УДК 539.374+376

ДВУМЕРНЫЕ ЗАДАЧИ ФОРМООБРАЗОВАНИЯ СТЕРЖНЕЙ В УСЛОВИЯХ ПОЛЗУЧЕСТИ

И. А. Банщикова, Б. В. Горев, И. В. Сухоруков

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Рассматриваются прямые и обратные задачи формообразования при ползучести длинномерных профилей двойной кривизны и заданного угла закручивания. Предлагается конечно-разностная схема численного решения. Приводятся примеры решения задач с различными типами внешних воздействий для профиля прямоугольного сечения. Проведено сопоставление расчетных и экспериментальных данных кручения стержней с квадратным и круглым сечениями в режиме ползучести при температурах 725 и 740 °C для стали марки Ст. 45.

Введение. Длинномерные профили двойной кривизны переменного сечения (типа прямоугольника, тавра, двутавра и др.) из труднодеформируемых при обычной температуре сплавов используются в качестве подкрепляющих элементов обшивки корпусных конструкций самолетов, судов и других изделий машиностроения. Такие профили имеют следующие характерные размеры: длина порядка нескольких метров, высота стенки 0,02 ÷ 0,2 м, толщина стенки порядка нескольких миллиметров. Одним из возможных способов формообразования указанных профилей из прямолинейных стержней является последовательное деформирование их участков. При этом каждый из формуемых участков подвергается температурно-силовым воздействиям в термокамере. Небольшая часть профиля деформируется в условиях ползучести, другая часть профиля, находящаяся вне камеры, не нагружена. При таких условиях в первом приближении можно считать, что для деформируемого участка задаются постоянные кривизны и постоянный погонный угол закручивания вдоль длины профиля. Тогда независимыми переменными будут две пространственные координаты в плоскости сечения и время. Далее под углом закручивания будем понимать угол поворота сечения профиля на единицу длины.

Вследствие большого (на порядок) различия размеров поперечного сечения и длины формуемого участка особенностью формообразования длинномерных профилей является значительное упругое восстановление. Поэтому заданные остаточные кривизны и угол закручивания могут значительно отличаться от кривизн и угла закручивания до снятия нагрузок. Процесс формообразования описывается следующей обратной задачей: требуется найти такие силовые и кинематические параметры формообразования, чтобы после снятия нагрузок и упругого восстановления получить требуемые остаточные кривизны и угол закручивания.

Аналогичные обратные задачи возникают при формообразовании гладких и подкрепленных монолитных панелей и арок [1]. Вопросы математической корректности некоторых обратных задач для гладких пластин рассмотрены в [2, 3]. Численное решение задач данного класса методом конечных элементов приведено в [4]. Одна из одномерных задач формообразования исследована в [5].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 99-01-00551, 00-15-96180, 00-01-96203).

В данной работе рассматриваются вопросы моделирования формообразования стержней заданной кривизны и угла закручивания в режиме ползучести с учетом упругих деформаций. Предполагается, что деформации и напряжения зависят только от двух пространственных координат и времени. До начала формообразования профиль находится в естественном недеформированном состоянии. Температура считается постоянной в течение всего процесса формообразования.

1. Постановка задачи. В общем виде прямая задача формулируется следующим образом. В течение времени $0 \le t < t_*$ к стержню приложены заданные внешние силовые и кинематические воздействия (t — время; t_* — заданное время процесса формообразования). При этом предполагается, что воздействия таковы, что напряжения не превышают предела текучести. Требуется определить остаточные кинематические величины с учетом упругого восстановления в момент времени $t = t_*$.

Соответственно обратная задача формулируется следующим образом. Какие внешние воздействия необходимо приложить к стержню при $0 \le t < t_*$, чтобы после его освобождения в момент времени $t = t_*$ и упругого восстановления получить заданные остаточные величины?

С практической точки зрения представляют интерес обратные задачи с тремя видами внешних воздействий.

1. При t = 0 в результате мгновенного упругого деформирования под действием искомых изгибающих и крутящего моментов и заданной продольной силы стержню сообщаются кривизны $\mathscr{X}_{x0}, \mathscr{X}_{y0},$ угол закручивания θ_0 и продольная деформация ε_0 . При $0 < t < t_*$ угол закручивания, кривизны, продольная деформация остаются фиксированными, при этом в стержне происходят релаксация напряжений и накопление необратимых деформаций ползучести. При $t = t_*$ стержень освобождается от всех внешних нагрузок и после упругого восстановления должен приобрести заданные остаточные кривизны $\mathscr{X}_{x**}, \mathscr{X}_{y**}$ и угол закручивания θ_{**} .

2. При t = 0 стержню мгновенно сообщаются заданные кривизны $\mathscr{E}_{x0}, \mathscr{E}_{y0}$, угол закручивания θ_0 , продольная деформация ε_0 , а при $0 < t < t_*$ — искомые постоянные скорости $\dot{\mathscr{E}}_x, \dot{\mathscr{E}}_y, \dot{\theta}, \dot{\varepsilon}_0$ (точка означает дифференцирование по времени). При $t = t_*$ после разгрузки и упругого восстановления стержень должен приобрести заданные остаточные кривизны $\mathscr{E}_{x**}, \mathscr{E}_{y**}$ и угол закручивания θ_{**} .

3. При $0 \leq t < t_*$ к стержню прикладываются искомые изгибающие и крутящий моменты и заданное продольное усилие. При $t = t_*$ после разгрузки и упругого восстановления стержень должен приобрести заданные остаточные кривизны \mathscr{B}_{x**} , \mathscr{B}_{y**} и угол закручивания θ_{**} .

Выше приняты следующие обозначения: $\varepsilon_0(t)$ — осевая деформация; $\mathscr{X}_x(t) = -v_{,zz}$, $\mathscr{X}_y(t) = u_{,zz}$ — кривизны проекций v(z,t) и u(z,t) изогнутой оси стержня на плоскости yzи xz соответственно в декартовой системе координат xyz; $\theta(t)$ — угол закручивания.

Для решения обратных задач 1, 2 используется итерационный процесс, аналогичный описанному в [6]. В основе итерационного алгоритма решения обратной задачи чистого кручения постоянным моментом (задача 3) лежит метод секущих.

Ось z декартовой системы координат направлена вдоль стержня, оси x и y лежат в плоскости поперечного сечения. Предположение о независимости деформаций и напряжений от координаты z позволяет существенно упростить систему основных определяющих уравнений. Аналогично [7, 8] для стержня предполагается

$$\sigma_x = \sigma_y = \tau_{xy} = 0. \tag{1}$$

Тогда упругие деформации связаны с напряжениями соотношениями

$$\varepsilon_x^e = -\frac{\nu}{E}\sigma_z, \quad \varepsilon_y^e = -\frac{\nu}{E}\sigma_z, \quad \varepsilon_z^e = \frac{1}{E}\sigma_z, \quad \gamma_{zx}^e = \frac{1}{G}\tau_{zx}, \quad \gamma_{zy}^e = \frac{1}{G}\tau_{zy},$$

где E — модуль Юнга; G — модуль сдвига; ν — коэффициент Пуассона. В этом случае упругие деформации

 $\varepsilon_z^e = \varepsilon_0 - \mathscr{R}_y x + \mathscr{R}_x y, \quad \varepsilon_x^e = -\nu \varepsilon_z^e, \quad \varepsilon_y^e = -\nu \varepsilon_z^e, \quad \gamma_{zx}^e = W_{,x} - \theta y, \quad \gamma_{zy}^e = W_{,y} + \theta x$

совместны и соответствуют перемещениям

$$u = -\nu(\varepsilon_0 x + \omega_x xy + \omega_y (y^2 - x^2)/2) + \omega_y z^2/2 - \theta zy,$$

$$v = -\nu(\varepsilon_0 y - \omega_y xy + \omega_x (y^2 - x^2)/2) - \omega_x z^2/2 + \theta zx,$$

$$w = \varepsilon_0 z + \omega_x yz - \omega_y xz + W.$$

Здесь W(x, y, t) — перемещения вдоль оси z, возникающие при кручении.

Если для описания ползучести материала использовать теорию течения с учетом накопления в материале повреждений [9]:

$$\eta_{kl}^c = \frac{3}{2(1-\omega)^m} \frac{F(\sigma_i)}{\sigma_i} \sigma_{kl}^0, \qquad \dot{\omega} = \frac{\Phi(\sigma_i)}{(1-\omega)^m},\tag{2}$$

то полные скорости деформаций будут определяться по соотношениям

$$\dot{\varepsilon}_x = -\nu \dot{\sigma}_z / E - \eta_{zz}^c / 2, \quad \dot{\varepsilon}_y = -\nu \dot{\sigma}_z / E - \eta_{zz}^c / 2, \quad \dot{\varepsilon}_z = \dot{\sigma}_z / E + \eta_{zz}^c,$$
$$\dot{\gamma}_{zx} = \dot{\tau}_{zx} / G + \eta_{zx}^c, \quad \dot{\gamma}_{zy} = \dot{\tau}_{zy} / G + \eta_{zy}^c.$$

Здесь $\omega(x, y, t)$ — повреждаемость материала; η_{kl}^c — скорости деформаций ползучести; $\sigma_i = (3/2)(\sigma_{kl}^0 \sigma_{kl}^0)^{1/2}$ — интенсивность напряжений; σ_{kl}^0 — компоненты девиатора напряжений.

Соотношения (2) описывают несжимаемый при ползучести материал. При выполнении условия (1) и условия упругой несжимаемости материала ($\nu = 1/2$) полные скорости деформаций также совместны и справедливы соотношения

$$\dot{u} = -(1/2)(\dot{\varepsilon}_0 x + \dot{w}_x xy + \dot{w}_y (y^2 - x^2)/2) + \dot{w}_y z^2/2 - \dot{\theta} zy,$$

$$\dot{v} = -(1/2)(\dot{\varepsilon}_0 y - \dot{w}_y xy + \dot{w}_x (y^2 - x^2)/2) - \dot{w}_x z^2/2 + \dot{\theta} zx,$$

$$\dot{w} = \dot{\varepsilon}_0 z + \dot{w}_x yz - \dot{w}_y xz + \dot{W}.$$

В общем случае упругосжимаемого материала ($\nu \neq 1/2$) для скоростей полных деформаций $\dot{\varepsilon}_x$ и $\dot{\varepsilon}_y$ имеем

$$\dot{\varepsilon}_x = \dot{\varepsilon}_y = -\dot{\varepsilon}_z/2 + (1/2 - \nu)\dot{\sigma}_z/E,$$

тогда скорости деформаций могут быть несовместны из-за присутствия второго слагаемого, учитывающего упругую сжимаемость материала. Предполагается, что вклад этого слагаемого несуществен при развитых деформациях ползучести и стационарных внешних нагрузках.

Уравнения для полных скоростей деформаций имеют вид

$$\dot{\tau}_{zx}/G + \eta_{zx}^c = \dot{W}_{,x} - \dot{\theta}y, \quad \dot{\tau}_{zy}/G + \eta_{zy}^c = \dot{W}_{,y} + \dot{\theta}x, \quad \dot{\sigma}_z/E + \eta_{zz}^c = \dot{\varepsilon}_0 + \dot{x}_x y - \dot{x}_y x. \tag{3}$$

С учетом (1) и независимости напряжений от z из трех дифференциальных уравнений равновесия остается одно, причем $\sigma_{z,z} = 0$. Тогда

$$\tau_{zx,x} + \tau_{zy,y} = 0. \tag{4}$$

Напряжения $\tau_{zx}, \tau_{zy}, \sigma_z$ должны уравновешивать усилие и внешние моменты

$$N = \int_{S} \sigma_z \, dS, \qquad M_x = \int_{S} \sigma_z y \, dS, \qquad M_y = -\int_{S} \sigma_z x \, dS; \tag{5}$$

$$M_z = \int\limits_{S} (\tau_{zy} x - \tau_{zx} y) \, dS,\tag{6}$$

где N, M_x, M_y, M_z — продольная сила, изгибающие и крутящий моменты. Краевые условия на контуре сечения стержня следующие:

$$\tau_{zx}n_1 + \tau_{zy}n_2 = 0 \tag{7}$$

 $(n_k$ — компоненты нормали к контуру).

Уравнения (2)–(6) с краевыми условиями (7) образуют интегродифференциальную систему относительно напряжений, депланации, повреждаемости для задач 1–3, а также угла, кривизн и растягивающей деформации для задачи 3. При t = 0 деформации ползучести $\varepsilon_{ij}^{c}(x, y, 0) = 0$, $\omega(x, y, 0) = 0$ и напряжения

$$\tau_{zx}(x,y,0) = G(W_{0,x} - \theta_0 y), \quad \tau_{zy}(x,y,0) = G(W_{0,y} + \theta_0 x), \quad \sigma_z(x,y,0) = E(\varepsilon_0^0 + \varepsilon_{0x} y - \varepsilon_{0y} x)$$

определяются из уравнения равновесия (4) для задач 1–3 и соотношений (5), (6) для задачи 3 с учетом краевых условий (7). Здесь $W_0 = W(x, y, 0); \ \theta_0 = \theta(0); \ \varpi_{0x} = \varpi_x(0); \ \varpi_{0y} = \varpi_y(0); \ \varepsilon_0^0 = \varepsilon_0(0).$ При $t = t_*$ выполняются условия упругой разгрузки

$$\int_{S} (\tau_{zy*}x - \tau_{zx*}y) \, dS = \theta^e GD,$$

$$\int_{S} \sigma_{z*} \, dS = \varepsilon_0^e EJ, \qquad \int_{S} \sigma_{z*}y \, dS = \mathscr{X}_x^e EJ_x, \qquad -\int_{S} \sigma_{z*}x \, dS = \mathscr{X}_y^e EJ_y,$$

$$\tau_{zx*} = \tau_{zx}^e + \rho_{zx}, \qquad \tau_{zy*} = \tau_{zy}^e + \rho_{zy}, \qquad \sigma_{z*} = \sigma_z^e + \rho_z,$$

$$\theta_* = \theta^e + \theta_{**}, \qquad \mathscr{X}_{x*} = \mathscr{X}_x^e + \mathscr{X}_{x**}, \qquad \mathscr{X}_{y*} = \mathscr{X}_y^e + \mathscr{X}_{y**}, \qquad \varepsilon_{0*} = \varepsilon_0^e + \varepsilon_{0**},$$

где ρ — остаточные напряжения после упругой разгрузки. Индексы "*", "**" и *е* соответствуют величинам при $t = t_*$ до разгрузки, остаточным величинам и величинам упругого восстановления; D, J, J_x, J_y — геометрические характеристики сечения:

$$D = \int_{S} \left[(W_{,y}^{e} + x)x - (W_{,x}^{e} - y)y \right] dS, \quad J = \int_{S} dS, \quad J_{x} = \int_{S} y^{2} dS, \quad J_{y} = \int_{S} x^{2} dS.$$

Депланация сечения $W^e(x, y)$ пропорциональна осевому смещению точки сечения при упругом кручении $W = \theta W^e$ и полностью определяется геометрической формой поперечного сечения профиля.

Для решения системы дифференциальных уравнений (2)–(7) использован конечноразностный метод. Как правило, уравнения, описывающие кручение стержня, сводятся к одному дифференциальному уравнению относительно депланации или функции напряжений с соответствующим преобразованием краевых условий. Тогда на каждом временном шаге решается соответственно задача Дирихле либо задача Неймана. По значениям депланации или функции напряжений в узлах сетки определяются неизвестные напряжения и деформации для следующего шага. Чтобы избежать дополнительного численного дифференцирования правых частей, используется разностная схема

$$\begin{aligned} \frac{\dot{\tau}_{zx_{ij}}}{G} - \frac{\dot{W}_{i+1j} - \dot{W}_{i-1j}}{2h_1} &= -\eta^c_{zx_{ij}} - \dot{\theta}y_{ij}, \qquad \frac{\dot{\tau}_{zy_{ij}}}{G} - \frac{\dot{W}_{ij+1} - \dot{W}_{ij-1}}{2h_2} &= -\eta^c_{zy_{ij}} + \dot{\theta}x_{ij}, \\ \frac{\dot{\tau}_{zxi+1j} - \dot{\tau}_{zxi-1j}}{2h_1} + \frac{\dot{\tau}_{zyij+1} - \dot{\tau}_{zxij-1}}{2h_2} &= 0, \end{aligned}$$

$$\frac{\dot{\sigma}_{zij}}{E} = -\eta_{zij}^c + \dot{\varepsilon}_0 + \dot{x}_x y_{ij} - \dot{x}_y x_{ij}, \qquad \dot{\omega}_{ij} = \frac{\Phi_{ij}(\sigma_i)}{(1 - \omega_{ij})^m},$$

где 0 < i < K; 0 < j < M; $h_1 = a/K$; $h_2 = b/M$; a, b — ширина и длина прямоугольного сечения стержня; x_{ij}, y_{ij} — координаты узла (i, j) конечно-разностной сетки.

Для условия на левой границе $\tau_{zx} = 0$ при x = -a/2 используется аппроксимация [10]

$$\frac{-\dot{W}_{2j} + 4\dot{W}_{1j} - 3\dot{W}_{0j}}{2h_1} = \dot{\theta}y_{0j}, \qquad 0 < j < \frac{b}{h_2}$$

Аналогично выписываются уравнения на трех других границах сечения. Матрица коэффициентов в левой части при производных по времени для задач 1, 2 имеет ленточную структуру. Для задачи 3 уравнение (6) записывается в виде

$$\int_{S} (\dot{W}_{,y}x - \dot{W}_{,x}y) \, dS + \frac{\dot{\theta}ab(a^2 + b^2)}{12} = \frac{\dot{M}_z}{G} + \int_{S} (\eta_{zy}^c x - \eta_{zx}^c y) \, dS.$$

Здесь для аппроксимации производных по x и y используются описанные выше схемы. Для численного интегрирования по сечению применяется метод Симпсона [11]. Таким образом, добавляется еще одно дифференциальное уравнение и, следовательно, еще одна строка в матрице коэффициентов при производных по времени. В этом случае матрица уже не имеет ленточной структуры. Для ее обращения использован метод отражения [12], позволяющий получать решение с высокой точностью и являющийся устойчивым к вычислительной погрешности [10, с. 265–268]. Метод реализован как для матрицы общего вида, так и для матрицы с ленточной структурой. Для решения системы обыкновенных дифференциальных уравнений по времени применялся метод Рунге — Кутты — Мерсона четвертого порядка с автоматическим выбором шага, что существенно сокращает время решения задачи [11]. Количество одновременно решаемых уравнений имеет порядок $N = 5 \times K \times M$.

2. Численное решение. Предложенная схема апробирована на численном решении линейной упругой задачи кручения стержня прямоугольного сечения 0,01 × 0,02 м. Модуль Юнга E = 66,7 ГПа и коэффициент Пуассона $\nu = 0,3$ соответствуют сплаву ВТ9.

В табл. 1 приведены значения крутящего момента и максимального касательного напряжения для $\theta = 1,396$ рад/м, полученные конечно-разностным методом при разбиении сечения на 11×21 и 21×41 узлов, а также рассчитанные по формулам

$$M_z = k_1 G \theta a^3 b, \qquad \tau_{\max} = M_z / (k_2 a^2 b), \tag{8}$$

m ~

где величины k_1 и k_2 зависят от отношения b/a [8] (здесь $k_1 = 0,229, k_2 = 0,246$).

Для упругого кручения на основе решения, приведенного в [7] для функции напряжений, получено решение для напряжений и депланации в виде ряда, которое из-за его громоздкости здесь не приводится. Сравнение значений напряжений и депланации, полученных в виде ряда и конечно-разностным методом, свидетельствует о достаточно высокой точности решения задачи, полученного конечно-разностным методом.

	1	аолица і
Способ вычисления	$M_z, \mathbf{H} \cdot \mathbf{M}$	$\tau_{\rm max}, {\rm M}\Pi{\rm a}$
Численное решение:		
сетка 11×21	163,3	331,0
сетка 21×41	163,7	$332,\!6$
Решение (8)	164,0	$332,\!8$

133

	Таблица 2					
$\varepsilon_0\cdot 10^3$	$\theta_0, \mathrm{pag}/\mathrm{M}$	x_{x0}, m^{-1}				
0	1,184	0,52				
1	$1,\!183$	0,51				
2	1,172	$0,\!46$				
3	1,143	$0,\!38$				
4	1,082	$0,\!30$				

Ползучесть сплава ВТ9 описывается соотношениями

$$\eta_{kl}^c = B\sigma_i^{n-1}\sigma_{kl}^0 / (1-\omega)^m, \qquad \dot{\omega} = C\sigma_i^g / (1-\omega)^m.$$
(9)

При температуре 550 °C константы в соотношениях (9) имеют следующие значения: n = 4, $g = 5, m = 10, B = 1,1303 \cdot 10^{-17} \text{ M}\Pi a^{-n} \cdot c^{-1}, C = 5,0105 \cdot 10^{-20} \text{ M}\Pi a^{-g}$, предел текучести $\sigma_{\rm T} = 608 \text{ M}\Pi a$ [13].

В табл. 2 для задачи 1 приведены значения искомых начальных угла закручивания θ_0 и кривизны ω_{x0} , необходимые для получения остаточных значений $\theta_{**} = 0.523$ рад/м, $\omega_{x**} = 0.2 \text{ M}^{-1}$ при фиксированном растяжении ε_0 при $0 \leq t < t_*$. Время термофиксации $t_* = 3.6 \cdot 10^4$ с.

При расчете значения угла закручивания, кривизны и осевого растяжения подбирались таким образом, чтобы максимальное значение интенсивности напряжений при $0 \leq t < t_*$ не превышало предела текучести $\sigma_{\rm T}$.

Деформирование стержня с фиксированным во времени продольным натяжением позволяет уменьшить искомые начальные значения угла закручивания и кривизны, а следовательно, и значения упругого восстановления при $t = t_*$.

Кручение и изгиб оказывают влияние друг на друга. Например, в случае чистого кручения для получения $\theta_{**} = 0,262$ рад/м за время $t_* = 3,6 \cdot 10^4$ с необходимо задать угол закручивания $\theta_0 = 1,232$ рад/м, в случае кручения с изгибом для достижения $\theta_{**} = 0,262$ рад/м и $\mathscr{B}_{x**} = 0,15$ м⁻¹ за то же время необходим угол $\theta_0 = 1,05$ рад/м и $\mathscr{B}_{x0} = 0,62$ м⁻¹.

На рис. 1 приведены результаты численного решения прямых задач чистого кручения для различных режимов деформирования стержня с размерами сечения 0.01×0.02 м при $t_* = 1.08 \cdot 10^4$ с. На рис. 1,*a* представлена зависимость крутящего момента M_z от

Рис. 1

Рис. 2

времени, на рис. 1, 6 — зависимость максимальной интенсивности напряжения от времени (максимальная интенсивность достигается в середине границы сечения). Кривые 1–5 соответствуют следующим режимам: 1 — линейное увеличение угла закручивания от 0 до 3,227 рад/м при $0 \le t < t_*$; 2 — мгновенное упругое деформирование в начальный момент времени до достижения угла закручивания 1,465 рад/м с его последующим линейным увеличением до 4,239 рад/м при $0 < t < t_*$; 3 — мгновенное упругое деформирование до достижения угла закручивания 0,872 рад/м с его дальнейшим линейным увеличением до 4,047 рад/м за время t_* ; 4 — мгновенное упругое нагружение до достижения угла закручивания и приосходит релаксацией (при $0 < t < t_*$ угол закручивания остается неизменным и происходит релаксация напряжений); 5 — кручение постоянным моментом при $0 \le t < t_*$. Для режимов деформирования, соответствующих кривым 1–5, получены следующие значения остаточных углов θ_{**} : 1,195; 2,243; 1,987; 0,412; 0,801 рад/м.

На рис. 2 представлена зависимость начального угла закручивания от заданного остаточного (задача 1). Кривые 1–4 соответствуют времени термофиксации $t_* = 1,08 \cdot 10^4$; $3,6 \cdot 10^4$; $36 \cdot 10^4$; $180 \cdot 10^4$ с. Штриховая линия — асимптота для $t_* \to \infty$.

В табл. 3 представлены результаты решения задачи 2. При t = 0 стержень мгновенно нагружается до достижения угла закручивания $\theta_0 = 1,047$ рад/м и кривизны $w_{x0} = 0,5 \text{ M}^{-1}$, которые затем линейно увеличиваются при $0 < t < t_*$ до искомых угла θ_* и кривизны w_{x*} , необходимых для получения остаточных угла $\theta_{**} = 1,221$ рад/м и кривизны $w_{x**} = 0,5 \text{ M}^{-1}$.

Проведено также исследование влияния повреждаемости на результаты расчетов. Ниже приводятся данные для задачи чистого кручения (без изгиба и растяжения). При t = 0стержень мгновенно нагружается до достижения угла закручивания $\theta_0 = 1,396$ рад/м, при $0 < t < t_*$ угол меняется с заданной постоянной скоростью $\dot{\theta}$. В табл. 4 приведены значения

Таблица 3

$t_*,10^3~{\rm c}$	$\theta_*, \mathrm{pad/M}$	x_{x*}, m^{-1}	$t_*, 10^3 \mathrm{c}$	$\dot{\theta}, 10^{-4} \text{ рад/(м \cdot c)}$	$\theta_{**-}, \text{рад/м}$	$\theta_{**+}, \text{pad/м}$	$\omega_{ m max}$
7,2	2,936	$1,\!35$	3,6	1,744	0,363	0,368	0,01
10,8	2,742	1,25	36,0	1,744	5,757	5,943	0,09
18,0	2,529	1,14	36,0	2,617	8,691	9,022	$0,\!13$
36,0	2,283	1,02	72,0	1,744	12,037	12,401	$0,\!15$

Таблица 4

остаточных углов после разгрузки для различных значений t_* и $\dot{\theta}$ без учета повреждаемости (θ_{**-}) (m = 0 в (9)) и с учетом повреждаемости (θ_{**+}), а также максимальное значение повреждаемости ω_{\max} в случае ее учета.

Из анализа полученных данных следует, что в задаче 2 повреждаемость необходимо учитывать в случае достаточно длительного процесса формообразования.

3. Экспериментальные данные. *Кручение стержней квадратного сечения*. Проводится сравнение экспериментальных данных, полученных при чистом кручении постоянным моментом (задача 3), с результатами численного решения для стержня квадратного сечения и близкого к квадратному. Квадратная форма поперечного сечения позволяет максимально уменьшить влияние на результаты экспериментов эффекта стеснения депланации на торцах образца.

На рис. 3 показан экспериментальный образец с размерами поперечного сечения $0,01 \times 0,02$ м и рабочей длиной l_0 порядка 0,07 м. Видно неравномерное закручивание образца вдоль длины стержня: более сильное в центральной части и слабое у торцов. Такой характер закручивания подтверждается непосредственными замерами на инструментальном микроскопе.

На рис. 4 светлыми квадратами 1, 2 показаны экспериментальные зависимости угла закручивания θ от времени для стержней квадратного сечения из конструкционного материала Ст. 45 (изготовленных из прутка диаметром 120 мм) при температуре T = 725 °C $(l_0 = 0.051 \text{ м}, a = b = 0.01815 \text{ м}, M_z = 49.57 \text{ H} \cdot \text{м})$ и T = 740 °C $(l_0 = 0.0497 \text{ м}, a = 0.01813 \text{ м}, b = 0.01861 \text{ м}, M_z = 43 \text{ H} \cdot \text{м})$ соответственно. Сплошные линии 1, 2 соответствуют результатам численных расчетов конечно-разностным методом при T = 725; 740 °C. Для расчетов при температуре 725 °C использовалась степенная зависимость для скоростей деформаций ползучести

$$\eta_{kl}^c = B\sigma_i^{n-1}\sigma_{kl}^0 \tag{10}$$

со следующими константами материала [14]: $n = 5,22, B = 3,5 \cdot 10^{-14} \text{ МПа}^{-n} \cdot \text{c}^{-1}, E = 170 \Gamma\Pi \text{a}, \nu = 0,3$. Для расчетов при температуре 740 °C константы приведены ниже.

В [15] приведено решение задачи кручения стержня с квадратным поперечным сечением в предположении установившейся ползучести (пренебрегается изменением скоростей упругих деформаций) для степенной зависимости скоростей деформаций ползучести, полученное приближенным аналитическим методом, основанным на принципе минимума дополнительного рассеяния:

$$\dot{\theta} = (3^{3(n+3)/2} B/a) (M/a^3)^n I(n).$$
(11)

Здесь I(n) — интеграл, вычисляемый по методу Гаусса (в данном случае $I(5,22) \approx 0,809$). Различие скоростей, вычисленных по формуле (11) ($\dot{\theta} = 2,73 \cdot 10^{-3} \text{ рад/(м \cdot c)}$) и конечноразностным методом ($\dot{\theta} = 2,66 \cdot 10^{-3} \text{ рад/(м \cdot c)}$), составляет менее 3 %.

На рис. 4 темные точки соответствуют экспериментальным значениям угла закручивания сплошного стержня круглого поперечного сечения при кручении моментом $M_z = 51,5 \text{ H} \cdot \text{ м}$ при $T = 725 \,^{\circ}\text{C}$ (радиус стержня $R = 9,988 \cdot 10^{-3} \text{ м}$, $l_0 = 0,0431 \text{ м}$). Скорость угла закручивания $\dot{\theta} = 2,73 \cdot 10^{-3} \text{ рад/(M} \cdot \text{c})$, рассчитанная для этого стержня в предположении установившейся ползучести [15]:

$$\dot{\theta} = (\sqrt{3}B/R^{3n+1})(M\sqrt{3}(3+1/n)/(2\pi))^n, \tag{12}$$

совпадает с рассчитанной по формуле (11) для стержня квадратного сечения. Экспериментальные значения $\theta(t)$ для стержней квадратного (светлые квадраты 1 на рис. 4) и круглого (темные точки на рис. 4) поперечных сечений различаются незначительно. Следует отметить, что хорошее соответствие экспериментальных данных при кручении стержней с сечением квадратной формы экспериментальным данным при кручении стержней с сечением круглой формы является важным с точки зрения планирования эксперимента (выбора крутящего момента, размеров образца, продолжительности эксперимента и т. п.).

Анализ формул (11), (12) показывает, что скорость угла закручивания существенно зависит от размеров поперечного сечения: $\dot{\theta} \sim 1/a^{3n+1}$. Уменьшение размера *a* на 1 % при n = 5,22 приводит к увеличению $\dot{\theta}$ примерно на 20 %.

Для расчетов при $T=740~^{\circ}\mathrm{C}$ (сплошная линия 2 на рис. 4) использовалась зависимость

$$\eta_{kl} = A(\exp\left(\alpha\sigma_i\right) - 1)\sigma_{kl}^0/\sigma_i,\tag{13}$$

где $\alpha = 0,125\,63\,\mathrm{M}\Pi\mathrm{a}^{-1}$; $A = 8,0451\cdot10^{-8}\,\mathrm{c}^{-1}$. Модуль Юнга и коэффициент Пуассона те же, что и при температуре T = 725 °C. Скорость угла закручивания $\dot{\theta} = 1,67\cdot10^{-3}\,\mathrm{pag}/(\mathrm{M}\cdot\mathrm{c})$, полученная конечно-разностным методом, меньше экспериментальной примерно на 25 %.

С учетом разброса экспериментальных данных, полученных при определении характеристик ползучести, а также сильной зависимости результатов расчетов от размеров поперечного сечения образца, соответствие экспериментальных данных расчетным можно считать удовлетворительным.

Определение характеристик ползучести. В работе [14] приведены значения констант для степенного закона ползучести (10), полученные на основе экспериментальных данных рассеянной энергии в зависимости от времени в экспериментах на растяжение и сжатие для материала Ст. 45 при T = 725 °C. При этом предполагалось, что материал ведет себя как изотропная среда без упрочнения с одинаковыми свойствами на растяжение и сжатие.

На рис. 5 представлены результаты экспериментов при чистом растяжении и сжатии в осевом направлении (темные и светлые точки соответственно), растяжении под углом 45° к оси прутка (треугольники) при постоянном напряжении и T = 725 °C. Эти данные подтверждают изотропию материала. Экспериментальные зависимости 1–5 соответствуют напряжениям $\sigma = 55, 50, 44, 40, 26$ МПа. Квадраты соответствуют экспериментальным значениям интенсивности деформаций в характеристической точке $\hat{\varepsilon}_i$ при кручении сплошных образцов с круглым сечением под действием постоянного момента M_z [16]. Экспериментальные данные, полученные при кручении, соответствуют интенсивности напряжений в характеристической точке, равной напряжению при чистом

растяжении: $\hat{\sigma}_i = \sigma = 26, 40, 44, 50$ МПа ($M_z = 31,2; 42,8; 53,1; 60,3$ H · м; $R = 9,975 \cdot 10^{-3}; 9,988 \cdot 10^{-3}; 0,01; 9,995 \cdot 10^{-3}$ м). Длина образцов 0,047 м. Знак " \wedge " соответствует величинам в характеристической точке.

Положение характеристической точки определяется как координата пересечения эпюр, соответствующих упругому и установившемуся распределениям напряжений [16]. Применительно к кручению сплошных стержней круглого сечения постоянным моментом, когда неизвестен показатель ползучести n, с достаточной точностью для построения диаграмм кручения в качестве координаты характеристической точки можно использовать координату пересечения эпюр, соответствующих упругому и идеально пластическому распределениям ($\hat{R} = 3R/4$). При этом $\hat{\varepsilon}_i = 3R\theta/4$, $\hat{\sigma}_i = \sqrt{3} 3M_z/(2\pi R^3)$.

На рис. 6 приведены экспериментальные зависимости (точки) интенсивности деформаций при чистом растяжении в осевом направлении от времени при T = 740 °C. Экспериментальные значения, отмеченные цифрами 1–5, соответствуют значениям $\sigma = 60, 55, 50, 45, 30$ МПа. На рис. 6 квадраты 3, 4 соответствуют значениям интенсивности деформаций в характеристической точке, полученным из эксперимента при кручении сплошного образца с круглым сечением с интенсивностью напряжений в характеристической точке $\hat{\sigma}_i = 50, 45$ МПа ($M_z = 60,4; 54,4$ H·м, $R = 9,996 \cdot 10^{-3}$ м).

Сплошные линии на рис. 5, 6 — аппроксимации экспериментальных данных с использованием степенной зависимости (10) при T = 725 °C и экспоненциальной зависимости (13) при T = 740 °C соответственно. Из представленных на рис. 5, 6 результатов следует, что при одной и той же интенсивности напряжений $\sigma_i = \hat{\sigma}_i$ экспериментальные точки группируются вдоль прямой, что подтверждает гипотезу "единой кривой" и выбор эквивалентного напряжения.

Таким образом, предложенная методика моделирования и расчета параметров формообразования стержней в условиях ползучести на основе конечно-разностного метода удовлетворительно подтверждается экспериментально для задачи определения крутящего момента, необходимого для получения требуемого угла закручивания для стержня с поперечным сечением, близким к квадратному.

Расчет конечно-разностным методом позволяет анализировать чувствительность скоростей деформирования к изменению геометрических размеров образца, что важно для планирования и проведения экспериментов.

Необходимо дальнейшее экспериментальное исследование кручения стержней более сложных сечений (в том числе при больших деформациях) с целью апробации методики расчета формообразования стержней.

ЛИТЕРАТУРА

- Сухоруков И. В., Горев Б. В., Клопотов И. Д., Веричев С. Н. Формообразование подкрепленных панелей двойной кривизны в условиях ползучести // Тр. XXVI Междунар. конф. по теории пластин и оболочек, Нижний Новгород, сент. 1993 г. Н. Новгород: Б. и., 1994. Т. 3. С. 199–207.
- 2. Цвелодуб И. Ю. Обратные задачи формоизменения неупругих пластин при ползучести // Изв. АН СССР. Механика твердого тела. 1996. № 1. С. 96–106.
- 3. Цвелодуб И. Ю. Некоторые обратные задачи изгиба пластин при ползучести // Изв. АН СССР. Механика твердого тела. 1985. № 5. С. 126–134.
- 4. Банщикова И. А. Обратная задача для вязкоупругой пластины // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 1998. Вып. 113. С. 13–18.
- 5. Сухоруков И. В. Одномерные задачи формоизменения // Там же. С. 150–155.
- 6. Сухоруков И. В., Цвелодуб И. Ю. Итерационный метод решения релаксационных обратных задач // Изв. АН СССР. Механика твердого тела. 1991. № 3. С. 93–101.
- 7. Биргер И. А. Стержни, пластины, оболочки. М.: Наука. Издат. фирма. Физ.-мат. лит., 1992.
- 8. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1988.
- 9. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966.
- 10. Бахвалов Н. С., Жидков Н. П. Численные методы. М.: Наука, 1987.
- 11. **Мудров А. Е.** Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП "PACKO", 1992.
- 12. **Коновалов А. Н.** Введение в вычислительные методы линейной алгебры. Новосибирск: Наука. Сиб. отд-ние, 1993.
- 13. Никитенко А. Ф., Сухоруков И. В. Приближенный метод решения релаксационных задач с учетом повреждаемости материала при ползучести // ПМТФ. 1994. Т. 35, № 5. С. 136–142.
- 14. **Любашевская И. В., Соснин О. В.** О приближенных оценках внешних нагрузок при установившейся ползучести в элементах конструкций // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 1999. Вып. 114. С. 183–185.
- 15. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960.
- 16. Горев Б. В. К оценке ползучести и длительной прочности элементов конструкций по методу характеристических параметров. 1 // Пробл. прочности. 1979. № 4. С. 30–36.

Поступила в редакцию 4/XII 2001 г.