УДК 539.375

АНАЛИЗ ХРУПКОГО РАЗРУШЕНИЯ ПЕНОПОЛИСТИРОЛЬНЫХ ПЛИТ С ОТВЕРСТИЯМИ

М. А. Леган, В. Е. Колодезев, А. С. Шеремет

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Проведена серия экспериментов по хрупкому разрушению пенополистирольных плит как при однородном одноосном растяжении, так и при наличии концентрации напряжений около разрезов и отверстий. Для анализа экспериментальных данных применен численный алгоритм, поскольку соотношение размеров отверстий с размерами плит не соответствовало соотношениям в известных задачах для бесконечных плоскостей и полос с отверстиями. Проведено сравнение экспериментальных и расчетных данных.

Численный алгоритм. В [1] разработан численный алгоритм расчета на прочность плоских элементов конструкций с концентраторами напряжений с использованием градиентного критерия разрушения и метода граничных элементов (метода фиктивных нагрузок). В настоящей работе этот алгоритм применен для расчета плит конечных размеров.

Суть градиентного подхода к оценке разрушения состоит в том, что неравномерность напряженного состояния приводит к снижению разрушающей способности напряжения в области максимальных значений. Ранее сформулирован двухпараметрический градиентный критерий прочности [2, 3], согласно которому для определения разрушающей нагрузки сравнивать с пределом прочности материала $\sigma_{\rm B}$ нужно не первое главное напряжение σ_1 (принятое в качестве эквивалентного), а некоторое эффективное напряжение $\sigma_e = \sigma_1/f(g_1, L_1, \beta) < \sigma_1$. Знаменатель $f(g_1, L_1, \beta)$ является функцией величины неравномерности поля напряжений в рассматриваемой точке тела и двух параметров, зависящих от свойств материала. Неравномерность напряженного состояния характеризуется относительным градиентом первого главного напряжения $q_1 = |\operatorname{grad} \sigma_1| / \sigma_1$ и находится из упругого решения соответствующей задачи. Параметр L₁ имеет размерность длины и определяется из условия согласования градиентного критерия с линейной механикой разрушения: $L_1 = (2/\pi) K_{\rm Ic}^2 / \sigma_{\rm B}^2$, где $K_{\rm Ic}$ — критический коэффициент интенсивности напряжений. Безразмерный параметр β , изменяющийся от нуля до единицы, учитывает квазихрупкий характер разрушения: $\beta = \sigma_{\rm B}/(E\varepsilon_*)$, где ε_* — деформация в момент разрушения при одноосном однородном растяжении; Е — модуль упругости.

Основная особенность построенного в [1] численного алгоритма состоит в том, что при проведении расчетов определяются не только компоненты напряженного состояния (методом граничных элементов), но и их производные по пространственным координатам.

Экспериментальные результаты. Проводились эксперименты по хрупкому разрушению пенополистирольных плит марки ПСБ-15 размером 1 × 1 м и толщиной 10 см.

С целью определения предела прочности материала испытывались на растяжение плиты, представляющие собой два соединенных параллельно образца (рис. 1). Такая геометрия позволила уменьшить изгибные напряжения в образцах и обеспечить разрушение на

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 98-05-65656, 99-01-00551, 00-01-96203).

рабочей части с постоянным сечением, а не в галтелях. Следует отметить, что диаграмма деформирования пенополистирола в координатах напряжение — деформация оказалась линейной вплоть до разрушения. Деформация до разрушения ε_* достигала приблизительно 1% (среднее значение по трем экспериментам 1,023%). При этом среднее значение предельного напряжения $\sigma_{\rm B} = 78,415$ кПа, что соответствует требованиям ГОСТа [4]. В испытаниях плит с трещинами, общая длина которых составляла 0,2 ширины плиты, получено (по трем экспериментам с учетом конечной ширины плит с использованием формулы, предложенной К. Феддерсеном в [5]) значение критического коэффициента интенсивности напряжений $K_{\rm Ic} = 16,046$ кПа · м^{1/2}. При известных характеристиках $\sigma_{\rm B}$ и $K_{\rm Ic}$ определен параметр $L_1 = 2,6657$ см, входящий в градиентный критерий разрушения. Параметр β в этом критерии принят равным единице, так как наблюдалось хрупкое разрушение материала.

Проведена серия экспериментов по разрушению плит с центральными отверстиями круговой и эллиптической формы (рис. 2). Геометрические параметры образцов представлены в табл. 1 (a, b — полуоси отверстия). Большая ось эллиптического отверстия располагалась как перпендикулярно направлению растяжения, так и под углом $\varphi = 45^{\circ}$ к этому направлению. При этом с помощью динамометра фиксировалась разрушающая сила P_* .

Сравнение численных оценок с экспериментальными данными. Нагрузка к плитам из пенополистирола прикладывалась по вертикали с помощью зажимов из листов фанеры, в которых закреплялись верхняя и нижняя части плиты (рис. 2). Листы фанеры стягивались шпильками и зажимали края плит. Расстояние *В* между верхними и нижними зажимами (рабочая длина образца) составляло примерно 70 см. Такие условия закрепления и нагружения моделировались как постоянной по ширине плиты нагрузкой (модель I), так

Таблица 1	L
-----------	---

		•	· · ·			
Номер опыта	A, MM	B, MM	Форма отверстия	a, mm	<i>b</i> , мм	φ , град
1	990	690	Круг	200	200	
2	1004	700	Круг	202	202	
3	990	690	Эллипс	210	65	90
4	991	696	Эллипс	202	51	90
5	990	693	Эллипс	202	51	45
6	995	700	Эллипс	202	50	45

Геометрические параметры образцов

Таблица 2

Номер	Эксперимен-	Градиентнь	ій критерий	Классический критерий		
опыта	тальные данные	Модель I	Модель II	Модель I	Модель II	
1	43532	$15164\ (-65,2)$	28194~(-35,2)	$12955\ (-70,2)$	$24460\ (-43,8)$	
2	31565	15228 (-51,8)	$28193\ (-10,7)$	$13031\ (-58,7)$	$24493\ (-22,4)$	
3	17949	$12393\ (-31,0)$	18632 (3,8)	$6552 \ (-63,5)$	$9912 \ (-44,8)$	
4	16981	$12634\ (-25,6)$	18116 (6,7)	$5782 \ (-66,0)$	$8341 \ (-50,9)$	
5	28682	$18211\ (-36,5)$	27002 (-5,9)	$9646 \ (-66,4)$	$16128\ (-43,8)$	
6	26803	$18309\ (-31,7)$	26884 (0,3)	9619 $(-64,1)$	$15968 \ (-40,4)$	

Критические значения среднего напряжения σ_* , Па

Примечание. В скобках указаны отклонения (в процентах) расчетных значений от экспериментальных.

и постоянным по ширине плиты вертикальным перемещением (модель II). Для расчетов по модели II экспериментально определены модуль Юнга E = 7,666 МПа и коэффициент Пуассона $\nu = 0,36$. Общее число граничных элементов в задаче составляло 300, из них 100 элементов приходилось на отверстие и по 50 элементов на каждую сторону плиты. Экспериментальные результаты и численные оценки приведены в табл. 2.

Экспериментальное критическое значение среднего напряжения σ_* вычислялось как отношение P_* к ширине и толщине плиты в сечении без отверстия, по модели I — как отношение $\sigma_{\rm B}/\sigma_e$ при единичной нагрузке, а по модели II — осреднением нормальных напряжений по ширине плиты при достижении эффективным напряжением предела прочности в самой опасной точке на контуре отверстия. В первом случае численные оценки разрушающей нагрузки получились меньше экспериментальных значений. В случае модели II оценки критической нагрузки увеличились по сравнению с моделью I и приблизились к экспериментальным значениям, особенно для плит с эллиптическими отверстиями при использовании градиентного критерия.

ЛИТЕРАТУРА

- Шеремет А. С., Леган М. А. Применение градиентного критерия прочности и метода граничных элементов к плоской задаче о концентрации напряжений // ПМТФ. 1999. Т. 40, № 4. С. 214–221.
- 2. **Леган М. А.** О взаимосвязи градиентных критериев локальной прочности в зоне концентрации напряжений с линейной механикой разрушения // ПМТФ. 1993. Т. 34, № 4. С. 146–154.
- 3. **Леган М. А.** Определение разрушающей нагрузки, места и направления разрыва с помощью градиентного подхода // ПМТФ. 1994. Т. 35, № 5. С. 117–124.
- 4. ГОСТ 15588-86. Плиты пенополистирольные. Введ. 01.07.86. М.: Изд-во стандартов, 1986.
- 5. Браун У., Сроули Дж. Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации. М.: Мир, 1972.

Поступила в редакцию 13/X 2000 г., в окончательном варианте — 22/III 2001 г.