УДК 544.463:546.72:669.27:666.792.5:666.762.34

DOI: 10.15372/KhUR2019137

Механокомпозиты для полимерных материалов радиационной защиты

Т. Ф. ГРИГОРЬЕВА¹, С. А. КОВАЛЕВА², Т. Ю. КИСЕЛЕВА³, Т. А. УДАЛОВА^{1,4}, С. В. ВОСМЕРИКОВ¹, Е. Т. ДЕВЯТКИНА¹, П. А. ВИТЯЗЬ², Н. З. ЛЯХОВ¹

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск (Россия)

E-mail: grig@solid.nsc.ru

²Объединенный институт машиностроения НАН Беларуси, Минск (Беларусь)

³Московский государственный университет им. М. В. Ломоносова, Москва (Россия)

⁴Новосибирский государственный технический университет, Новосибирск (Россия)

Аннотация

Изучено механохимическое формирование композитов Fe/TiB₂, W/TiB₂, Fe/B₄C и W/B₄C, которые могут использоваться для наполнения сверхвысокомолекулярного полиэтилена, применяемого для защиты от нейтронного и γ -излучения. Механохимический синтез композитов проведен в планетарной шаровой мельнице с водяным охлаждением в атмосфере аргона. С помощью комплекса физико-химических методов (рентгенофазовый анализ, сканирующая электронная микроскопия, термический анализ) исследованы фазовый состав, структурные и морфологические характеристики композитов, а также их термическая устойчивость. Показано, что в процессе механической активации формируются композиты Fe/TiB₂, W/TiB₂, Fe/B₄C и W/B₄C, состоящие из частиц размерами 0.5–1.0 мкм, по форме близких к сферической, которые агломерированы в более крупные образования с размерами 30–50 мкм. Полученные композиты проявляют термическую стабильность в среде аргона при нагревании до ~800 °C.

Ключевые слова: механическая активация, композиты, железо, вольфрам, карбид бора, диборид титана

введение

Материалы радиационной защиты, эксплуатируемые в стационарных условиях атомных электростанций, хранилищ радиоактивных веществ и отходов, известны с середины XX века. Это тяжелые бетоны, металлы (вольфрам, свинец, сталь) и псевдосплавы (вольфрам с медью, железом и никелем) [1–5]. В настоящее время для применения в атомной и космической промышленности активно разрабатываются пластичные композиционные полимерные материалы [6–12].

Введение высокодисперных наполнителей в полимерные матрицы позволяет решать проблемы эффективности защиты от многофакторного ионизирующего излучения. Так, присутствие легких элементов (водородсодержащие вещества, графит, карбид бора) в составе материалов, применяемых для защиты от нейтронного и γ-излучения, необходимо для замедления быстрых и промежуточных нейтронов при упругом рассеянии, тяжелых элементов с большой атомной массой (вольфрам, железо, молибден, цирконий, титан и др.) – для замедления быстрых нейтронов в процессе неупругого рассеяния и ослабления захватного γ-излучения, а элементов с высоким эффективным сечением, таких как бор, – для поглощения тепловых нейтронов. Перспективным подходом, сочетающим получение высокодисперсных порошков материалов-наполнителей с формированием композитов на основе полимеров, является метод механической активации (МА). В условиях интенсивных ударно-сдвиговых деформаций в материалах происходят процессы перемешивания, диспергирования с формированием большой контактной поверхности, а также физико-химические взаимодействия, что способствует изменению исходного структурного состояния материалов и формированию композитной структуры [13, 14].

Цель настоящей работы – получение высокодисперсных композитов Fe/TiB_2 , W/TiB_2 , Fe/B_4C и W/B_4C методом MA.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали порошки железа карбонильного, вольфрама, диборида титана TiB_2 и карбида бора $\mathrm{B}_4\mathrm{C}$. Соотношение компонентов в системах $\mathrm{M}-\mathrm{TiB}_2$ или $\mathrm{M}-\mathrm{B}_4\mathrm{C}$ (M = Fe, W) составляло 50 : 50 мас. %.

Высокодисперсные порошки композитов получали МА смесей исходных порошков в высокоэнергетической шаровой планетарной мельнице АГО-2 с водяным охлаждением [15] в атмосфере аргона. Объем барабана составлял 250 см³, диаметр шаров 5 мм, загрузка шаров 200 г, навеска обрабатываемого образца 10 г, скорость вращения барабанов вокруг общей оси ~1000 об/мин, продолжительность МА образцов 2 мин.

Рентгенографические исследования проводили с использованием дифрактометра D8 Advance (Bruker, Германия) с характеристическим излучением Cu K_{a1} ($\lambda = 1.5406$ Å). Расчеты и уточнение профильных и структурных параметров выполнены с использованием ПО TOPAS.

Морфологические характеристики механокомпозитов определяли с помощью сканирующей электронной микроскопии (СЭМ) на приборе ТМ 1000 (Hitachi, Япония).

Термическую устойчивость композитов исследовали методами термогравиметрического анализа (ТГА) и дифференциально-сканирующей калориметрии (ДСК) с использованием термоанализатора STA 449 F/1/1 JUPITER (Netzsch, Германия) в атмосфере аргона.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Механокомпозиты Fe/TiB, и W/TiB,

Механическая активация систем Fe-TiB₂ и W-TiB₂ в течение 2 мин приводит к резкому уменьшению размеров кристаллитов TiB₂ – с 3000 до 100–125 нм (табл. 1), однако его кристаллическая структура сохраняется (рис. 1, *a*, *б*). Согласно результатам рентгенофазового анализа (РФА), в ходе МА в системах формируются только механокомпозиты Fe/TiB₂ и W/TiB₂. В системах с железом параметры решеток компонентов заметно увеличиваются по сравнению с исходными, что может быть обусловлено высокими микронапряжениями, тогда как в системах с вольфрамом они практически не изменяются (см. табл. 1).

По данным СЭМ, в механически активированной системе Fe-TiB₂ наблюдаются частицы композитов Fe/TiB₂ размерами до 20 мкм, состоящие из более мелких частиц ~1 мкм (рис. 2, a). В системе W-TiB₂ после MA присутствуют частицы композитов W/TiB₂, представляющие со-

ТАБЛИЦА 1

Состав и структурные характеристики исходных ${\rm TiB}_2,$ Fe, W и систем ${\rm Fe-TiB}_2,$ W-TiB $_2$ после MA в течение 2 мин в атмосфере Ar

Химический состав	Фазовый состав	Кристаллическая структура	Параметры решетки, нм	Размер кристаллитов, нм
TiB ₂ (исходный)	TiB ₂	P6/mmm	a = 0.3031	3000
			c = 0.3229	
Fe (исходный)	Fe	Im-3m	a = 0.2867	85
W (исходный)	W	Im-3m	a = 0.3164	520
Fe-TiB ₂ , MA	TiB_2	$P6_3/mmc$	a = 0.3038	125
			c = 0.3237	
	Fe	Im-3m	a = 0.2879	44
W-TiB ₂ , MA	TiB ₂	P6/mmm	a = 0.3030	110
			c = 0.3227	
	W	Im-3m	a = 0.3165	60

Рис. 1. Дифрактограммы: $a - исходных TiB_2(1)$, Fe (2) и полученной после MA системы Fe-TiB_2(3); $\delta - исходных W(1)$, TiB_2(2) и полученной после MA системы W-TiB_(3). Здесь и на рис. 2-4: условия MA – 2 мин, атмосфера Ar.

Рис. 2. СЭМ-изображения частиц в системах Fe-TiB₂ (a) и W-TiB₂ (б) после МА. Условия МА см. рис. 1.

бой агломераты от ~10.5 до 15 мкм, состоящие из более мелких частиц ~1 мкм по форме близких к сферической (см. рис. 2, б).

Высокая термическая стабильность карбидов и боридов должна способствовать повышению термостойкости модифицированных ими полимерных композитов. Термическая стабильность композитов Fe/TiB₂ и W/TiB₂, полученных в процессе MA, была подтверждена термографическими исследованиями. Так, при нагревании в атмосфере аргона композиты стабильны в температурном интервале от 40 до ~800 °C (рис. 3).

Механокомпозиты Fe/B₄C и W/B₄C

В результате MA систем $Fe-B_4C$ и $W-B_4C$ размеры кристаллитов B_4C уменьшаются, при этом его кристаллическая структура не изменяется (рис. 4). В системе $Fe-B_4C$ при MA происходит химическое взаимодействие, в результате которого, кроме механокомпозитов Fe/B_4C , формируются карбиды бора сложного состава. В системе $W-B_4C$ образуется только механокомпозит W/B_4C .

Параметры решеток Fe и W в механически активированных системах ${\rm Fe-B_4C}$ и W-B_4C по

Рис. 3. Данные дифференциально-термического анализа для механокомпозитов систем Fe-TiB₂ (*a*) и W-TiB₂ (б) после MA. Условия MA см. рис. 1.

Рис. 4. Дифрактограммы: a – исходных B_4C (1), Fe (2) и полученной после MA системы Fe= B_4C (3); 6 – исходных W (1), B_4C (2) и полученной после MA системы W= B_4C (3). Условия MA см. рис. 1.

ТАБЛИЦА 2

Состав и структурные характеристики исходного B_4C и систем Fe- B_4C , $W-B_4C$ после MA в течение 2 мин в атмосфере Ar

Химический состав	Фазовый состав	Кристаллическая структура	Параметры решетки, нм	Размер кристаллитов, нм
В ₄ С (исходный)	B_4C	R-3 m	a = 0.5628 c = 1.2110	70
	$C_{1.48}B_{13.77}$	R-3m	a = 0.5650 c = 1.2157	40
Fe-B ₄ C, MA	$C_{36}B_{11.4}$	R-3 m	a = 0.5589 c = 1.1991	55
	Fe	Im- $3m$	a = 0.2866	55
W– B_4C , MA	B_4C	R-3m	a = 0.5601 c = 1.2080	30
	W	Im-3m	a = 0.3165	92

сравнению с исходными компонентами практически не изменяются (табл. 2).

Электронно-микроскопический анализ активированных порошков Fe-B₄C показал, что композиты Fe/B₄C представляют собой агломераты размерами до 50 мкм, состоящие из более мелких частиц (~0.5 мкм).

В активированной системе W-B₄C формируются композитные частицы W/B₄C размерами до 30 мкм – агломераты, состоящие из более мелких (~1 мкм) частиц, по форме близких к сферической.

ЗАКЛЮЧЕНИЕ

В процессе МА в шаровой планетарной мельнице сформированы высокодисперсные композиты Fe/TiB₂, W/TiB₂, Fe/B₄C и W/B₄C, которые представляют собой агломераты (30-50 мкм) из частиц размерами ~0.5-1.0 мкм, по форме близких к сферической. Полученные композиты термически устойчивы в атмосфере аргона при нагревании до ~800 °C.

Исследованные высокодисперсные композиты предлагается использовать для создания полимерных композиционных материалов радиационной защиты от нейтронного и γ-излучений.

Работа выполнена в рамках совместного проекта БРФФИ-РФФИ при финансовой поддержке БРФФИ (проект T18P-187) и РФФИ (проект 18-53-00029).

СПИСОК ЛИТЕРАТУРЫ

- Егоров Ю. А. Основы радиационной безопасности атомных электростанций / под общ. ред. академика Н. А. Доллежаля. М.: Энергоиздат, 1982. С. 148–155.
- 2 Машкович В. П., Кудрявцева А. В. Защита от ионизирующих излучений: Справочник. М.: Энергоатомиздат, 1995. 496 с.
- 3 Физическое материаловедение: Учебник для вузов: В 6 т. / Под общ. ред. Б. А. Калина. Т. 5. Материалы с заданными свойствами / М. И. Алымов [и др.]. М.: МИФИ, 2008. С. 547-557.
- 4 Павленко В. И., Ястребинский Р. Н., Смоликов А. А., Дегтярев С. В., Воронов Д. В. // Перспективные материалы. 2006. № 2. С. 47–50.
- 5 Павленко В. И., Ястребинский Р. Н., Воронов Д. В. // Инж.-физ. журн. 2008. Т. 81, № 4. С. 661-665.
- 6 Павленко В. И., Ястребинский Р. Н. Полимерные радиационно-защитные композиты. Белгород: БГТУ им. В. Г. Шухова, 2009. 199 с.
- 7 Ястребинская А. В., Черкашина Н. И., Матюхин П. В. // Междунар. журн. прикл. и фундамент. исследований. 2015. № 12. С. 1191–1194.
- 8 Чирская Н. П., Воронина Е. Н., Милеев В. Н., Новиков Л. С., Синолиц В. В. // Физика и химия обработки материалов. 2011. № 4. С. 20–24.
- 9 Пат. РФ 2632932, 2017.
- 10 Бормотов А. Н., Прошин А. П., Баженов Ю. М., Данилов А. М., Соколова Ю. А. Полимерные композиционные материалы для защиты от радиации. М.: Палеотип, 2006. С. 236–248.
- 11 Гульбин В. Н., Михеев В. А., Колпаков Н. С., Чердынцев В. В. // Ядерная физика и инжиниринг. 2013. Т. 4, № 6. С. 597–604.
- 12 Бойков А. А. Нанокомпозиты на основе сверхвысокомолекулярного полиэтилена для комплексной радио- и радиационной защиты: дис. ... канд. тех. наук. М., 2016.
- 13 Бутягин П. Ю. // Успехи химии. 1994. Т. 63, № 12. С. 1031–1043.
- 14 Koch C. C. // Ann. Rev. Mater. Sci. 1989. Vol. 19. P. 121-143.
- 15 A. c. CCCP 975068, 1982.