ПИСЬМО В РЕДАКЦИЮ

УДК 541.124.16:541.126.2:541.128

ЗАМЕЧАНИЯ ПО ПОВОДУ СТАТЬИ Б. П. АДУЕВА, Э. Д. АЛУКЕРА, А. Г. КРЕЧЕТОВА, А. Ю. МИТРОФАНОВА «ДИНАМИЧЕСКАЯ ТОПОГРАФИЯ ПРЕДВЗРЫВНОЙ ЛЮМИНЕСЦЕНЦИИ АЗИДА СЕРЕБРА»

В. В. Медведев

Томский политехнический университет, 634050 Томск, medvedev@tpu.ru

В экспериментах по зажиганию энергетических материалов лазерным излучением экспериментаторы всегда стремились обеспечить равномерность засветки облучаемой поверхности. Для этих целей применяли одномодовый режим генерации, используя центральную часть гауссова пучка [1]. Если использовался многомодовый режим, то перемешивали пучок внутри резонатора (например, в резонатор с плоскопараллельными зеркалами вставляли собирающую линзу с фокусным расстоянием не меньше базы резонатора [2] и т. д.).

В работе [3] также была предпринята попытка обеспечить равномерность засветки облучаемой поверхности. С этой целью на пути лазерного пучка помещался диффузный рассеиватель из матового стекла. Рассеянное излучение с помощью линзы формировалось на образце в пятно определенного диаметра. Указанная мера, по мнению авторов, должна была обеспечить «однородность возбуждения кристалла» азида серебра.

Здесь была допущена методическая ошибка. Во-первых, утверждение авторов, что после диффузного рассеивателя лазерный пучок становится «однородным», голословно. Для такого заявления необходимо было измерить распределение излучения по сечению пучка и представить в статье результаты таких измерений, чего не было сделано.

Во-вторых, авторы не учли того, что лазерное излучение когерентно. При взаимодействии лазерного пучка с диффузно рассеивающим материалом в результате многолучевой интерференции образуется «зернистая» структура освещенности в объеме, на поверхности и за пределами рассеивателя. Характерной ее особенностью является наличие максимумов — так называемых спеклов [4], освещенность в которых может значительно превосходить среднестатистическую [5]. Например, если пропустить излучение гелий-неонового лазера через матовое стекло, то с обратной стороны рассеивателя через микроскоп или лупу можно видеть результат многоголучевой интерференции. Спеклы можно наблюдать и невооруженным глазом, если направить расширенный пучок того же лазера на любую диффузно отражающую поверхность.

Распределение интенсивности лазерного излучения в картине спеклов подчиняется статистическому закону, который описывается с помощью экспоненциального множителя с отрицательным показателем [5]. В простейшем случае он имеет вид

$$P(I) \sim \exp(-I/I_0),\tag{1}$$

где P(I) — вероятность того, что интенсивность спекла лежит в пределах I и $I\pm dI$, а I_0 — осредненная интенсивность излучения. Согласно (1) около 14 % спеклов имеют интенсивность, в два раза превышающую среднюю, ≈ 5 % — в три раза, ≈ 0.7 % — в пять раз и т. д.

Оценить размеры наименьших спеклов в объеме или на поверхности кристалла азида серебра можно по формуле [4]

$$\varepsilon = \lambda/\alpha$$
,

где ε — диаметр спекла, λ — длина волны, $\alpha=d/2S,\,d$ — диаметр объектива, S — расстояние от объектива до кристалла. Для того чтобы на образце сформировать пятно такого же диаметра, как и на рассеивателе, расстояние S должно быть $\approx 2F$, где F — фокусное расстояние объектива. Пусть отношение

В. В. Медведев

 $d/F \approx 0.5$. Тогда наименьший диаметр спеклов будет ≈ 8 мкм.

Таким образом, установка матового стекла на пути лазерного пучка не снимает проблему, а лишь переводит неоднородность пучка на другой, более мелкомасштабный уровень, усугубляя ее.

Вероятно, очаги, приведенные на фотографиях [3], возникают в зонах воздействия наиболее ярких спеклов и иллюстрируют топографию лазерного пучка на макро- и микроуровнях, а азид серебра является индикатором его неоднородности.

Согласно [1, 6] в подобных кристаллах, выращенных в лабораторных условиях, всегда присутствуют поглощающие микровключения — частицы металла с характерными размерами $10^{-6} \div 10^{-4}$ см. Для инициирования азида лазерным импульсом наносекундной длительности необходимо нагреть микрочастицу до температуры $\approx 1500~{\rm K}$ [1]. Из этих предположений можно сделать приближенные расчеты нагрева микровключений в азиде серебра.

В условиях адиабатического разогрева изолированных частиц серебра в поле лазерного излучения прирост температуры на момент окончания воздействия приблизительно равен

$$\Delta T = 3Fk(r)H/4c\rho r,\tag{2}$$

где r — радиус частицы, ρ — плотность, c — удельная теплоемкость, H — плотность энергии излучения, F — коэффициент, связывающий освещенность микрочастицы, находящейся внутри спекла, со средней освещенностью поверхности кристалла, $k(r) = \sigma(r)/\pi r^2$ — относительное сечение поглощения на длине волны излучения, $\sigma(r)$ — сечение поглощения. Согласно [7] $k(r) \approx 1$ для частиц размером $10^{-5} \div 10^{-4}$ см.

Теперь можно приблизительно оценить нагрев частицы, например, радиусом

 $\approx \! 10^{-5}\,$ см, которая при воздействии лазерного излучения с плотностью энергии $H=5\,$ мДж/см $^2\,$ попала внутрь спекла, где F может быть более 10. Для серебра $c\rho\approx 2.46\,$ Дж/(см $^3\cdot$ K). Подставив эти значения в (2), получаем $\Delta T\approx 1\,500\,$ К. Такого прироста температуры достаточно для взрывного разложения азида серебра.

Таким образом, можно сказать, что результаты экспериментов [3] подтвердили гипотезу Боудена и Иоффе [8] «в ее первоначальном виде».

ЛИТЕРАТУРА

- 1. Александров Е. И., Ципилев В. П. Размерный эффект при инициировании прессованного азида свинца лазерным моноимпульсным излучением // Физика горения и взрыва. 1981. Т. 17, № 5. С. 77–81.
- 2. **Медведев В. В.** Влияние интенсивности лазерного излучения на пороги зажигания пористого двухосновного пороха // Хим. физика. 2004. Т. 23, № 3. С. 73–78.
- 3. Адуев Б. П., Алукер Э. Д., Кречетов А. Г., Митрофанов А. Ю. Динамическая топография предвзрывной люминесценции азида серебра // Физика горения и взрыва. 2003. Т. 39, № 5. С. 105—108.
- 4. **Франсон М.** Оптика спеклов. М.: Мир, 1980.
- Ennos A. E. Speckle interferometry // Laser Speckle and Related Phenomena / J. C. Dainty (Ed.). (Topics in Applied Physics; V. 9). Berlin; Heidelberg; New York: Springer Verlag, 1975. P. 203-253.
- 6. Виноградов А. В., Трибельский М. И. Роль коллоидных частиц в оптическом пробое щелочно-галоидных кристаллов // Письма в ЖТФ. 1979. Т. 5, вып. 10. С. 595–598.
- 7. **Борн М., Вольф** Э. Основы оптики. М.: Наука, 1973.
- 8. **Боуден Ф. П., Иоффе А. Д.** Быстрые реакции в твердых веществах. М.: Изд-во иностр. лит., 1962.

Поступила в редакцию 10/XI 2004 г.