УДК 532.592

## АСИМПТОТИЧЕСКИЕ МОДЕЛИ ВНУТРЕННИХ СТАЦИОНАРНЫХ ВОЛН

## Н. И. Макаренко, Ж. Л. Мальцева

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mails: makarenko@hydro.nsc.ru, maltseva@hydro.nsc.ru

Рассмотрены уравнения стационарных длинных волн на границе раздела однородной и экспоненциально стратифицированной жидкостей. В качестве базовой модели использовано уравнение второго приближения теории мелкой воды, наследующее дисперсионные свойства полных уравнений Эйлера. Построено семейство асимптотических подмоделей, описывающих три различных типа бифуркации уединенных волн в граничных точках непрерывного спектра линеаризованной задачи.

Ключевые слова: двухслойная жидкость, экспоненциальная стратификация, уединенные волны.

Введение. Уравнения невязкой двухслойной жидкости с кусочно-постоянной плотностью, имеющей скачок на поверхности раздела слоев, используются (см. [1, 2]) в качестве математической модели внутренних волн в пикноклине. В этой модели уединенные волны и плавные боры описываются уравнением второго приближения теории мелкой воды, полученным Л. В. Овсянниковым [3]. В работе [4] такое уравнение получено для случая, когда в основном течении отсутствует скольжение слоев. Аналогичное приближение для длинных волн в жидкости с кусочно-постоянной частотой Брента — Вяйсяля рассмотрено в [5]. В работе [6] отмечено, что асимптотические ряды для уединенных волн обладают повышенной чувствительностью к малым возмущениям поля плотности. В настоящей работе, основной целью которой является оценка влияния слабой непрерывной стратификации внутри жидкости на параметры нелинейных волн на границе раздела, исследуется поведение критических параметров волнового движения при исчезающей в пределе стратификации в одном из слоев жидкости. При этом полагается, что в другом слое плотность жидкости постоянна. Основной характерной чертой указанного предельного перехода является концентрация спектров старших мод в узкой области типа пограничного слоя в плоскости бифуркационных параметров. Наличие такого пограничного слоя существенно влияет на асимптотику уединенных волн главной моды. В частности, обнаружена область параметров, в которой ветвление решений в точках границы спектра отличается от способа бифуркации уединенных волн в волны типа плато и плавного бора для модели двухслойной жидкости [7, 8].

**1. Исходные уравнения.** Плоские стационарные течения идеальной несжимаемой неоднородной жидкости описываются уравнениями Эйлера

$$\rho(uu_x + vu_y) + p_x = 0, \qquad \rho(uv_x + vv_y) + p_y = -\rho g, u_x + v_y = 0, \qquad u\rho_x + v\rho_y = 0,$$
(1)

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-05-64460), в рамках Интеграционного проекта СО РАН № 113 и гранта Президента для поддержки ведущих научных школ (№ НШ-5245.2006.1).



Рис. 1. Схема движения жидкости

где  $\rho$  — плотность жидкости; u, v — компоненты вектора скорости; p — давление. Рассматривается двухслойное течение в области, ограниченной жестким горизонтальным дном  $y = -h_1$  и крышкой  $y = h_2$  (рис. 1). Граница раздела слоев имеет форму  $y = \eta(x)$ , причем безволновому режиму соответствует значение  $\eta = 0$ . Предполагается, что при  $x \to -\infty$  вектор скорости жидкости (u, v) в *j*-м слое стремится к постоянному вектору  $(u_j, 0)$   $(u_j$  — скорость волны относительно соответствующего слоя, j = 1, 2). При введении функции тока  $\psi$  для поля скоростей  $u = \psi_y, v = -\psi_x$  система (1) сводится к квазилинейному эллиптическому уравнению второго порядка (уравнению Дюбрей-Жакотэн — Лонга) [1, 2]

$$\rho(\psi)(\psi_{xx} + \psi_{yy}) + \rho'(\psi)(gy + |\nabla\psi|^2/2) = H'(\psi).$$

Здесь  $H(\psi) = \rho(\psi)b(\psi)$ , где  $b(\psi)$  — функция Бернулли; зависимость плотности жидкости от функции тока задается ее распределением по линиям тока в невозмущенном течении:  $\rho(\psi) = \rho_{\infty}(\psi/u_j)$  в слое с номером j. Предполагается, что в основном течении выражение для плотности имеет вид

$$\rho_{\infty}(y) = \begin{cases} \rho_1, & -h_1 < y < 0, \\ \rho_2 \exp(-N^2 y/g), & 0 < y < h_2, \end{cases}$$

где N = const — частота Брента — Вяйсяля, а постоянные  $\rho_j > 0$  удовлетворяют неравенству  $\rho_2 < \rho_1$ . В случае N = 0 указанное распределение плотности дает обычную двухслойную стратификацию с постоянными плотностями в слоях; при  $N \neq 0$  функция Бернулли b в нижнем слое постоянна ( $b = u_1^2/2$ ), а в верхнем слое имеет вид

$$b(\psi) = \frac{1}{2}u_2^2 + \frac{g\psi}{u_2} + \frac{g^2}{N^2} \left(1 - \exp\left\{\frac{N^2\psi_2}{gu_2}\right\}\right)$$

Функцию тока будем нормировать условием  $\psi = 0$  на границе раздела слоев. Тогда на дне должно выполняться граничное условие  $\psi(x, -h_1) = -u_1h_1$ , а на твердой крышке — условие  $\psi(x, h_2) = u_2h_2$ . В силу интеграла Бернулли

$$|\nabla \psi|^2/2 + p/\rho(\psi) + gy = b(\psi)$$

давление *p* выражается через функцию  $\psi$ , поэтому из условия непрерывности давления на границе раздела  $y = \eta(x)$  для функции тока следует нелинейное граничное условие  $[\rho(\psi)(|\nabla \psi|^2 + 2gy - 2b(\psi))] = 0$  (квадратные скобки обозначают скачок величины). Отметим также, что закон сохранения суммарного горизонтального импульса двухслойной жидкости дает интегральное соотношение

$$\int_{-h_1}^{h_2} \left( p + \rho(\psi) \psi_y^2 \right) dy = C,$$
(2)

в котором константа C определяется асимптотикой плотности, скорости и условием гидростатичности давления в предельном течении на бесконечности.

**2.** Длинноволновое приближение. В рассматриваемой задаче стратификация определяется безразмерными параметрами Буссинеска

$$\sigma = N^2 h_2/g, \qquad \mu = (\rho_1 - \rho_2)/\rho_2$$

где  $\sigma$  характеризует градиент плотности в неоднородном слое, а  $\mu$  — ее скачок на границе раздела. В данной работе предполагается, что отношение  $\sigma/\mu$  мало, и параметр  $\sigma$  используется в качестве моделирующего параметра. Следуя [9], будем рассматривать длинноволновое приближение, в котором отношение вертикального и горизонтального масштабов движения имеет порядок  $\sqrt{\sigma}$ . Используя в качестве вертикального масштаба невозмущенную глубину  $h_2$  верхнего слоя, а в качестве масштаба для функции тока  $\psi = \psi_j$  в слое с номером j — расход жидкости в этом слое, введем безразмерные переменные

$$(\sqrt{\sigma} x, y, \eta) = h_2(\bar{x}, \bar{y}, \bar{\eta}), \qquad \psi_j = u_j h_j \bar{\psi}_j \qquad (j = 1, 2).$$

Тогда в нижнем слое должны выполняться уравнения

$$\begin{aligned}
\sigma\psi_{1xx} + \psi_{1yy} &= 0 & (-r < y < \eta(x)), \\
\psi_1(x, -r) &= -1, & \psi_1(x, \eta(x)) &= 0,
\end{aligned} \tag{3}$$

где  $r = h_1/h_2$ . (Здесь и далее черта в обозначениях безразмерных величин  $\bar{x}, \bar{y}, \bar{\eta}, \bar{\psi}_j$ опущена.) Соответственно в верхнем слое уравнения принимают вид

$$\sigma \psi_{2xx} + \psi_{2yy} + \lambda^2 (\psi_2 - y) = \sigma (\psi_{2x}^2 + \psi_{2y}^2 - 1)/2 \qquad (\eta(x) < y < 1),$$
  
$$\psi_2(x, \eta(x)) = 0, \qquad \psi_2(x, 1) = 1,$$
(4)

где  $\lambda = Nh_2/u_2$ . Из динамического условия на границе раздела следует соотношение

$$rF_1^2(\sigma r^2\psi_{1x}^2 + r^2\psi_{1y}^2 - 1) + 2\eta = F_2^2(\sigma\psi_{2x}^2 + \psi_{2y}^2 - 1) \qquad (y = \eta(x)),$$
(5)

где  $F_j$  — денсиметрические (плотностные) числа Фруда:

$$F_j^2 = \rho_j u_j^2 / (g(\rho_1 - \rho_2)h_j)$$
  $(j = 1, 2).$ 

Введенный безразмерный параметр  $\lambda$  имеет смысл обратного денсиметрического числа Фруда для экспоненциально стратифицированного верхнего слоя жидкости, поскольку для него справедливо выражение  $\lambda^2 = \sigma g h_2 / u_2^2$ . Параметры  $\sigma$ ,  $\mu$ ,  $\lambda$  и  $F_2$  связаны соотношением

$$\lambda^2 = \sigma / (\mu F_2^2), \tag{6}$$

играющим важную роль в анализе асимптотики решения при  $\sigma \to 0$ . Отметим, что граничное условие (5) равносильно интегральному соотношению

$$\mu r^{3} F_{1}^{2} \int_{-r}^{\eta} \left(\psi_{1y}^{2} - \sigma \psi_{1x}^{2}\right) dy - (1+\mu)\eta^{2} + \mu r F_{1}^{2}(\eta-r) + \\ + \int_{\eta}^{1} e^{-\sigma \psi_{2}} \left\{\mu F_{2}^{2}(1+\psi_{2y}^{2} - \sigma \psi_{2x}^{2}) - 2\sigma^{-1}(e^{\sigma \psi_{2}} - 1) + 2(\psi_{2} - y)\right\} dy = \\ = 2\mu F_{2}^{2} + 2(\lambda^{-2} + \sigma^{-2})(1 - \sigma - e^{-\sigma}), \quad (7)$$

представляющему собой безразмерную версию уравнения (2), из которого давление исключено в силу интеграла Бернулли. Построение асимптотического разложения для решения уравнений (3), (4) в виде  $\psi_j = \psi_j^{(0)} + \sigma \psi_j^{(1)} + O(\sigma^2)$  (j = 1, 2) приводит к следующим выражениям для коэффициентов:

$$\begin{split} \psi_1^{(0)} &= \frac{y - \eta}{r + \eta}, \qquad \psi_2^{(0)} = y - \eta \frac{\sin \lambda (1 - y)}{\sin \lambda (1 - \eta)}, \\ \psi_1^{(1)} &= -\frac{1}{6} \left( \frac{1}{r + \eta} \right)_{xx} \{ (y + r)^3 - (r + \eta)^2 (y + r) \}, \\ \psi_2^{(1)} &= \frac{\sin \lambda (1 - y)}{2\lambda} \left( \frac{\eta}{\sin \lambda (1 - \eta)} \right)_{xx} \{ (1 - \eta) \operatorname{ctg} \lambda (1 - \eta) - (1 - y) \operatorname{ctg} \lambda (1 - y) \} + \\ &+ \frac{1}{6} \eta^2 \left\{ \frac{\sin \lambda (\eta - y) + \sin \lambda (1 - \eta) - \sin \lambda (1 - y)}{\sin^3 \lambda (1 - \eta)} + \frac{\sin^2 \lambda (1 - y)}{\sin^2 \lambda (1 - \eta)} - \frac{\sin \lambda (1 - y)}{\sin \lambda (1 - \eta)} \right\} + \\ &+ \frac{\eta (\eta - y)}{2} \frac{\sin \lambda (1 - \eta)}{\sin \lambda (1 - \eta)}. \end{split}$$

Подставляя указанные асимптотические формулы для функций  $\psi_1$ ,  $\psi_2$  в соотношение (7) и оставляя в нем слагаемые с точностью до величин порядка  $O(\sigma^2)$ , получаем модель второго приближения теории мелкой воды. В результате имеем обыкновенное дифференциальное уравнение для функции  $\eta$ 

$$\sigma \left(\frac{d\eta}{dx}\right)^2 = \frac{\eta^2 (A_0 + A_1\eta + A_2\eta^2 + A_3\eta^3)}{B_0 + B_1\eta + B_2\eta^2 + B_3\eta^3 + B_4\eta^4},\tag{8}$$

где коэффициенты  $A_j$ ,  $B_j$  являются тригонометрическими полиномами относительно переменной  $\eta$ . Указанные коэффициенты выражаются через величины  $s_n = \sin n\lambda(1-\eta)$  и  $c_n = \cos n\lambda(1-\eta)$  с целыми и полуцелыми n по следующим формулам:

$$\begin{split} A_0 &= 18r\lambda s_1^2 \{ [2(F_1^2 - 1) - \sigma F_2^2] s_1^2 + \lambda F_2^2 s_2 \}, \\ A_1 &= 2\lambda F_2^2 \{ s_1^2 [\lambda(9 - 2\sigma r) s_2 - s_1^2 (6r\lambda^2 + 9\sigma)] - 2s_{1/2}^2 [r\sigma\lambda s_1 + 3r\sigma\lambda^2 (1 + 2c_1)] \} - 36\lambda s_1^4, \\ A_2 &= 4\lambda^2 F_2^2 s_{1/2}^2 \{ 3\sigma\lambda (r - 1)(1 + 2c_1) - 4(3\lambda s_1^2 + \sigma s_2) c_{1/2}^2 - \sigma s_1 \}, \\ A_3 &= 12\lambda^3 \sigma F_2^2 s_{1/2}^2 (1 + 2c_1), \\ B_0 &= 12\lambda r^3 F_1^2 s_1^4 + 9r F_2^2 (2\lambda - s_2) s_1^2, \\ B_1 &= 9F_2^2 \{ r\lambda (2\lambda - s_2) s_2 - [2(r - 1)\lambda + s_2] s_1^2 \}, \\ B_2 &= 9\lambda F_2^2 \{ \lambda [r(s_1^2 - 3) + 2] s_2 + 4s_1^4 + 2r\lambda^2 - 2(r\lambda^2 + 3)s_1^2 \}, \\ B_3 &= -9\lambda^2 F_2^2 \{ (c_1^2 + 2) s_2 + 2\lambda (r - 1)c_1^2 \}, \\ B_4 &= -18\lambda^3 F_2^2 c_1^2. \end{split}$$

Уравнение (8) является аналогом модели, предложенной Л. В. Овсянниковым [3] для случая двухслойной жидкости с постоянными плотностями в слоях. Далее это уравнение используется в качестве базовой модели для анализа поведения решений типа уединенных волн в пределе при  $\sigma \to 0$ .

3. Дисперсионные свойства. В нелинейных средах с дисперсией уединенные волны, как правило, распространяются со скоростями, превышающими фазовые скорости линейных волн, поэтому для описания области сверхкритических значений параметров, входящих в уравнения (3)–(5), рассмотрим свойства спектра задачи о малых возмущениях одномерного течения с функциями тока  $\psi_1 = r^{-1}y + w_1(x,y)$  и  $\psi_2 = y + w_2(x,y)$ . Линеаризация уравнений относительно функций  $\eta$ ,  $w_j$  и построение решений в виде волновых пакетов  $\eta(x) = a \exp(ikx)$  и  $w_j(x,y) = W_j(y) \exp(ikx)$  дают дисперсионное соотношение

$$\Delta(k; F, \sigma, \lambda) = 0 \tag{9}$$

с функцией  $\Delta$ , определенной формулой

$$\Delta = F_1^2 \sqrt{\sigma} rk \operatorname{cth} \sqrt{\sigma} rk + F_2^2 \left( \sqrt{\lambda^2 - \sigma k^2 - \sigma^2/4} \operatorname{ctg} \sqrt{\lambda^2 - \sigma k^2 - \sigma^2/4} - \sigma/2 \right) - 1.$$

Поскольку задача отыскания нормальных мод для уравнений (3)–(5) является самосопряженной, квадрат волнового числа  $k^2$ , играющий в ней роль собственного значения, здесь всегда вещественный. Таким образом, корни k уравнения (9) могут быть только вещественными или мнимыми. В силу четности дисперсионной функции по k эти корни образуют симметричные пары на координатных осях комплексной k-плоскости, причем кратным может оказаться только корень k = 0. В вещественную область  $\lambda^2 < \sigma k^2 + \sigma^2/4$ дисперсионная функция продолжается вещественным выражением

$$\Delta = F_1^2 \sqrt{\sigma} \, rk \, \mathrm{cth} \, \sqrt{\sigma} \, rk + F_2^2 \left( \sqrt{\sigma k^2 - \lambda^2 + \sigma^2/4} \, \mathrm{cth} \, \sqrt{\sigma k^2 - \lambda^2 + \sigma^2/4} - \sigma/2 \right) - 1.$$

Спектр линеаризованной задачи образуют точки в плоскости пар чисел Фруда  $F = (F_1, F_2)$ , для которых дисперсионное соотношение (9) имеет по крайней мере одну пару вещественных корней k. Данное множество симметрично относительно координатных осей плоскости F, поскольку функция  $\Delta$  четна по каждому из параметров  $F_j$ . В зависимости от количества пар действительных корней уравнения (9), соответствующих данной точке F, весь спектр разбивается на счетное множество подобластей, содержащих спектры отдельных волновых мод. При возмущении точки F вещественные корни появляются в результате их перехода с мнимой оси на действительную через значение k = 0, поэтому границы модальных областей задаются ветвями кривой, определяемой уравнением

$$\Delta(0; F, \sigma, \lambda(F_2)) = F_1^2 + F_2^2 \left( \sqrt{\sigma/(\mu F_2^2)} - \frac{\sigma^2}{4} \operatorname{ctg} \sqrt{\sigma/(\mu F_2^2)} - \frac{\sigma^2}{4} - \frac{\sigma}{2} \right) - 1 = 0 \quad (10)$$

(здесь учтено выражение (6) для  $\lambda = \lambda(F_2)$ ). Внешняя граница спектра задается ветвями, при  $|F_1| \to \infty$  имеющими горизонтальные асимптоты  $F_2 = \pm F_2^{(*)}$ , где

$$F_2^{(*)} = \sqrt{\sigma/\mu} / \sqrt{\pi^2 + \sigma^2/4}.$$
 (11)

Вся часть спектра, для точек которой существует более одной пары вещественных волновых чисел, находится внутри полосы  $|F_2| < F_2^{(*)}$  толщины порядка  $\sqrt{\sigma}$ . В пределе при  $\sigma \to 0$  эта часть, содержащая спектры старших волновых мод, исчезает. При  $\sigma = 0$  остается спектр линейных волн в жидкости с постоянными плотностями  $\rho_1$  и  $\rho_2$  в слоях. Этот спектр порождается волновыми числами единственной моды и совпадает с кругом  $F_1^2 + F_2^2 \leq 1$ . Легко заметить, что граница спектра возмущенной задачи, задаваемая уравнением (10), трансформируется в единичную окружность неравномерно относительно ( $F_1, F_2$ ). Указанная неравномерность возникает из-за наличия малого параметра  $\sigma$  при ведущей степени  $F_2$  в дисперсионном соотношении (9) (с учетом выражения (6) для  $\lambda$ ) и соответственно в уравнении (10).

Отметим, что наличие малого параметра  $\sigma$  в левой части дифференциального уравнения (8) не препятствует равномерной пригодности по x асимптотического приближения в плоскости течения. Причина этого — в особой структуре правой части (8), коэффициенты которой оказываются хорошо согласованными со спектральными свойствами исходной задачи. Действительно, используя разложения коэффициентов  $A_j$ ,  $B_j$  по степеням  $\eta$ , уравнение (8) можно представить в виде

$$\sigma \eta_x^2 = \eta^2 [\gamma_0 + \gamma_1 \eta + O(\eta^2)].$$
(12)

Здесь коэффициент  $\gamma_0(F,\sigma,\lambda)$  имеет вид  $\gamma_0=\alpha_0/\beta_0,$  где

$$\alpha_0 = 12 \Big\{ F_1^2 + F_2^2 \Big( \lambda \operatorname{ctg} \lambda - \frac{\sigma}{2} \Big) - 1 \Big\}, \qquad \beta_0 = 4r^2 F_1^2 + 3F_2^2 \frac{2\lambda - \sin 2\lambda}{\lambda \sin^2 \lambda}$$

а в выражении для коэффициента  $\gamma_1=(\alpha_1\beta_0-\alpha_0\beta_1)/\beta_0^2$ используются величины

$$\begin{aligned} \alpha_1 &= -48(F_1^2 - 1)\lambda\operatorname{ctg}\lambda - F_2^2(36\lambda^2\operatorname{ctg}^2\lambda - 12r^{-1}\lambda\operatorname{ctg}\lambda - 8\lambda^2) - 12r^{-1} - \\ &- \sigma F_2^2 \Big[ 6r^{-1} + \Big(\frac{8\lambda\sin^2(\lambda/2)}{\sin^3\lambda} - \frac{64}{3}\Big)\lambda\operatorname{ctg}\lambda + \frac{4\lambda\sin^2(\lambda/2)}{3\sin^3\lambda}\Big(1 + \frac{3\lambda}{\sin\lambda}\Big) \Big], \\ \beta_1 &= -16r^2 F_1^2\lambda\operatorname{ctg}\lambda - 6F_2^2\Big(2 - \frac{2\lambda - \sin 2\lambda}{2r\lambda\sin^2\lambda}\Big). \end{aligned}$$

Следует отметить, что именно зависимость коэффициента  $\gamma_0$  от параметров  $F_j$  содержит информацию о дисперсионных свойствах исходной задачи. Действительно, поскольку при  $F_1^2 + F_2^2 \neq 0$  величина  $\beta_0$  строго положительна, а для  $\alpha_0$  справедливо соотношение  $\alpha_0 = 12\Delta + O(\sigma^2)$ , картина линий нулевого уровня  $\gamma_0(F, \sigma, \lambda(F_2)) = 0$  с точностью до величин порядка  $O(\sigma^2)$  воспроизводит и форму, и многомодовую структуру спектра, получаемого на основе исходных уравнений Эйлера. При этом уединенные волны главной моды, ответвляющиеся от безволнового режима в граничных точках спектра, с необходимостью являются сверхкритическими в смысле выполнения неравенства  $\gamma_0 > 0$ . Отметим, что для точек F, расположенных вне спектра и удовлетворяющих неравенству  $\gamma_0(F, \sigma, \lambda(F_2)) > 0$ , параметр  $\lambda$  принимает значения в интервале  $0 < \lambda < \pi$ . В сверхкритической области, внешней по отношению к спектру, все корни дисперсионного соотношения (9) являются мимыми. Пусть  $k = \pm i \varkappa (\varkappa > 0)$  — пара корней, ближайших к точке k = 0. Безразмерный параметр  $\varepsilon = \sqrt{\sigma \varkappa}$  дает показатель экспоненциального затухания уединенных волн в исходных размерных:  $\eta(x) = O(\exp(-\varepsilon |x|/h_2))$  при  $|x| \to \infty$ . Из разложения дисперсионной функции

$$\Delta(0; F, \sigma, \lambda) - \Delta(i\varkappa; F, \sigma, \lambda) = \left(\frac{1}{3}r^2F_1^2 + F_2^2\frac{2\lambda - \sin 2\lambda}{4\sin^2\lambda}\right)\varepsilon^2 + O(\sigma^2)$$

следует, что на линиях уровня дисперсионной функции  $\Delta(0; F, \sigma, \lambda(F_2)) = C$  при степенной зависимости константы  $C = M\sigma^m$  (M > 0, m > 0) от малого параметра  $\sigma$  величина  $\varepsilon$ при  $\sigma \to 0$  имеет порядок  $\sigma^{m/2}$ . Поэтому при построении длинноволновой асимптотики необходимо учитывать, что вблизи границы спектра на линиях уровня  $\Delta = M\sigma^m$  с заданным показателем m исходная размерная переменная x должна подвергаться растяжению  $x/h_2 = \sigma^{-m/2} x_{m/2} (x_{m/2}$  — соответствующая медленная безразмерная переменная). В этом смысле в исходных уравнениях (3)–(5) и основном приближенном уравнении (8) используется безразмерная переменная  $x = x_{1/2}$ .

4. Бифуркации уединенных волн. Масштаб длины волны порядка  $\sigma^{-1/2}$ , учитываемый при выводе уравнения (8), является естественным для точек F на линиях уровня  $\gamma_0(F, \sigma, \lambda(F_2)) = M\sigma$ . Для таких точек растяжение искомой функции  $\eta = \sigma \eta_0$  в (12) в приближении низшего порядка дает уравнение

$$\left(\frac{d\eta_0}{dx_{1/2}}\right)^2 = \eta_0^2 (M + \gamma_1 \eta_0).$$
(13)

Следовательно, в случае общего положения ( $\gamma_1 \neq 0$ ) ответвляющиеся уединенные волны имеют форму обычных солитонов Кортевега — де Фриза с амплитудой порядка  $O(\sigma)$ , т. е. второго порядка малости по параметру  $\varepsilon$  — модулю волнового числа. При этом в области значений параметров, удовлетворяющих неравенству  $\gamma_1 < 0$ , получаются волны возвышения, а в случае  $\gamma_1 > 0$  — волны типа впадин. В действительности при  $\gamma_1 \neq 0$  порядок малости константы, задающей линии уровня коэффициента  $\gamma_0$ , не играет важной роли. При согласованном с показателем m > 0 масштабе длины волны предельное уравнение сохраняет вид (13), а амплитуда волны оказывается квадратичной по волновому числу независимо от выбора семейства линий уровня. В точках, где коэффициент  $\gamma_1$  обращается в нуль, вклад в модельное уравнение могут давать слагаемые с более высокими степенями  $\eta$  из правой части (12). Кроме того, вид уравнения для главного члена асимптотики может меняться в зависимости от степенного порядка константы, задающей линии уровня коэффициента  $\gamma_0$ . Найдем приближенные выражения для координат точек бифуркации указанного особого типа, которые являются точками пересечения кривых  $\gamma_0(F, \sigma, \lambda(F_2)) = 0$  и  $\gamma_1(F, \sigma, \lambda(F_2)) = 0$  в плоскости  $(F_1, F_2)$ . Заметим, что в силу первого уравнения данной системы второе уравнение равносильно соотношению  $\alpha_1(F, \sigma, \lambda(F_2)) = 0$ . В свою очередь, вместо этого соотношения можно использовать приближенное уравнение  $\alpha_1(F, 0, \lambda(F_2)) = 0$ . Переходя в нем к переменной  $\lambda$  в качестве независимого параметра и исключая число Фруда  $F_1$ , получаем уравнение, которое с точностью до величин порядка  $O(\sigma^2)$  имеет вид

$$\frac{\sigma}{\mu} \left( \frac{3\operatorname{ctg}\lambda}{r\lambda} + 3\operatorname{ctg}^2\lambda + 2 \right) - \frac{3}{r} = 0.$$

В промежутке  $\lambda \in (0, \pi)$  данное уравнение имеет два корня, которые асимптотически близки к концам указанного интервала:  $\lambda_1 = \sqrt{(1+r)\sigma/\mu} + O(\sigma)$  и  $\lambda_2 = \pi - \sqrt{r\sigma/\mu} + O(\sigma)$ . В пределе при  $\sigma \to 0$  корню  $\lambda_1$  соответствует точка  $P_1$  с координатами

$$F_1 = r/\sqrt{(1+r)r}, \qquad F_2 = 1/\sqrt{1+r}.$$
 (14)

Указанная точка  $P_1$  (рис. 2,*a*) находится в первом квадранте плоскости F и является точкой бифуркации для внутренних волн типа плавного бора и уединенных волн типа плато в двухслойной жидкости [7, 8]. В окрестности этой точки рассмотрим линии уровня  $\gamma_0(F, \sigma, \lambda(F_2)) = M\sigma^2$ . Растяжение переменных  $x_1 = \sqrt{\sigma}x_{1/2}$ ,  $\eta = \sigma\eta_0$  в уравнении (8) приводит к следующему уравнению для главного члена асимптотики:

$$\left(\frac{d\eta_0}{dx_1}\right)^2 = \eta_0^2 (M + \theta_1 \eta_0 + \theta_2 \eta_0^2).$$
(15)

Здесь  $\theta_1 = \gamma'_{1\sigma}(F, 0, \lambda(F_2)), \ \theta_2 = \gamma_2(F, 0, \lambda(F_2)); \ \gamma_2$  — коэффициент при  $\eta^2$  в разложении (12). При  $\theta_2 > 0$  уравнение (15) дает решения типа уединенных волн, если полином четвертой степени по  $\eta_0$  в его правой части наряду с двукратным корнем  $\eta_0 = 0$  имеет два простых вещественных ненулевых корня  $\eta_0 = a_1, \ \eta_0 = a_2$ . В случае, когда эти корни совпадают и дают еще один двукратный корень  $a = a_1 = a_2$  ( $|a| = \sqrt{M/\theta_2}$ ), волна на границе раздела имеет вид плавного бора с профилем  $\eta_0(x_1) = (a/2)[1 + \text{th}(\sqrt{M} x_1)]$ . Если же простые корни  $a_1$  и  $a_2$  мало отличаются друг от друга, уединенные волны имеют вид широкого плато. В пределе при  $a_1 \to a_2$  фронты такой волны принимают форму плавного бора, который приближенно описывает половину симметричной уединенный выше случай общего положения, сохраняет основные асимптотические свойства слабонелинейных волн, характерные для стандартной двухслойной модели [10].

Теперь рассмотрим корень  $\lambda_2$ , который порождает точку  $P_2$  с координатами

$$F_1 = 1 + \frac{1}{2\pi}\sqrt{\frac{\sigma}{r\mu}} + O(\sigma), \qquad F_2 = \frac{1}{\pi}\sqrt{\frac{\sigma}{\mu}} + \frac{\sqrt{r\sigma}}{\pi^2\mu} + O(\sigma^{3/2}).$$

Данная точка находится на границе спектра в непосредственной близости от горизонтальной асимптоты l указанной границы (рис. 2,  $\delta$ ). Особые свойства этой точки бифуркации обусловлены наличием слабой непрерывной стратификации в верхнем слое жидкости, в спектре модели с постоянными плотностями в слоях эта точка не имеет аналога. В окрестности ветви кривой  $\Gamma_1: \gamma_1(F, 0, \lambda(F_2)) = 0$ , проходящей через точку  $P_2$ , решения



Рис. 2. Спектр главной моды при  $\sigma = 0,000\,08, \mu = 0,003, r = 1,2$  (a) и увеличенный фрагмент этого спектра ( $\delta$ )

уравнения (8) обнаруживают необычное поведение. Покажем это, используя приближенную параметризацию кривой  $\Gamma_1$ 

$$F_1 = 1 + [9r + \mu(3 - 2\pi^2 r^3)\tau^2 + 2\pi^2 \mu^2 r^2 \tau^4] \frac{\sqrt{\sigma}}{24\pi\mu r\tau}, \qquad F_2 = \frac{\sqrt{\sigma/\mu}}{\pi - \tau\sqrt{\sigma}}$$

с параметром  $\tau = \sqrt{r/\mu} + t\sqrt{\sigma}$ . Данная параметризация выбрана таким образом, чтобы при t = 0 выражения для чисел Фруда давали два первых члена в разложении координат точки  $P_2$  по дробным степеням параметра  $\sigma$ . Выполняя для таких точек F растяжение переменных  $x = \sigma^{1/4} x_{1/4}$ ,  $\eta = \sigma^{1/2} \eta_0$  в уравнении (8), получаем предельное уравнение

$$\left(\frac{d\eta_0}{dx_{1/4}}\right)^2 = \eta_0^3 \frac{R^2 + 3R(\pi\eta_0 + R)^3 - 3(\pi\eta_0 + R)^4}{r^3(\pi\eta_0 + R)^4 + 3r^2/(2\pi^2\mu^2)},\tag{16}$$

где  $R = \sqrt{r/\mu}$ . В отличие от рассмотренных выше уравнений (13), (15) правая часть (16) имеет трехкратный корень  $\eta_0 = 0$ , поэтому решения уравнения (16) имеют не экспоненциальную, а степенную асимптотику затухания при  $|x_{1/4}| \to \infty$ . Наиболее наглядно это получается для упрощенного модельного уравнения  $(d\eta_0/dx_{1/4})^2 = \alpha \eta_0^3 (1-\eta_0/\beta)$ , в котором константы  $\alpha$ ,  $\beta$  фиксируются линейной интерполяцией рациональной функции в правой части (16) на промежутке  $(0, \eta_*)$ , где  $\eta_*$  — ненулевой корень числителя. Соответствующее решение типа уединенной волны имеет вид  $\eta_0(x) = 4\beta/(4 + \alpha\beta x^2)$ .

5. Профили волн. Рассмотрим полученные выше асимптотики малых решений в контексте приближенных моделей волн конечной амплитуды, также связанных с уравнением (8). Вдали от спектра параметр  $\varepsilon(\sigma)$ , характеризующий затухание волны на бесконечности, вообще говоря, не является малым, поэтому в уравнении (8) можно перейти к безразмерной переменной  $x = x_0$ , соответствующей одинаковым линейным масштабам по вертикали и горизонтали. Учитывая, что для фиксированных чисел Фруда  $F_1$  и  $F_2 \neq 0$  согласно формуле (6) параметр  $\lambda$  имеет порядок малости  $\sqrt{\sigma}$ , разложим коэффициенты  $A_j$ ,  $B_j$  по степеням  $\lambda$  и удержим в числителе и знаменателе правой части (8) слагаемые наименьшей степени. В результате предельного перехода при  $\lambda \to 0$  получаем уравнение с дробно-рациональной правой частью четвертой степени по  $\eta$ 

$$\left(\frac{d\eta}{dx_0}\right)^2 = \frac{3\eta^2 [\eta^2 + (F_2^2 - rF_1^2 - 1 + r)\eta + r(F_1^2 + F_2^2 - 1)]}{r^3 F_1^2 (1 - \eta) + F_2^2 (r + \eta)},\tag{17}$$

которое является уравнением второго приближения теории мелкой воды для двухслойной жидкости с постоянными плотностями в слоях [3], записанным в безразмерной форме. Для точек первого квадранта плоскости  $(F_1, F_2)$  уравнение (17) имеет решения типа уединенных воли в части сверхкритической области  $F_1^2 + F_2^2 > 1$ , ограниченной прямой b:  $\sqrt{r}F_1 + F_2 = \sqrt{1+r}$  (см. рис. 2,*a*). Прямая *b* является геометрическим местом точек, для которых уравнение (17) имеет решения типа плавного бора. Бор ответвляется от основного течения в точке касания P<sub>1</sub> прямой b с границей спектра (единичной окружностью). В областях типа клюва вблизи точки бифуркации с координатами (14) параметры уединенных волн характеризуются специальной автомодельной зависимостью от чисел Фруда [8]. В модели со слабой непрерывной стратификацией данное свойство проявляется в виде расслоения узкой области действия слабонелинейной асимптотики линиями уровня дисперсионной функции со степенным порядком m=2 по параметру  $\sigma$ . При этом и для уравнения (8), и для уравнения (17) уравнение для главного члена асимптотики решения вблизи точки  $P_1$  имеет структуру (15). Приближение двухслойной жидкости (17) сохраняет свою точность по отношению к модели (8) в области, включающей точки А и В (см. рис. 2, a). Профили уединенных волн, вычисленных для уравнений (17) и (8), практически совпадают (рис. 3,a).

В части сверхкритической области, находящейся вблизи асимптоты границы спектра (см. рис. 2,  $\delta$ ), параметр  $\lambda$  не является малым, однако согласно формуле (11) малым оказывается число Фруда  $F_2$ , имеющее порядок  $O(\sqrt{\sigma})$ . Учитывая это и устремляя  $\sigma$  к нулю в правой части уравнения (8), получаем

$$r^{3}F_{1}^{2}\eta_{x}^{2} = 3\eta^{2}(r(F_{1}^{2}-1)-\eta).$$
(18)

Уравнение (18) по форме совпадает с известным уравнением Буссинеска — Рэлея для уединенных поверхностных волн в слое однородной жидкости с безразмерной глубиной r и числом Фруда  $F_1 > 1$ . Это означает, что главная мода внутренних волн для уравнения (8) здесь ведет себя как мода поверхностных волн для нижней однородной жидкости с числом Фруда  $F_1 = u_1/\sqrt{g_1h_1}$  ( $g_1 = (\rho_1 - \rho_2)g/\rho_1$  — приведенное ускорение свободного падения). Данный предельный режим согласуется и с уравнением (17), которое при  $F_2 \rightarrow 0$  также дает уравнение (18). На рис.  $3, \delta$  показано, что профили уединенной волны, вычисленные по моделям (8), (17) и (18) для точки B (см. рис. 2), в которой все еще пригодным оказывается приближение двухслойной жидкости, хорошо согласуются. На рис. 3, a показано, что при увеличении числа Фруда  $F_2$  область применимости уравнения Буссинеска — Рэлея



Рис. 3. Профили уединенных волн для различных точек в плоскости чисел Фруда ( $\sigma = 0,000\,08, \, \mu = 0,003, \, r = 1,2$ ): a — точка A ( $F_1 = 1,223, \, F_2 = 0,15$ );  $\delta$  — точка B ( $F_1 = 1,25, \, F_2 = 0,06$ );  $\epsilon$  точка C ( $F_1 = 1,020\,84, \, F_2 = 0,055\,03$ ); сплошные линии — решение уравнения (8), пунктирные — решение уравнения (18), штриховая — решение уравнения (17), штрихпунктирная — решение уравнения (16)

оказывается довольно узкой. Интересным является тот факт, что данная модель быстро теряет свою точность и при уменьшении числа Фруда  $F_1$  в результате приближения к особой точке  $P_2$  на границе спектра. На рис. 3, в показано, что профили уединенных волн для базовой модели (8) и уравнения (16) достаточно близки, тогда как амплитуда волны для уравнения (18) отличается здесь на два порядка. Как известно, для поверхностных уединенных волн уравнение Буссинеска — Рэлея наилучшим образом работает в окрестности точки бифуркации  $F_1 = 1$ . В рассматриваемом случае этому препятствует смена ведущего порядка нелинейности в уравнении (8) на кривой  $\Gamma_1$  вблизи точки  $P_2$ . Окрестность данной особой точки требует отдельного исследования, поскольку неясно, каким образом отсутствие экспоненциальной асимптотики затухания уединенных волн для приближенного уравнения (16) влияет на асимптотику решений более общих моделей.

Заключение. В рамках второго приближения теории мелкой воды для двухслойной жидкости исследовано влияние слабой непрерывной стратификации в одном из слоев на параметры стационарных волн на границе раздела. Показано, что ответвление уединенных волн главной моды от основного кусочно-постоянного течения может происходить по трем сценариям. В первом случае бифуркации аналогичны режиму ответвления классических уединенных волн Кортевега — де Фриза, во втором — режиму уединенных волн

типа плато и плавного бора в жидкости с постоянными плотностями в слоях. Третий тип ветвления, имеющий место для чисел Фруда  $F_1 \approx 1$  и  $F_2 = O(\sqrt{\sigma})$ , реализуется только при наличии непрерывной стратификации. Для этого типа характерной является смена экспоненциального затухания решения при  $|x| \to \infty$  степенным затуханием в главном по  $\sigma$  порядке вблизи точки бифуркации. При этом переход в параметрическую область волн конечной амплитуды последовательно описывается серией асимптотических моделей, включающей модель Буссинеска — Рэлея при малых  $F_2$  и модель Л. В. Овсянникова при умеренных значениях  $F_2$ .

## ЛИТЕРАТУРА

- 1. Тернер Дж. Эффекты плавучести в жидкостях. М.: Мир, 1977.
- 2. Yih C. S. Stratified flows. N. Y.: Acad. Press, 1980.
- Овсянников Л. В. Нелинейные проблемы теории поверхностных и внутренних волн / Л. В. Овсянников, Н. И. Макаренко, В. И. Налимов и др. Новосибирск: Наука. Сиб. отдние, 1985.
- 4. Miyata M. An internal solitary wave of large amplitude // La Mer. 1985. V. 23, N 2. P. 43–48.
- Voronovich A. G. Strong solitary internal waves in a 2.5-layer model // J. Fluid Mech. 2003. V. 474. P. 85–94.
- Long R. R. On the Boussinesq approximation and its role in the theory of internal waves // Tellus. 1965. V. 17, N 1. P. 46–52.
- Makarenko N. I. Smooth bore in a two-layer fluid // Intern. Ser. Numer. Math. 1992. V. 106. P. 195–204.
- 8. Мальцева Ж. Л. Об одном типе уединенных внутренних волн в двухслойной жидкости // ПМТФ. 1999. Т. 40, N 5. С. 55–61.
- Benney D. J., Ko D. R. S. The propagation of long large amplitude internal waves // Stud. Appl. Math. 1978. V. 59. P. 187–199.
- Kakutani T., Yamasaki N. Solitary waves on a two-layer fluid // J. Phys. Soc. Japan. 1978. V. 45. P. 674–679.

Поступила в редакцию 16/VII 2007 г., в окончательном варианте — 23/XI 2007 г.