейным током, имеет вид

$$r > R$$
: $\mathbf{H} = (0, H_{\varphi}, 0), \quad H_{\varphi} = I/(2\pi r) = I_0 \cos(\omega_0 t + \phi)/(2\pi r).$

Так как в области течения $\operatorname{rot} \boldsymbol{H} = 0$ и принимается линейный закон намагничивания $\boldsymbol{M} = \chi \boldsymbol{H} \ (\chi - \text{магнитная восприимчивость ферромагнитной жидкости}), то$

$$f = \mu_0(M\nabla)H = \mu_0\chi(H\nabla)H = \mu_0\chi(\nabla H^2/2 - [H, \text{rot } H]) = \mu_0\chi\nabla H^2/2.$$

На поверхности цилиндра выполняется граничное условие

$$r = R: \qquad \boldsymbol{v} = 0, \tag{2}$$

на свободной поверхности пленки — кинематическое условие

$$\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial z} = v \tag{3}$$

и динамические условия

$$r = R + h_0 + h$$
: $(p - \sigma/R_*)n_i - \tau_{ik}^{(1)}n_k = p_0 n_i - \tau_{ik}^{(2)}n_k$. (4)

Здесь u, v — компоненты скорости вдоль осей z и r соответственно; p — давление в жидкости; p_0 — внешнее давление; n_i — компоненты нормали $\mathbf{n} = (n_z, n_r) = (-\partial h/\partial z, 1)/\sqrt{1 + (\partial h/\partial z)^2}$; $1/R_*$ — средняя кривизна:

$$\frac{1}{R_*} = \frac{[1 + (\partial h/\partial z)^2]/(R + h_0 + h) - \partial^2 h/\partial z^2}{[1 + (\partial h/\partial z)^2]^{3/2}};$$

 $au_{ik} = \sigma_{ik} + H_i B_k - \mu_0 H^2 \delta_{ik} / 2$ — тензор напряжений, включающий тензор вязких напряжений σ_{ik} и максвелловский тензор натяжений (в формуле (4) индекс (1) соответствует жидкости, (2) — окружающей среде); $\mathbf{B} = \mu_0 (1 + \chi) \mathbf{H}$ — индукция магнитного поля.

Система уравнений (1) с граничными условиями (2)–(4) допускает решение с цилиндрической свободной границей постоянной толщины

$$u(r) \equiv V = \frac{g}{2\nu} \Big((R + h_0)^2 \ln \frac{r}{R} - \frac{r^2 - R^2}{2} \Big), \quad P(r) = p_0 + \frac{\sigma}{R + h_0} + \frac{\mu_0 \chi I^2}{8\pi^2} \Big(\frac{1}{r^2} - \frac{1}{(R + h_0)^2} \Big).$$

Однако легко показать, что такое течение неустойчиво по отношению к бесконечно малым возмущениям и в результате эволюции этих возмущений становится волновым.

Целью данной работы является получение упрощенной модели, позволяющей качественно описать нелинейные волновые режимы в стекающей пленке ферромагнитной жидкости.

Пусть V_0 — скорость свободной поверхности пленки толщины h_0 при безволновом течении, λ — характерный продольный размер возмущения. Вместо радиальной координаты r удобно ввести величину r-R, далее обозначаемую также через r.

Используя параметры λ/V_0 , V_0 , $\rho g h_0$ как масштабы времени, скорости и давления, а h_0 , λ как масштабы в направлениях r и z соответственно, уравнения движения пленки запишем в безразмерном виде

$$\varepsilon \frac{\partial u}{\partial t} + \varepsilon u \frac{\partial u}{\partial z} + v \frac{\partial u}{\partial r} = -\frac{\varepsilon}{\operatorname{Fr}} \frac{\partial p}{\partial z} + \frac{\delta}{\operatorname{Re}(1+\delta r)} \frac{\partial u}{\partial r} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u}{\partial r^2} + \frac{\varepsilon^2}{\operatorname{Re}} \frac{\partial^2 u}{\partial z^2} + \frac{1}{\operatorname{Fr}},$$

$$\varepsilon \frac{\partial v}{\partial t} + \varepsilon u \frac{\partial v}{\partial z} + v \frac{\partial v}{\partial r} = -\frac{1}{\operatorname{Fr}} \frac{\partial p}{\partial r} + \frac{\delta}{\operatorname{Re}(1+\delta r)} \frac{\partial v}{\partial r} +$$

$$+ \frac{1}{\operatorname{Re}} \frac{\partial^2 v}{\partial r^2} + \frac{\varepsilon^2}{\operatorname{Re}} \frac{\partial^2 v}{\partial z^2} - \frac{\delta^2}{\operatorname{Re}(1+\delta r)^2} v - \frac{\operatorname{BWe} \delta^2}{\operatorname{Fr}(1+\delta r)^3} \cos^2(\omega t + \phi), \quad (5)$$

$$\varepsilon \frac{\partial u}{\partial z} + \frac{\delta}{1+\delta r} v + \frac{\partial v}{\partial r} = 0.$$

Здесь Re = V_0h_0/ν — число Рейнольдса; Fr = $V_0^2/(gh_0)$ — число Фруда; We = $\sigma/(\rho gh_0^2)$ — число Вебера; σ — коэффициент поверхностного натяжения; B = $\mu_0\chi I_0^2/(4\pi^2\sigma R)$ — магнитное число Бонда; $\omega=\omega_0\lambda/V_0$; $\varepsilon=h_0/\lambda$; $\delta=h_0/R$.

Граничные условия запишутся в виде

$$r = 0: \quad \mathbf{v} = 0;$$

$$r = 1 + h: \quad \varepsilon \left(p - \frac{\delta \operatorname{We}}{1 + \delta + \delta h} + \operatorname{We} \varepsilon^{2} \frac{\partial^{2} h}{\partial z^{2}} - 2\varepsilon \frac{\operatorname{Fr}}{\operatorname{Re}} \frac{\partial u}{\partial z} \right) \frac{\partial h}{\partial z} + \frac{\operatorname{Fr}}{\operatorname{Re}} \left(\frac{\partial u}{\partial r} + \varepsilon \frac{\partial v}{\partial z} \right) = \varepsilon p_{0} \frac{\partial h}{\partial z},$$

$$p - \frac{\delta \operatorname{We}}{1 + \delta + \delta h} + \operatorname{We} \varepsilon^{2} \frac{\partial^{2} h}{\partial z^{2}} - 2 \frac{\operatorname{Fr}}{\operatorname{Re}} \frac{\partial v}{\partial r} + \varepsilon \frac{\operatorname{Fr}}{\operatorname{Re}} \left(\frac{\partial u}{\partial r} + \varepsilon \frac{\partial v}{\partial z} \right) \frac{\partial h}{\partial z} = p_{0},$$

$$\varepsilon \left(\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial z} \right) = v.$$

$$(6)$$

Представляя возмущенное течение в виде $u = V + \varepsilon u'$, $v = \varepsilon^2 v'$, $p = P + \varepsilon p'$, $h = \varepsilon h'$ и пренебрегая в (5) членами порядка ε^2 и выше, приходим к следующей системе уравнений для возмущенных величин (штрихи опускаем):

$$\varepsilon \frac{\partial u}{\partial t} + \varepsilon V \frac{\partial u}{\partial z} + \varepsilon v \frac{dV}{dr} = -\frac{\varepsilon}{\operatorname{Fr}} \frac{\partial p}{\partial z} + \frac{\delta}{\operatorname{Re}(1+\delta r)} \frac{\partial u}{\partial r} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u}{\partial r^2},$$

$$\frac{\partial p}{\partial r} = 0, \qquad \frac{\partial u}{\partial z} + \frac{\delta}{1+\delta r} v + \frac{\partial v}{\partial r} = 0.$$
(8)

Граничные условия (6) остаются без изменения: u = v = 0 при r = 0.

Граничные условия (7) со свободной поверхности переносим на невозмущенный уровень r=1:

$$\frac{\partial u}{\partial r} + \frac{d^2 V}{dr^2} h = 0,$$

$$p + \varepsilon \frac{\partial p}{\partial r} h + \frac{\delta^2 \operatorname{We}}{(1+\delta)^2} [1 - \operatorname{B} \cos^2 (\omega t + \phi)] h + \operatorname{We} \varepsilon^2 \frac{\partial^2 h}{\partial z^2} - 2\varepsilon \frac{\operatorname{Fr}}{\operatorname{Re}} \frac{\partial v}{\partial r} = 0;$$

$$\frac{\partial h}{\partial t} + (\varepsilon u + V) \frac{\partial h}{\partial z} = v + \varepsilon \frac{\partial v}{\partial r} h.$$
(10)

Поверхностное натяжение предполагается достаточно большим, так что We ε^2 , We δ^2 порядка единицы.

Решение системы (8) с граничными условиями (9), (10) ищем в виде

$$(u, v, p) = \sum_{n=0}^{\infty} \varepsilon^n(u_n, v_n, p_n), \qquad h(z, t) = h(z, t, \varepsilon t) = h(z, t, t_1).$$

Приравнивая коэффициенты при одинаковых степенях ε , в нулевом приближении имеем

$$u_0 = \frac{\text{Re}}{\text{Fr}} rh, \quad v_0 = -\frac{\text{Re}}{\text{Fr}} \frac{r^2}{2} \frac{\partial h}{\partial z}, \quad p_0 = -\text{We } \delta^2 [1 - \text{B} \cos^2(\omega t + \phi)]h - \text{We } \varepsilon^2 \frac{\partial^2 h}{\partial z^2}.$$

Подставляя найденное для этого приближения решение системы (8) в кинематическое условие (10), в первом приближении получим

$$\frac{\partial h}{\partial t} + \left(1 + \frac{\text{Re}}{2 \,\text{Fr}}\right) \frac{\partial h}{\partial z} = 0. \tag{11}$$

Используя выражение для скорости поверхности невозмущенной пленки, нетрудно показать, что $\operatorname{Re}/\operatorname{Fr}=2$. Тогда из (11) следует, что в первом приближении все возмущения распространяются со скоростью, равной удвоенной скорости течения на невозмущенной свободной границе.

Для следующего приближения по ε из системы (8) имеем

$$\frac{\partial u_0}{\partial t} + V \frac{\partial u_0}{\partial z} + v_0 \frac{dV}{dr} = -\frac{1}{\text{Fr}} \frac{\partial p_0}{\partial z} + \frac{S}{\text{Re}(1+\delta r)} \frac{\partial u_0}{\partial r} + \frac{1}{\text{Re}} \frac{\partial^2 u_1}{\partial r^2},
\frac{\partial p_1}{\partial r} = 0, \qquad \frac{\partial u_1}{\partial z} + \frac{S}{1+\delta r} v_0 + \frac{\partial v_1}{\partial r} = 0,$$
(12)

где $S=\delta/\varepsilon=\lambda/R\sim 1.$ В этом приближении граничные условия при r=1 примут вид

$$\frac{\partial u_1}{\partial r} = 0, \quad p_1 + \frac{\partial p_0}{\partial r} h - 2 \frac{\operatorname{Fr}}{\operatorname{Re}} \frac{\partial v_0}{\partial r} - 2S\delta^2 \operatorname{We}[1 - \operatorname{B}\cos^2(\omega t + \phi)]h = 0; \tag{13}$$

$$\frac{\partial h}{\partial t_1} + u_0 \frac{\partial h}{\partial z} = \frac{\partial v_0}{\partial r} h + v_1. \tag{14}$$

Решение системы (12) с граничными условиями (13) легко находится, но из-за громоздкости здесь не приводится. Выпишем лишь значение скорости v_1 на границе:

$$v_1 = \frac{5}{24} \frac{\text{Re}^2}{\text{Fr}} \frac{\partial^2 h}{\partial t \partial z} - \frac{1}{3} \frac{\text{Re}}{\text{Fr}} \text{We} \left(\delta^2 [1 - B\cos^2(\omega t + \phi)] \frac{\partial^2 h}{\partial z^2} + \varepsilon^2 \frac{\partial^4 h}{\partial z^4} \right) - \frac{S}{3} \frac{\text{Re}}{\text{Fr}} \frac{\partial h}{\partial z} + \frac{3}{40} \frac{R^3}{\text{Fr}^2} \frac{\partial^2 h}{\partial z^2} + \frac{1}{3} \frac{R^3}{R^3} \frac{\partial^$$

Переходя в систему отсчета, движущуюся со скоростью $2+2\delta/3$, и подставляя выражение $v_1(1)$ в кинематическое условие (14), приходим к уравнению

$$\frac{\partial h}{\partial t_1} + 4h \frac{\partial h}{\partial x} + \left[\frac{8}{15} \operatorname{Re} + \frac{2}{3} \operatorname{We} \delta^2 \left(1 - \frac{B}{2} \right) - \frac{\operatorname{We} \delta^2}{3} \operatorname{B} \cos \left(2\omega_1 t_1 + \phi \right) \right] \frac{\partial^2 h}{\partial x^2} + \frac{2}{3} \operatorname{We} \varepsilon^2 \frac{\partial^4 h}{\partial x^4} = 0.$$
 (15)

Здесь $h = h(x, t_1)$; $x = z - 2t - 2\delta t/3$; $\omega_1 = \omega/\varepsilon$.

Если по проводнику течет постоянный ток, то периодическая по времени функция, стоящая в скобках в (15), отсутствует, и уравнение (15) переходит в известное уравнение Курамото — Сивашинского (K–C). В этом случае, как следует из (15), если магнитное число Бонда больше критического значения $B^* = 2 + 8 \, \mathrm{Re} \, / (5 \, \mathrm{We} \, \delta^2)$, то постоянный коэффициент при второй производной будет отрицательным. Это значит, что в рамках данной модели достаточно сильное магнитное поле постоянного тока полностью стабилизирует течение: неустойчивые возмущения отсутствуют, все бесконечно малые возмущения затухают.

В данной работе будем рассматривать значения числа Бонда меньше критического. Тогда уравнение (15) можно преобразовать таким образом, чтобы при $I_{eff} = I_0/\sqrt{2}$ (I_{eff} — постоянный ток, при котором пондеромоторная сила со стороны магнитного поля равна среднему значению силы при данном переменном токе) нейтральное волновое число α_n для бесконечно малых возмущений было равно единице. Из уравнения (15) следует, что в этом случае должно быть выполнено условие

$$4 \operatorname{Re}/(5 \operatorname{We} \varepsilon^2) = 1 - S^2(1 - B/2).$$
 (16)

Уравнение (16) уточняет выбор характерного продольного размера возмущений. Из него следует

$$\varepsilon = h_0/\lambda = \delta(1 - B/2 + 4 Re/(5 We \delta^2))^{1/2}.$$

Сделав замену $h(x,t_1) = 2 \operatorname{We} \varepsilon^2 H(x,\tau)/3$, $\tau = 2 \operatorname{We} \varepsilon^2 t_1/3$, $\omega_1 = 2 \operatorname{We} \varepsilon^2 \Omega/3$, $C = S^2 \operatorname{B}/2$, окончательно получим

$$\frac{\partial H}{\partial \tau} + 4H \frac{\partial H}{\partial x} + \left[1 - C\cos(2\Omega\tau + \phi)\right] \frac{\partial^2 H}{\partial x^2} + \frac{\partial^4 H}{\partial x^4} = 0. \tag{17}$$

2. Метод решения. Если в уравнении (17) пренебречь нелинейным членом, то оно будет описывать устойчивость исходного течения по отношению к бесконечно малым возмущениям. Напомним, что при C=0 нейтральное волновое число α_n равно единице. Тогда неустойчивыми будут возмущения с волновыми числами $\alpha < 1$.

Для анализа нелинейных периодических решений уравнение (17) решалось численно. Решение представлялось в виде пространственного ряда Фурье, гармоники которого являются функциями времени:

$$H(x,\tau) = \sum_{n=-\infty}^{\infty} H_n(\tau) \exp(in\alpha x). \tag{18}$$

В силу вещественности H для гармоник H_n справедливо соотношение $H_{-n} = H_n^*$ (звездочка означает операцию комплексного сопряжения).

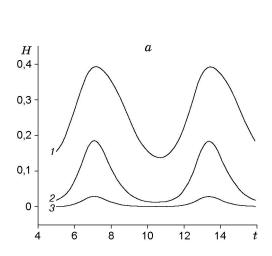
Подставляя (18) в (17), получаем бесконечную систему нелинейных обыкновенных дифференциальных уравнений для гармоник H_n . Обрывая ряд (18), т. е. полагая, что все гармоники начиная с некоторого номера N равны нулю, приходим к ее конечному приближению

$$\frac{dH_n}{d\tau} = \alpha^2 n^2 \{ [1 - C\cos(2\Omega\tau + \phi)] - \alpha^2 n^2 \} H_n - 4i\alpha n \sum_{m=N-n}^{N} H_m H_{n-m}, \quad n = 0, 1, \dots, N.$$
 (19)

Из (19) следует, что уравнение для нулевой гармоники тривиально, т. е. выполняется для любого произвольного постоянного значения H_0 . В дальнейшем будем строить решения, в которых эта константа равна нулю.

Разделяя в (19) вещественные и мнимые части, имеем систему из 2N обыкновенных дифференциальных уравнений для 2N неизвестных функций.

Система (19) решалась численно одним из методов Рунге — Кутты пятого порядка с автоматическим выбором шага интегрирования и контролируемой погрешностью. Число гармоник бралось таким, чтобы выполнялось соотношение $|H_N|/\max |H_n| < 10^{-4}$. Основные результаты получены при N=10. Для контроля при проведении некоторых расчетов N полагалось равным 25. Сравнение результатов расчетов показало, что различие возникает не более чем в 4–5-м знаке.



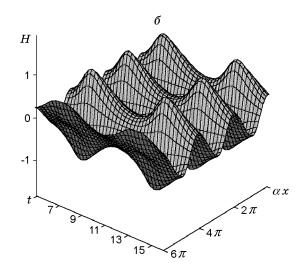


Рис. 1

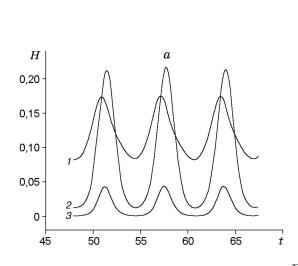
3. Результаты. Как отмечено выше, при постоянном токе (C=0) уравнение (17) переходит в известное уравнение Курамото — Сивашинского, исследованию которого посвящено большое количество работ. Из результатов этих работ следует, что множество решений уравнения К—С чрезвычайно разнообразно. Например, в [4] показано, что при $\alpha=1$ от тривиального решения ответвляется семейство периодических решений уравнения К—С, которое продолжается до волнового числа $\alpha=0.4979$ (так называемое первое семейство решений). В [5, 6] показано, как реализуется последовательный каскад бифуркаций, в результате чего появляются все более сложные решения. Учитывая сложность картины решений уравнения К—С, ограничимся рассмотрением эволюции только тех решений уравнения (17), для которых начальные возмущения в случае C=0 эволюционировали в стационарно бегущие решения уравнения К—С.

В приведенных ниже расчетах начальные значения вещественной и мнимой частей первой гармоники H_1 полагались равными 0.5 и 0 соответственно. Начальные значения амплитуд остальных гармоник полагались равными нулю.

Как показали расчеты, волновая картина для уравнения (17) становится более разнообразной даже в той области значений параметров, где структура решений уравнения K–C достаточно проста. Это происходит потому, что из-за влияния переменного магнитного поля амплитуды гармоник осциллируют со временем. На характер этих осцилляций существенно влияют как амплитуда, так и частота переменного тока. Влияние фазы ϕ заметно слабее и имеет место лишь на начальном переходном режиме, поэтому во всех приводимых ниже расчетах $\phi=0$.

На рис. 1,a представлены зависимости амплитуд первых трех гармоник от времени (кривые 1–3) для волнового числа $\alpha=0.8$ и $C=1,\ \Omega=0.5$. Амплитуды остальных гармоник не превышают нескольких процентов максимальной амплитуды третьей гармоники. Так как первая гармоника в любой момент времени существенно больше второй, то форма волнового профиля близка к синусоидальной. В свою очередь, как следует из рис. 1,a, по крайней мере первые две гармоники при $t>\pi/\Omega$ осциллируют во времени по квазисинусоидальному закону. На рис. $1,\delta$ для тех же значений параметров показана развертка волнового профиля во времени. В этом случае форма волнового профиля по координатам x,t близка к синусоидальной.

Как показали расчеты, для волновых чисел, достаточно близких к нейтральному волновому числу, данный вид решения является характерным, если выполняется условие



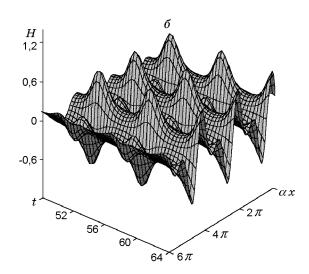


Рис. 2

 $C/\Omega < 1$, что естественно, так как, с одной стороны, чем меньше амплитуда, тем меньше влияние переменного магнитного поля, с другой — при достаточно большой частоте влияние переменной составляющей магнитной силы незначительно.

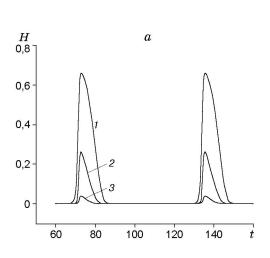
Для указанного соотношения между амплитудой C и частотой Ω при продвижении по волновому числу α в область линейной неустойчивости для уравнения K–C профиль волны становится существенно несинусоидальным. На рис. 2 α = 0,6, C = 1, Ω = 0,5. Как показано на рис. 2,a, для данных значений параметров вторая гармоника (кривая 2) становится соизмеримой с первой (кривая 1) и в некоторые моменты времени даже превышает ее. Такое поведение второй гармоники обусловлено тем, что для этих интервалов времени наряду с первой в область неустойчивости попадает и вторая гармоника. Действительно, можно сказать, что в отличие от уравнения K–C область линейной неустойчивости для решений уравнения (17) в некотором смысле меняется со временем. В частности, если частота Ω невелика, то в уравнении (17) фазу у коэффициента при второй производной можно считать практически постоянной в течение достаточно большого промежутка времени. При этом область локальной линейной неустойчивости лежит в интервале волновых чисел

$$0 < \alpha < [1 - C\cos(\Omega \tau + \phi)]^{1/2}.$$
 (20)

Таким образом, в данном случае в моменты времени, когда в область (20) наряду с первой гармоникой $(\alpha=0.6)$ попадает вторая гармоника $(\alpha=1.2)$, последняя интенсивно растет как в силу собственного усиления из-за линейной неустойчивости, так и вследствие нелинейного воздействия на нее первой. При этом третья гармоника всегда остается в области линейной устойчивости, поэтому в каждый момент времени она меньше первых двух (кривая 3 на рис. 2,a).

Развертка данного волнового профиля во времени представлена на рис. 2,6. Видно, что в этом случае форма волнового профиля по координатам x,t значительно отличается от синусоидальной.

Если частота Ω невелика (порядка 0,1 и менее), то даже для волновых чисел, близких к нейтральному ($\alpha=1$), при увеличении амплитуды переменного тока пульсации решения во времени усиливаются и все более отличаются от синусоидальных (рис. 3). На рис. 3 $C=2,~\Omega=0.05,~\alpha=0.95$. Видно, что в данном случае возникают области, в которых в течение достаточно большого промежутка времени поверхность жидкости практически не возмущена. Объяснение такого поведения решения аналогично приведенному в [7] для



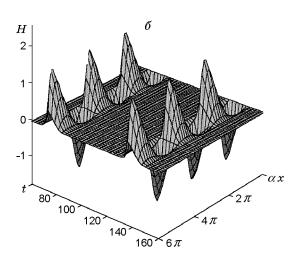


Рис. 3

случая течения пленки по вертикальной вибрирующей плоскости. Это связано с тем, что для малых частот Ω и достаточно больших амплитуд C первая гармоника в определенные моменты времени выходит из области локальной линейной неустойчивости (20). После того как волновое число α попадает в область линейной устойчивости, амплитуда возмущения быстро уменьшается практически до нуля. В результате в течение значительного промежутка времени возмущения на пленке отсутствуют, пока волновое число α вновь не попадет в область локальной неустойчивости (20). В этот момент происходит быстрый рост сигнала. В дальнейшем процесс периодически повторяется.

На рис. 3,a показано поведение во времени первых трех гармоник (кривые 1–3). Видно, что интервалы времени, в которые гармоники отличны от нуля, достаточно узки. Так как при данных значениях параметров преобладает первая гармоника, в эти промежутки времени пространственная форма профиля волны также достаточно близка к синусоидальной (рис. 3,6).

4. Выводы. Полученное в работе уравнение (17) можно использовать для исследования воздействия на слабонелинейные возмущения в пленочном течении ферромагнитной вязкой жидкости переменного магнитного поля. На характер волн существенное влияние оказывают как частота, так и амплитуда поля. Как показали расчеты, в результате могут наблюдаться интересные волновые режимы, отсутствующие в случае свободного стекания пленки.

ЛИТЕРАТУРА

- 1. **Шлиомис М. И.** Магнитные жидкости // Успехи физ. наук. 1974. Т. 112, вып. 3. С. 427–458.
- 2. Баштовой В. Г., Берковский Б. М., Вислович А. Н. Введение в термомеханику магнитных жидкостей. М.: Ин-т высоких температур АН СССР, 1985.
- 3. **Демехин Е. А., Каплан М. А., Фойгель Р. А.** Нелинейные волны в стекающем слое вязкой магнитной жидкости // Магнит. гидродинамика. 1988. № 1. С. 21–29.
- 4. **Непомнящий А. А.** Устойчивость волновых режимов в пленке, стекающей по наклонной плоскости // Изв. АН СССР. Механика жидкости и газа. 1974. № 3. С. 28–34.
- 5. **Трифонов Ю. Я., Цвелодуб О. Ю.** О стационарно бегущих решениях эволюционного уравнения для возмущений в активно-диссипативной среде. Новосибирск, 1988. (Препр. / Инт теплофизики СО АН СССР; № 188-88).

- 6. **Tsvelodub O. Y., Trifonov Yu. Ya.** On steady-state travelling solutions of an evolution equation describing the behaviour of disturbances in active dissipative media // Phisica D. 1989. V. 36, N 3. P. 255–269.
- 7. **Саматов С. Н., Цвелодуб О. Ю.** Волны на пленке вязкой жидкости, стекающей по вибрирующей вертикальной плоскости // ПМТФ. 1999. Т. 40, № 4. С. 90–98.

	Поступила	6	редакцию	30/X 2	001 г.