УДК 534.222.2

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ХАРАКТЕРИСТИКИ ВЫСОКОЭНЕРГЕТИЧЕСКИХ ВОСПЛАМЕНИТЕЛЬНЫХ НАНОКОМПОЗИТОВ НА ОСНОВЕ AI/Bi₂O₃

Y.-J. Wang¹, L. Guo¹, Z.-S. Jiang²

¹Пекинский технологический институт, 100081 Пекин, Китай, yajunwang@bit.edu.cn ²Цзяннаньская индустриальная группа, 411207 Сянтань, Хунань, Китай

Для оптимизации синтеза реагирующих компонентов и улучшения воспламенительных свойств Al/Bi₂O₃ исследованы факторы, влияющие на энергетические характеристики реакций нанотермитов. Учитывались тип оксидов, размер частиц Bi₂O₃ и молярное соотношение горючего компонента к оксиду. Все образцы получены методом ультразвукового смешивания. Состав синтезированных композитов Al/Bi₂O₃ подтвержден методами рентгенофазового анализа и растровой электронной микроскопии. Исследование энергетических характеристик, включая максимальное давление, время задержки воспламенения и скорость роста давления, проводилось в закрытой бомбе. Al/Bi₂O₃ демонстрирует наилучшие энергетические характеристики среди приготовленных нанотермитов Al/CuO, Al/Fe₂O₃, Al/Bi₂O₃. Этот композит оптимального стехиометрического состава Al (100 нм)/Bi₂O₃ (47 нм) характеризуется максимальным давлением 4559 кПа. При этом скорость роста давления составляет 11.398 ГПа/с и время задержки воспламенения наименьшее — 27.20 мс. Результаты показывают, что размер частиц нано-Bi₂O₃ также сильно влияет на энергетические характеристики.

Ключевые слова: Al/Bi₂O₃, нанотермит, факторы влияния, энергетические характеристики.

DOI 10.15372/FGV20190207

ВВЕДЕНИЕ

В настоящее время метастабильные межмолекулярные композиты, особенно нанотермиты, становятся все более привлекательными в качестве наноэнергетических материалов [1]. По сравнению с классическими термитами, состоящими из частиц микронного размера, нанотермиты, частицы которых имеют диаметр около 100 нм, характеризуются довольно высокими температурами и скоростями горения в связи с их относительно высокими энергетическими плотностями. Их приготовление, характеристики, испытания, построение моделей, численное моделирование, механизм реакции и прикладное использование подробно изучены. На данный момент в центре внимания исследователей находятся вопросы, связанные со сложностью термитной реакции и множеством влияющих факторов. Al/Bi₂O₃ — один из новых типов нанотермитов, обладающий довольно высокой воспламеняемостью, быстрой

скоростью роста давления и высокой адиабатической температурой горения [2, 3].

В работе [4] показано, что давление, создаваемое композитом Al/Bi₂O₃, в три раза выше по сравнению с традиционными термитами. В работе [5] проведено сравнение четырех нанотермитов, содержащих оксиды — Al/CuO, Al/Bi₂O₃, Al/MoO₃ и Al/WO₃. Установлено, что Al/Bi₂O₃ обладает самой высокой воспламеняемостью и средним давлением. При его горении получено самое большое количество газообразных продуктов, что соответствует расчетам с образованием равновесных составов. В экспериментах [6] по исследованию горения композита Al/Bi₂O₃ в открытом поддоне также обнаружено, что его воспламеняемость и скорость горения выше, чем у композитов Al/MoO₃, Al/WO₃, Al/CuO.

В работе [7] изучали влияние размера частиц алюминия и толщины оболочки Al_2O_3 на воспламеняемость Al/Bi_2O_3 . Для композитов, состоящих из наночастиц Bi_2O_3 размером 50 нм и наночастиц Al размеров 3 мкм \div 100 нм, давление составило $9 \div 13$ МПа. В [3, 4] изучали синтез и характеристики наночастиц Bi_2O_3 для высокоэнергетического газогенера-

[©] Yajun Wang, Liang Guo, Zisheng Jiang, 2019.

¹State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China. ²Jiangnan Industry Group Co. Ltd, Xiangtan 411207, Hunan, China.

тора. Максимальное давление (≈ 12 МПа) достигнуто при горении композита Al/Bi₂O₃ с синтезированными кристаллическими наночастицами Bi₂O₃ размером $40 \div 50$ нм.

В исследовании воспламеняемости метастабильных межмолекулярных композитов [8] установлена корреляция между максимальным давлением и скоростью распространения пламени в системе Al/CuO. В [9] при изучении композита Al/Bi₂O₃ с добавкой бора максимальное давление (1.3 MПа) получено при массовом содержании 0.25 %.

В данной работе путем измерения давления в закрытой бомбе исследовано влияние оксидов, размера частиц Bi_2O_3 и молярного соотношения между горючим и окислителем на энергетические характеристики нанотермита Al/Bi_2O_3 .

1. МАТЕРИАЛЫ И МЕТОДИКИ ЭКСПЕРИМЕНТА

1.1. Приготовление наночастиц Bi₂O₃

Оксиды висмута получены обычным гидротермальным методом. $Bi(NO_3)_3 \cdot 5H_2O$ в количестве 2.425 г вводили в (СН₂ОН)₂ объемом 10 мл методом смешивания. Затем в этот раствор, продолжая смешивание, в течение 0.5 ч добавляли C₂H₅OH в количестве 30 мл до обесцвечивания раствора. Конечный раствор помещали в автоклав из нержавеющей стали объемом 50 мл с тефлоновым покрытием и нагревали до 160 °C в течение 10 ч. После охлаждения до комнатной температуры приготовленные образцы промывали три раза деионизированной водой и спиртом и высушивали при 60 °С в течение 6 ч. Затем образцы прокаливали при разных температурах (300, 325, 350, 375, 400 °C) в течение 2 ч при скорости нагрева 10 °С/мин. В результате были получены частицы Ві₂О₃ разного размера.

Для приготовления нанотермитов использовались частицы Bi_2O_3 (80 нм), Fe_2O_3 (20 нм) и CuO (40 нм) компании «Beijing DK Nano Technology», Китай.

1.2. Приготовление нанотермитов

Образцы нанотермитов Al/Bi_2O_3 , Al/Fe_2O_3 , Al/CuO изготовлялись методом ультразвукового смешивания. Молярное соотношение ϕ между алюминием и оксидом рассчитывалось из уравнения

$$2\mathrm{Al} + \mathrm{Bi}_2\mathrm{O}_3 = 2\mathrm{Bi} + \mathrm{Al}_2\mathrm{O}_3.$$

 Bi_2O_3 (47 нм) в количестве 0.5 г, растворенный в 10 мл н-гексана, помещали в пробирку объемом 25 мл. Затем добавляли нано-Al (размер частиц 100 нм) в разном молярном соотношении ($\phi = 1.5$ (0.04825 г), $\phi = 2$ $(0.06434 \text{ r}), \phi = 2.5 (0.07238 \text{ r}), \phi = 3 (0.09651 \text{ r})$ и $\phi = 3.5 \ (0.11259 \ г))$. Смесь перемешивали в ультразвуковом аппарате KQ-300E (компания «Kunshan Ultrasonic Instruments») при частоте 40 кГц и мощности 300 Вт в течение 30 мин. После высушивания при 60 °C в течение 6 ч все реагенты собирали для последующего использования. Таким же образом были приготовлены композиты стехиометрического состава Al/Fe₂O₃ (20 нм), Al/CuO (40 нм) и Al/Bi_2O_3 с частицами Bi_2O_3 размеров 80, 53, 96, 178 и 293 нм.

1.3. Измерения характеристик материала и давления

Структуру И морфологию образцов Al/Bi₂O₃ определяли с помощью растровой электронной микроскопии (SEM, Hitachi S-4700). Фазовый состав исследовали методом рентгенофазового анализа (D8 Advance, Bruker Corporation). Воспламеняемость определяли путем измерения давления. Образец композита массой 0.5 г зажигали электрическим воспламенителем в закрытой бомбе с объемом камеры сгорания 50 мл. На рис. 1 показана экспериментальная установка для измерения давления. Изменение давления во время реакции нанотермитов фиксировалось датчиком давления CY-YD-205 (компания

Рис. 1. Схема экспериментальной установки измерения давления:

1 — источник питания, 2 — закрытая бомба, 3 ниша для реакции, 4 — датчик давления, 5 вольтметровый щуп осциллографа, 6 — усилитель заряда, 7 — осциллограф «Sinocera Piezotronics») с чувствительностью 12.02 пКл/10⁵ Па и диапазоном давления $0 \div 30$ ГПа. Напряжение регистрировалось осциллографом Tektronix DPO3054 со скоростью сбора данных 5 кГц после применения усилителя заряда YE5853 (компания «Sinocera Piezotronics») с коэффициентом усиления 10 мВ и чувствительностью 120 × 0.01 пКл.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Рентгенофазовый анализ

Кристаллическая структура частиц Ві₂О₃ исследовалась методом рентгенофазового анализа. В табл. 1 приведены кристаллическая структура и размер частиц образцов (d), прокаленных при разных температурах (T_h) , в сравнении с эталоном JCPDS № 78-1793 для β-Bi₂O₃ и № 65-2366 для α-Bi₂O₃ и с результатами расчета по уравнению Дебая — Шемера. Стабильная кристаллическая структура β -Bi₂O₃ без примесей получена при $T_h \approx$ 598 К. При уменьшении температуры прокаливания до $T_b = 573$ К получен β -Bi₂O₃ с аморфно-кристаллической структурой. Кроме того, α -Bi₂O₃ присутствовал при $T_b > 623$ К и оставался в стабильном и беспримесном состоянии при $T_b \approx 673$ К. Размер частиц увеличивался с повышением температуры.

Рентгенограммы образцов (Al, Bi₂O₃ (47 нм) и Al/Bi₂O₃ (47 нм)) регистрировались в интервале углов $2\theta = 20 \div 70^{\circ}$ с шагом сканирования 0.02 град/с с применением Cu K_{α} -излучения (длина волны $\lambda =$ 0.15406 Å). Результаты представлены на рис. 2. Для алюминия существуют три выраженных дифракционных пика при $2\theta = 38.52$, 44.77 и 65.12°, которые принадлежат плоскостям

Таблица 1 Температура прокаливания и кристаллическая фаза оксида висмута

T_b , K	Кристаллическая фаза	d, нм
573	Аморфная и β	53
598	β	47
623	etaи $lpha$	96
648	α и β	178
673	α	293

Рис. 2. Рентгенограммы алюминия, частиц Bi₂O₃ (47 нм) и композита Al/Bi₂O₃ (47 нм)

(111), (200) и (220) гранецентрированной кубической решетки Al (эталон JCPDS № 04-0787). Для Bi₂O₃ дифракционные пики (47 нм) наблюдаются при углах $2\theta = 28.09$, 31.91, 32.85, 46.36, 47.08, 54.41, 55.60, 57.90° и принадлежат кристаллографическим плоскостям β -Bi₂O₃: (201), (002), (220), (222), (400), (203), (421), (213) (эталон JCPDS № 78-1793). Кроме того, рентгенограмма образца Al/Bi₂O₃, за исключением пиков Al и Bi₂O₃, не содержит других пиков, что указывает на отсутствие изменений в кристаллической структуре или химической реакции.

2.2. Растровая электронная микроскопия

SEM-изображения композитов Al, Bi₂O₃, Al/Bi₂O₃ с разным размером частиц оксидов показаны на рис. 3. На рис. 3, а видно, что частицы Al со средним размером d = 100 нм были гладкими и однородными. Частицы Bi₂O₃ размером d = 47 нм, приведенные на рис. 3, δ , имели сферическую форму и слегка агломерировались. Как правило, образцы Al/Bi₂O₃, приготовленные методом ультразвукового смешивания, были однородными. Из рис. 3, в видно, что поверхность Al/Bi₂O₃ (47 нм) гладкая и однородная, несмотря на агломерацию. На изображениях Al/Bi_2O_3 (53 нм) на рис. 3, ϵ наблюдаются пластинчатые и булавовидные частицы Bi₂O₃ и агломераты. Это может быть связано с существованием Bi₂O₃ с аморфной структурой. Однако на рис. $3, \partial$ для Al/Bi₂O₃ с диаметром

BCPCAS4800 15.0kV 11.8mm x50.0k SE(M) 1.00 MMod

ж

 Al/Bi_2O_3 (293 нм)

Рис. 3. SEM-изображения частиц Al, ${\rm Bi}_2{\rm O}_3$ и Al/ ${\rm Bi}_2{\rm O}_3$

частиц Bi_2O_3 96 нм агломераты практически отсутствуют, так как размеры горючего компонента и окислителя практически совпадают. Агломераты появились снова при размере частиц Bi_2O_3 178 и 293 нм (рис. $3, e, \mathcal{R}$). Это может указывать на то, что образование агломератов происходит при большом различии размеров двухфазных частиц.

2.3. Воспламеняемость нанотермита с разными типами оксидов

На рис. 4 показано изменение давления нанотермитов с тремя разными размерами частиц оксида. В табл. 2 приведены значения пикового давления $p_{\rm max}$ и времени его достижения $t_{p_{\rm max}}$ для образцов Al/Bi₂O₃ (47 нм), Al/Bi₂O₃ (80 нм), Al/CuO и Al/Fe₂O₃. Пиковое давление композита Al/Bi₂O₃ (47 нм) составило 4559 кПа, что в 1.10 раза больше, чем у Al/Bi₂O₃ (80 нм), в 1.49 раза больше, чем у Al/Fe₂O₃. В данном случае скорость роста давления составляла 11.398 ГПа/с для композита Al/Bi₂O₃ (80 нм), 1.274 ГПа/с для Al/CuO и 0.273 ГПа/с для Al/Fe₂O₃. Время задержки зажигания t_{ign} , определяемое как время между включением

Рис. 4. Кривые воспламеняемости нанотермита с разными оксидами

Таблица 2 Давление и скорость роста давления нанотермитов с разными оксидами

Нанотермит	$p_{\max},$ кПа	t_{ign} , mc	$t_{p_{\max}}$, мс	$\dot{p},\Gamma\Pi\mathrm{a/c}$
$\mathrm{Al}/\mathrm{Fe}_2\mathrm{O}_3$	1531	22.00	27.60	0.273
Al/CuO	3057	22.40	24.80	1.274
Al/Bi ₂ O ₃ (47 нм)	4559	27.20	27.60	11.398
Al/Bi ₂ O ₃ (80 нм)	4 1 2 6	28.80	30.80	2.063

Примечание. p_{\max} — пиковое давление, t_{ign} — время задержки зажигания, $t_{p_{\max}}$ — время достижения пикового давления, \dot{p} — скорость роста давления.

также приведено в табл. 2. Эти данные полезны для определения воспламеняемости нанотермитов.

В работе [5] было показано, что композит Al/Bi₂O₃ характеризуется более высокой воспламеняемостью, чем композит Al/CuO. Это может быть связано с тем, что температура кипения Bi самая низкая (1560 °C) по сравнению с Fe (3000 °C) и Cu (2562 °C). Во время реакций нанотермитов максимальная температура системы может достигать 3046 °C, поэтому испарение и газификация Bi и продукта реакции в течение очень короткого времени улучшают воспламеняемость. В [10] время задержки зажигания электрическим воспламенителем частиц Al (50 нм) и Bi₂O₃ (200 нм) установлено равным 45 мс, что соответствует результатам данной статьи. Однако в [7] задержка зажигания составила приблизительно 0.1 мс. Такое различие может быть связано с разными способами определения времени задержки зажигания и разными методами зажигания. В [7] для зажигания использовали электрическую катушку, помещенную в нижнюю часть образца, что привело к малому времени задержки зажигания.

2.4. Воспламеняемость нанотермита с разным молярным соотношением

На рис. 5 показано изменение во времени давления для нанотермитов Al/Bi₂O₃ с разным молярным соотношением компонентов. Давление и скорость его роста приведены в табл. 3. При одном и том же размере частиц Bi₂O₃ (47 нм) время задержки зажигания увеличивалось, а скорость роста давления уменьшалась при изменении соотношения Al : Bi₂O₃ от стехиометрического состояния ($\phi = 2.0$) до избытка горючего Al ($\phi = 2.5, 3.0, 3.5$) или его недостатка ($\phi = 1.5$). При $\phi = 2$ достигнуто максимальное давление (4559 кПa). Время задержки зажигания нанотермита стехиометрического состава оказалось самым коротким, что свидетельствует о самой высокой чувствительности. Исходя из механизма диспергирования расплава [11] установлено, что горючий компонент Al в составе метастабильного межмолекулярного композита плавится и испаряется во время быстрого нагрева. При использовании большого количества Al ($\phi = 2.5$,

Рис. 5. Кривые воспламеняемости композита с разным молярным соотношением компонентов

 ${\rm T}\,a {\rm G}\,\pi\,u\,\mu\,a\,\,3$ Давление нанотермитов Al/Bi $_2{
m O}_3$ с разным молярным соотношением компонентов

ϕ	$p_{\max},$ кПа	t_{ign} , mc	$t_{p_{\max}}$, MC	$\dot{p},\Gamma\Pi\mathrm{a/c}$
1.5	2928	34.40	39.80	0.542
2.0	4559	27.20	27.60	11.398
2.5	4 193	29.20	30.20	4.194
3.0	4059	35.40	36.40	4.059
3.5	3893	51.20	52.20	3.893

3.0, 3.5) для расплавления его частиц требуется значительная энергия от электрического воспламенителя, что приводит к увеличению времени задержки зажигания. При малом количестве частиц Al ($\phi = 1.5$) скорость теплопередачи уменьшается и соответственно растет время задержки зажигания.

Подобные результаты получены для композита Al/MoO₃ в работах [12, 13]. На распространение реакции влияет не только химическая энергия, выделяемая во время реакции, но и механизм распространения. В [13] показано, что наиболее эффективный перенос тепловой энергии реакции осуществляется по конвективному механизму. В этом случае время задержки зажигания было минимальным при оптимальном стехиометрическом соотношении компонентов. В [14] исследовали влияние стехиометрического соотношения на давление и время задержки зажигания композитов Al/Fe₂O₃ и пришли к аналогичному заключению.

2.5. Воспламеняемость нанотермита с разным размером частиц Bi₂O₃

На энергетические характеристики влияет также размер частиц оксида. На рис. 6 показано, что пиковое давление $3627 \div 4559$ кПа получено во время реакций Al/Bi₂O₃ при размере частиц оксидов от 293 до 47 нм. Все зависимости p(t) подобны. Однако при d = 47 нм пиковое давление Al/Bi₂O₃ было максимальным (4559 кПа), а время задержки зажигания составило 27.20 мс, что явно меньше, чем в случае размера частиц Bi₂O₃ 293 нм, когда оно составляло 38 мс. Давление и скорость его роста приведены в табл. 4. Результаты показывают, что малый размер частиц окислителя увеличивает скорость их нагрева, что приводит к уменьшению времени нагрева. Уменьшение размера ча-

Рис. 6. Кривые воспламеняемости композита с разным размером частиц Bi₂O₃

Таблица 4 Давление и время задержки зажигания композита с разным размером частиц оксида

$d_{\mathrm{Bi}_{2}\mathrm{O}_{3}},$	$p_{\max},$ кПа	t_{ign} , mc	$t_{p_{\max}},$ MC	$\dot{p},\Gamma\Pi\mathrm{a/c}$
47	4559	27.20	27.60	11.398
53	4525	38.40	38.80	11.313
96	4392	32.60	33.00	10.980
178	3727	35.00	35.40	9.318
293	3627	38.00	38.40	9.068

стиц уменьшает линейные масштабы, связанные с диффузией газа от частиц. Перераспределение энергии происходит быстрее при использовании более мелких частиц Bi₂O₃. Температура также возрастает быстрее, что приводит к уменьшению времени, необходимого для расплавления частиц алюминия и их реагирования с оксидами. Все эти факторы приводят к увеличению скорости роста давления и уменьшению времени задержки зажигания, что подтверждено исследованиями [15].

Однако в случае, когда размер частиц Bi₂O₃ увеличивался с 47 до 53 нм, пиковое давление почти не уменьшалось, но время задержки зажигания сильно возрастало. Это может быть обусловлено более низкой степенью кристаллизации Al/Bi₂O₃ при d = 53 нм. Результаты рентгенофазового анализа и растровой электронной микроскопии показали присутствие аморфного Bi₂O₃ (53 нм), прокаленного при 300 °C. Это, возможно, препятствовало взаимодействию Al и Bi_2O_3 и уменьшало чувствительность реакции и, как следствие, увеличивало время задержки зажигания. Поэтому кристаллическая структура может быть еще одним важным фактором, влияющим на воспламеняемость композитов Al/Bi₂O₃.

На самом деле, механизм протекания химической реакции межмолекулярного композита (ММК) очень сложен. В процессе реакции реализуется множество физических и химических механизмов, таких как зажигание, горение, тепловыделение, теплопередача, массоперенос, диффузия, конвекция, изменение фазы, плавление, испарение, во́лны давления и образование сложных промежуточных продуктов, которые тесно взаимосвязаны и воздействуют друг на друга [1]. При этом горючий компонент Al и окислитель в MMK находятся в наноразмерном диапазоне частиц и обладают уникальными кинетическими характеристиками реакции, такими как размерная зависимость, диффузия и механизм энерговыделения [11]. Это сильно отличается от традиционной твердофазной реакции. Для реакции ММК свойственна неустановившаяся природа ее протекания, соединяющая в себе характер сверхбыстрой реакции и комплекса реакций в газовой, жидкой и твердой фазах.

Во время реакции MMK с разными оксидами образуются различные промежуточные продукты: BiO и BiO₂ при реакции Al/Bi₂O₃, CuO и Cu₂O при реакции Al/CuO [16]. Эти сложные реакционные процессы не позволяют полностью изучить механизм реакции MMK.

Механизм воспламенения во время реакции ММК также очень сложный. Он тесно связан с другими физическими и химическими механизмами и имеет много влияющих факторов. Исследование реакций нанотермитов на основе Bi₂O₃ показало, что высокие температура и давление образуются за микросекунды при скорости распространения теплового фронта ≈ 2500 м/с [3]. Определенное значение числа Маха М ≈ 7.35 показало, что высокие температура и давление способствуют режиму гиперзвуковой детонации. В работе [16] построена модель давления для ММК на основе локального термодинамического равновесия. Самое высокое конечное давление наблюдалось для Al/CuO и Al/Bi₂O₃, в основном оно было обусловлено частичным разложением жидкого оксида алюминия, так как теплота реакции способствует поддержанию высокой конечной температуры реакции 3 300 °С.

В работе [17] моделировали кинетику реакции ММК и предположили, что во время реакции образуется и распространяется одномерная детонационная волна. По-видимому, высокое давление обусловлено тем, что время реакции значительно меньше, чем время воздействия ударной волны, распространяющейся от реагентов. Таким образом, вся энергия реакции передается газообразным продуктам почти мгновенно.

выводы

Нанотермиты Al/Bi₂O₃ с высокой воспламеняемостью были получены методом ультразвукового смешивания. Исследовано влияние типа оксидов, соотношения горючего компонента к окислителю и размера частиц оксидов на энергетические характеристики реакций термитов.

Полученные результаты показывают, что оксиды оказывают большое влияние на способность нанотермита к воспламенению. Композит Al/Bi_2O_3 характеризуется самой высокой воспламеняемостью, наименьшим временем задержки зажигания и наибольшей скоростью роста давления среди исследованных нанотермитов (Al/Bi₂O₃, Al/CuO и Al/Fe₂O₃).

Очевидно, что существует оптимальное молярное соотношение для нанотермита Al/Bi₂O₃. При увеличении размера частиц Bi₂O₃ давление нерегулярно монотонно уменьшалось. Это свидетельствует о том, что кристаллическая структура может быть еще одним важным фактором, влияющим на воспламеняемость во время реакций.

Исследование выполнено при поддержке Ведущей государственной лаборатории науки и технологии взрыва (Пекинский технологический институт, Китай) (проект № YBKT16-06).

ЛИТЕРАТУРА

- Wang Y. J., Li Z. X., Yu H. Y., Feng C. G. Reaction mechanism of metastable intermolecular composite // Prog. Chem. — 2016. — V. 28, N 11. — P. 1689–1704.
- Wang Y. J., Jiang Z. S., Feng C. G. Metastable intermolecular composite Al/Bi₂O₃ and its applications // Prog. Chem. — 2016. — V. 28, N 2-3. — P. 391–400.
- 3. Martirosyan K. S. Nanoenergetic gasgenerators: Principles and applications // J.

Mater. Chem. — 2011. — V. 21, N 26. — P. 9400–9405.

- Martirosyan K. S., Wang L., Vicent A., Luss D. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use // Nanotechnology. — 2009. — V. 20, N 40. — 405609.
- 5. Sanders V. E., Asay B. W., Foley T. J., Tappan B. C., Pacheco A. N., Son S. F. Reaction propagation of four nanoscale energetic composites (Al/MoO₃, Al/WO₃, Al/CuO, and Al/Bi₂O₃) // J. Propul. Power. — 2007. — V. 23, N 4. — P. 707–714.
- Puszynski J. A., Bulian C. J., Swiatkiewicz J. J. Processing and ignition characteristics of aluminum-bismuth trioxide nanothermite system // J. Propul. Power. — 2007. — V. 23, N 4. — P. 698–706.
- 7. Wang L., Luss D., Martirosyan K. S. The behavior of nanothermite reaction based on Bi_2O_3/Al // J. Appl. Phys. 2011. V. 110, N 7. 074311.
- Malchi J. Y., Yetter R. A., Foley T. J., Son S. F. The effect of added Al₂O₃ on the propagation behavior of an Al/CuO nanoscale thermite // Combust. Sci. Technol. — 2008. — V. 180, N 7. — P. 1278–1294.
- 9. Wang L. Nanoenergetic Gas Generators. Houston: Univ. of Houston, 2011.
- Huang F. T., Zhang L., Zhu S. G. Preparation, performance and long-term storage of nano Al/Bi₂O₃ // Acta Armamentarii. 2015. V. 36, N 8. P. 1430–1436.

- Levitas V. I., Asay B. W., Son S. F., Pantoya M. Melt dispersion mechanism for fast reaction of nanothermites // Appl. Phys. Lett. — 2006. — V. 89. — 071909.
- Pantoya M. L., Granier J. J. Combustion behavior of highly energetic thermites: Nano versus micron composites // Propell., Explos. Pyrotech. 2005. V. 30, N 1. P. 53–62.
- Dutro G. M., Yetter R. A., Risha G. A., Son S. F. The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO₃ thermite // Proc. Combust. Inst. — 2009. — V. 32, N 2. — P. 1921–1928.
- Park C. D., Mileham M., Burgt L. G., Muller E. A., Stiegman A. E. The effects of stoichiometry and sample density on combustion dynamics and initiation energy of Al/Fe₂O₃ metastable interstitial composites // J. Phys. Chem. — 2010. — V. 114, N 6. — P. 2814–2820.
- Weismiller M. R., Malchi Y. J., Lee J. G., Yetter R. A., Foley T. J. Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites // Proc. Combust. Inst. — 2011. — V. 33, N 2. — P. 1989–1996.
- 16. Baijot V., Glavier L., Ducere J.-M., Rouhani M. D., Rossi C., Esteve A. Modeling the pressure generation in aluminum-based thermites // Propell., Explos. Pyrotech. — 2015. — V. 40, N 3. — P. 402–412.
- Martirosyan K. S., Zyskin M., Jenkins C. M., Horie Y. Modeling and simulation of pressure waves generated by nano-thermite reactions // J. Appl. Phys. 2012. V. 112, N 9. 094319.

Поступила в редакцию 15.01.2018. После доработки 29.03.2018. Принята к публикации 23.05.2018.