ТЕЧЕНИЕ РАЗРЕЖЕННОГО ГАЗА
В ПЛОСКОМ КАНАЛЕ КОНЕЧНОЙ ДЛИНЫ
В ШИРОКОМ ДИАПАЗОНЕ ЧИСЕЛ КНУДСЕНА

В. Д. Акиньшин, А. И. Макаров, В. Д. Селезнев,
Ф. М. Шарипов

(Свердловск)

Течение разреженного газа в бесконечном канале изучено достаточно подробно (см., например, [1—3]). Но в реальном случае длина канала ограничена и влияние конечных эффектов может быть существенным. В [4—13] рассматривается канал конечной длины.

В данной работе задача о течении газа в плоском канале конечной длины решена на основе линеаризованного БГК-уравнения интегрально-моментным методом. В отличие от [11, 12] не делаются предположения о поле течения, что позволяет учесть изменение профиля скорости и нелинейную зависимость плотности от продольной координаты на конечных участках канала. Интегральные уравнения решаются численным методом Кравсова — Боголюбова. В случае, когда длина канала много больше длины свободного пробега молекулы, найдена простая связь, раствор газа в конечном канале с раствором в бесконечном канале при том же числе Кнудсена.

1. Рассмотрим стационарное течение газа между двумя параллельными бесконечно широкими пластинами, расположенными в плоскостях

$$y = \pm a$$

имеющими длину l вдоль потока. В сосудах, которые соединяют этот канал, содержится один и тот же газ при одинаковой температуре T и разных плотностях n_1 и n_2, как показано на рис. 1. Под действием перепада плотности газ движется в направлении x.

Введем следующие масштабы: $a, n_1, n_2, \beta = (2RT)^{1/2}, n_1^2, \eta = n_1 n_2^{1/2}/\beta$ соответствуют для длины, плотности n, скоростей v и η, функции распределения f и коэффициента вязкости η. Здесь R — газовая постоянная; m — масса молекулы; $v = (2RT/l^2)^{1/2}$ — тепловая скорость молекул; λ_1 — длина свободного пробега.
мOLEKULY V PERYOM SOSUDE. V DANYNEM SHEME VSE VYRAZHENIA BUDUT ZAPISANы v ETIX MASHTABAХ.

SELEMAEM PRIDOLENIЯ: PEREPLAD PLOTNOSTI MNOGO MЕНШЕ SPREZDENNIY PLOTNOSTI |Δn| = |n_a - 1| ≪ 1, OTRЯЖENIE MOLEKUL OT STENKI DИФФУЗие, MOLEKULY, VХODЯЩИЕ В KANAL C TORCII, IMYET MAXSELEQOJOE ФУNKCIИ RASPREDENIIЯ:

при x = 0 \(c_x \gg 0, f = f_1 = \lambda^{-3/2} \exp \left(-\lambda^2 \right) \),
при x = L \(c_x \ll 0, f = f_2 = n_a f_1 \left(L = l/a \right) \).

Это oзнaчaет, что изменение фyнкциии rasпредения на предыдущем участке так же, как в [10—12], не учитывается, что ограничивает область применимости результатов данной работы конечными, но достаточно длинными каналаи. Ниже проведена оценка влияния предыдущих областей на расход газа. Следует отметить, что приведенная здесь постановка задачи корректно описывает процесс переиспарения газа с одного торца направления на другой, что также представляет практический интерес. В [10] показано, что отклонение температуры газа в канале от равновесного значения и влияние этого отклонения на параметры течения не превышает 0,5%, поэтому во всем поле течения температуру можно считать постоянной.

БГK-уравнение, которое примем за исходное для функции распределения, имеет вид

(1.1) \[c\partial f/\partial x = \delta f - f, \]
где \(\delta = \sqrt{\pi a'/2 \lambda} \) — обратное число Кнудсена;

(1.2) \[f^0 (r, c) = n (r) \lambda^{3/2} \exp \left(- (c - u (r)) \right) ; \]

(1.3) \[u (r) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f (r, c) dc; \]

(1.4) \[f (r, c) = f_1 \left(1 + h (r, c) \Delta n \right). \]

Тогда из определений (1.2) и (1.3)

(1.5) \[n (r) = 1 + q_1 (r) \Delta n, \quad q_1 (r) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f (r, c) dc, \]

(1.6) \[u_x (r) = q_2 (r) \Delta n, \quad q_2 (r) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f (r, c) c_x dc, \]

(1.7) \[u_y (r) = q_3 (r) \Delta n, \quad q_3 (r) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f (r, c) c_y dc. \]

Подставив (1.4) в (1.1), легко получить линеаризованное БГK-уравнение, интегрирование которого вдоль характеристики дает выражение для функции возмущения

(1.6) \[h (r, c) = \delta \int_{0}^{s} \left[q_1 (r) + 2c_p q_2 (r) + 2c_p q_3 (r) \right] \exp \left(-\frac{c_p}{c_p} \right) - \frac{c_p}{c_p} + h \exp \left(-\frac{\delta s}{c_p} \right), \]
где \(s = |r - r'|; \quad c_p — pROEKCIJA KROSKOSTI c ON PLOSHCHADЬ XOY; \quad s_0 — rASSTONIЯ OT TOCHKИ NABLYDENIЯ DO GRANITSY POLA TECHEIЯ V NAPRAVLENIЯ
(1.7) \[h_0 \Big|_{y=\pm 1} = q_4(x) = -\frac{1}{\delta^2} \int_{-\varepsilon}^{\varepsilon} \frac{1}{\varepsilon^2} \frac{d^2}{dc^2} \frac{d^2}{dc^2} \int_{-\varepsilon}^{\varepsilon} I_1(c) \, dc. \]

Приведенное число молекул \(n_0 \), накапливаемых в единицу времени на единицу площади стенки, связано с \(q_4 \) соотношением \(n_0(x) = 1 + q_4(x) \frac{\Delta n}{\Delta x} \). Подставив (1.6) в (1.2), (1.3) и (1.7), имеем систему интегральных уравнений

(1.8) \[q_4(x, y) = \int_{0}^{L} \int_{0}^{1} \sum_{j=1}^{3} K_{ij}(x, y, x', y') q_4(x', y') \, dy' \, dx' + \int_{0}^{L} K_{14}(x, y, x') q_4(x') \, dx' + \Phi_1(x, y), \quad 1 \leq i \leq 3, \]

\[q_4(x) = \int_{0}^{L} \int_{0}^{1} \sum_{j=1}^{3} K_{ij}(x, x', y', y') q_4(x', y') \, dy' \, dx' + \int_{0}^{L} K_{44}(x, x') q_4(x') \, dx' + \Phi_4(x). \]

Здесь \[K_{11} = \frac{8}{\pi} \frac{1}{\varepsilon} I_0(\delta) \delta; \qquad K_{13} = \frac{8}{\pi} \frac{2}{\varepsilon^2} I_1(\delta)(x - x'); \qquad K_{19} = \frac{8}{\pi} \frac{1}{\varepsilon} I_1(\delta)(y - y'); \]

\[K_{14} = \frac{4}{\pi} \left[\frac{1}{s_2} I_1(\delta s_2)(1 + y) + \frac{1}{s_1} I_1(\delta s_1)(1 - y) \right]; \quad K_{21} = \frac{8}{\pi} \frac{1}{\varepsilon^2} I_1(\delta s_1)(x - x'); \]

\[K_{22} = \frac{8}{\pi} \frac{2}{\varepsilon^2} I_2(\delta s_2)(x - x')^2; \quad K_{23} = \frac{8}{\pi} \frac{2}{\varepsilon^2} I_2(\delta s_2)(x - x')(y - y'); \]

\[K_{24} = \frac{4}{\pi} \left[\frac{1}{s_1} I_2(\delta s_1)(1 + y)(x - x') + \frac{1}{s_2} I_2(\delta s_2)(1 - y)(x - x') \right]; \]

\[K_{34} = \frac{8}{\pi} \frac{1}{\varepsilon^2} I_1(\delta s_1)(y - y'); \quad K_{35} = \frac{8}{\pi} \frac{2}{\varepsilon^2} I_1(\delta s_1)(x - x')(y - y'); \]

\[K_{33} = \frac{8}{\pi} \frac{2}{s_2} I_2(\delta s_2)(y - y')^2; \quad K_{34} = \frac{4}{\pi} \left[\frac{1}{s_1} I_2(\delta s_1)(1 + y)^2 - \frac{1}{s_2} I_2(\delta s_2)(1 - y)^2 \right]; \]

\[K_{41} = \frac{8}{\pi} \frac{2}{s_2} I_1(\delta s_2)(1 + y); \quad K_{42} = \frac{8}{\pi} \frac{4}{s_2^2} I_2(\delta s_2)(1 + y)(x - x'); \]

\[K_{43} = \frac{8}{\pi} \frac{4}{s_2^2} I_2(\delta s_2)(1 + y)^2; \quad K_{44} = \frac{8}{\pi} \frac{4}{s_2^2} I_2(\delta s_2); \]

\[\Phi_1 = \frac{(-1)^i}{i!} \int_{-\varepsilon}^{\varepsilon} K_{21}(x, y, y') \, dy' \quad (1 \leq i \leq 3); \]

\[\Phi_4 = \frac{1}{\varepsilon^2} \int_{-\varepsilon}^{\varepsilon} I_2(\delta s_2)(1 + y')(L - x) \, dy', \]

\[s_1 = [(x - x')^2 + (y - y')^2]^{1/2}; \quad s_2 = [(x - x')^2 + (1 + y')^2]^{1/2}; \]

\[s_3 = [(x - x')^2 + (1 - y')^2]^{1/2}; \quad s_4 = [(4 + (x - x')^2 + (1 + y')^2]^{1/2}; \]

\[s_5 = [(L - x)^2 + (1 + y')^2]^{1/2}; \quad s_6 = [(L - x)^2 + (1 - y')^2]^{1/2}; \]

\[I_n(t) = \int_{0}^{\infty} e^{\alpha} \exp \left(-\frac{t^2}{\alpha^2} \right) \, e^t \, dt. \]
2. Для решения полученной системы интегральных уравнений выбран метод Крылова — Боголюбова [14]. Отрезок [0, L] разбивается на \(k \) интервалов \([x_{i-1}, x_i] \) (\(i = 1, 2, \ldots, k \)) при \(x_0 = 0, x_k = L \), а отрезок \([-1, 1] \) — на \(n \) интервалов \([y_{m-1}, y_m] \) (\(m = 1, 2, \ldots, n \)) при \(y_0 = -1, y_n = 1 \). Тогда, согласно методу, система интегральных уравнений (1.8) преобразуется в систему алгебраических уравнений

\[
q_i^{lm} = K_{ij}^{lmp}q_j^{ps} + K_{ij}^{lps}q_j^{sp} + \Phi_i^{lm} \quad (1 \leq i \leq 3),
q_i^l = K_{ij}^{lps}q_j^p + K_{ij}^{lps}q_j^p + \Phi_i^l.
\]

Здесь в правой части уравнений по повторяющимся верхним и нижним индексам идет суммирование и привыкают следующие обозначения:

\[
q_i^{lm} \approx q_i(\tilde{x}_i, \tilde{y}_m), \quad q_i^l \approx q_i(\tilde{x}_i), \quad K_{ij}^{lmp} = \int_{x_{i-1}}^{x_i} \int_{y_{m-1}}^{y_m} K_{ij}(\tilde{x}_i, \tilde{y}_m, x', y') \, dx' \, dy',
K_{ij}^{lps} = \int_{x_{i-1}}^{x_i} \int_{y_{m-1}}^{y_m} K_{ij}(\tilde{x}_i, x', y, x') \, dx' \, dy',
K_{ij}^{lp} = \int_{x_{i-1}}^{x_i} K_{ij}(\tilde{x}_i, x') \, dx', \quad \Phi_i^{lm} = \Phi_i(\tilde{z}_i, \tilde{y}_m), \quad \Phi_i^l = \Phi_i(\tilde{z}_i),
\]

откуда \(x_{i-1} < \tilde{x}_i < x_i, \ y_{m-1} < \tilde{y}_m < y_m \).

В силу симметрии и линейности задачи функции \(g_i \) обладают свойством

\[
q_i(x, y) = q_i(x, -y) = 1 - q_i(L - x, y),
q_3(x, y) = q_3(x, -y) = q_3(L - x, y),
q_4(x) = 1 - q_4(L - x),
\]

использование которого позволяет сократить порядок системы алгебраических уравнений (2.1) в 4 раза.

Система (2.1) решалась итерационным методом Гаусса — Зейделя.

Исследование на сходимость показывает, что необходимое и достаточное условие для этого [15] в рассматриваемом диапазоне \(\delta \) выполнено.

Расчеты проводились на ЭВМ.

3. В случае, когда длина канала много больше длины свободного пробега молекулы \((\delta L \gg 1)\), поле течения вблизи торцов становится подобным при фиксированном \(\delta \) и различных \(L \). Это подобие позволяет избавиться от расчета на ЭВМ вариантов при больших значениях \(\delta L \). Для доказательства подобия рассмотрим течение газа в полубесконечном канале с тормозом в сечении \(x = 0 \), обусловленное наличием постоянного магнитного поля. Поле течения будет соответствовать течению в бесконечном канале с тем же градиентом \(\nu \).

Границные условия при \(x = 0 \) примем такие же, как и на левом торце конечного канала. При этом задача линеаризуется по параметру \(\nu \), т. е. функцию распределения \(f_\infty \) можно представить в виде \(f_\infty = f_0(1 + \nu x) \). Моменты функции распределения запишем как

\[
n_{\infty}(r) = 1 + p_0(r)\nu, \quad u_{\infty}(r) = p_4(r)\nu, \quad n_{\infty}(x) = 1 + p_4(x)\nu, \quad u_{\infty}(r) = p_4(r)\nu.
\]

Здесь функции \(p_i(r) \) определяются точно так же, как функции \(q_i(r) \). Соответствующие моменты функции распределения в левой половине конечного канала, взятые при этом же значении \(\delta \), с увеличением длины канала будут стремиться к (3.1) при условии

\[
\nu(\delta, L) = \frac{\partial n_{\infty}}{\partial x} \bigg|_{x=L/2} = \frac{\partial q_i}{\partial x} \bigg|_{x=L/2} = \Delta n.
\]
Другими словами, всегда найдется такая длина канала, для левой половины которого в пределах заданной точности при условии (3.2)

\[q_i(r, \delta, L) = \frac{n}{\int_0^L (x, \delta, L)} q_i(r, \delta, L), \quad 1 \leq i \leq 4. \]

Пусть нам известно поле течения \(q_i(r, \delta, L) \) при длине канала \(L^* \), которое в центральной части в пределах точности вычислений отвечает течению в бесконечном канале с градиентом \(\nu(\delta, L^*) \). Тогда, используя равенство (3.3), поле течения в канале любой длины \(L > L^* \) в области \(0 \leq x \leq L^*/2 \) можно выразить через \(q_i(r, \delta, L^*) \) следующим образом:

\[q_1(r, \delta, L) = \frac{\nu(\delta, L)}{\nu(\delta, L^*)} q_1(r, \delta, L^*), \quad 1 \leq i \leq 4. \]

В области \(L^*/2 \leq x \leq L/2 \) поле течения соответствует бесконечному каналу, поэтому функции \(q_i \) примут вид

\[q_1(r, \delta, L) = q_1(x, \delta, L) = \frac{\nu(\delta, L)}{\nu(\delta, L^*)} \left(x - \frac{r}{2} \right) + \frac{1}{2}, \]
\[q_2(r, \delta, L) = q_2 \left(x = \frac{L^*}{2}, y, \delta, L \right), \quad q_3(r, \delta, L) = 0. \]

Заметим, что в силу (3.2) отношение \(\frac{\nu(\delta, L)}{\nu(\delta, L^*)} \) не зависит от \(\Delta n \). При \(L^*/2 \leq x \leq L \) поле течения вычисляется по формулам (2.2).

Для того чтобы найти связь между \(\nu(\delta, L) \) и \(\nu(\delta, L^*) \), воспользуемся тем, что для сечения \(x = L^*/2 \) справедливы равенства как (3.4), так и (3.5). Приравнивая их правые части для \(q_2 \) и учитывая, что \(q_1(x = L^*/2, y, \delta, L^*) = 1/2, \) нетрудно получить

\[\frac{\Delta n}{\nu(\delta, L)} - L = \frac{\Delta n}{\nu(\delta, L^*)}. \]

Величиной, представляющей большой практический интерес, является расход газа через поперечное сечение канала, который можно определить по формуле

\[Q = \frac{L}{2\Delta n} \int_{-1}^{1} u_2(x, y) dy = \frac{L}{2} \int_{-1}^{1} q_2(x, y) dy. \]

Подставим в (3.7) выражение (3.4) для \(q_2 \) и, воспользовавшись равенством (3.6), имеем

\[Q = \frac{L}{L + \Delta L} Q_\omega; \]

(3.8)

\[Q_\omega = \frac{\Delta n}{2\nu(\delta, L^*)} \int_{-1}^{1} q_2(x, y, \delta, L^*) dy; \]

(3.9)

\[\Delta L = \frac{\Delta n}{\nu(\delta, L^*)} - L^*. \]

Поскольку при длине \(L^* \) поле течения в центральной части канала отвечает течению в бесконечном канале с градиентом \(\nu(\delta, L^*) \), \(Q_\omega \) по определению [3] соответствует приведенному расходу в бесконечном канале. Значения \(Q_\omega \) и \(\Delta L \) не зависят от длины канала и могут быть определены на основе расчета поля течения при \(L^* \) по формулам (3.2), (3.9), (3.10).

Таким образом, на основе расчета поля течения при \(L^* \) по формулам (3.4) — (3.6) и (3.8) можно найти поле течения и расход газа в канале любой длины \(L > L^* \). Расчеты показывают, что для погрешности не хуже 2% необходимым условием применимости этих формул является неравенство \(\delta L > 40 \).

4. На рис. 2 сплошные линии — зависимость расхода газа \(Q \) от обратного числа Кнудсена. Расчеты проведены с точностью не хуже 2%. Точность вычислений определялась путем сравнения значений расхода при различном количестве узлов по обеим переменным \(x \) и \(y \). В каждом
случае отличие расхода газа в разных сечениях канала находилось в пределах точности вычислений. В свободномолекулярном режиме ($\delta = 0$) результаты расчета совпали с данными [4], так как при этом четвертое уравнение (1.8) переходит в уравнение Клаузинга.

В [11] предполагалось, что плотность постоянна в каждом сечении канала и меняется линейно от n_1 до n_2. В данной работе плотность вычислялась. На рис. 3 приведена зависимость функции q_1, связанной с плотностью первым соотношением (1.5), от продольной координаты. Кривые I, 2 отвечают $L = 4$ и 10, $\delta = 10$ и 4, сплошные линии — плотность газа вблизи стенки канала, штриховыми — в центре канала, штрихпунктирная линия — предположение о поле течения в [11] для всех длин канала и чисел Кнудсена.

На рис. 3 видно, что на начальном участке канала плотность газа неизменна по сечению канала и меняется линейно вдоль канала. На торце канала ($x = 0$) плотность газа не равна плотности n_1. Это объясняется тем, что при $x = 0$ была задана максвелловская функция распределения f_1 в правом полу пространстве скоростей. Функция распределения в левом полупространстве скоростей находится из решения кинетического уравнения и в общем случае отлична от f_1. При вычислении соответствующего момента от функции распределения на торце канала во всем пространстве скоростей получается плотность, отличная от n_1.

В центральной части канала градиент плотности постоянный, но существенно меньше, чем по предположению о поле плотности в [11]. Так, при $\delta = 4$, $L = 10$ (кривые 2) их отношение примерно равно 2. Расходы в этом случае отличаются также в 2 раза. Таким образом, предположения о поле плотности, сделанные в [11], приводят к большой погрешности во всем диапазоне чисел Кнудсена.

При $\delta L \gg 40$ расход газа вычислялся по формуле (3.8). В таблице приведены значения ΔL и Q_∞ для некоторых чисел δ. Во второй графе дано значение минимальной длины, для которой формула (3.8) справедлива в пределах точности вычислений. Для сравнения с пятью графиками приведены значения расхода газа в бесконечном канале Q_∞, полученные в [3], при пересчете числа δ в нашем масштабе длины. Для $\delta = 10$ сравнение проведено с [13], так как в [3] расчеты проведены до $\delta = 5$. Видно, что отличие от результатов [3] находится в пределах точности вычислений.

Заметим, что при больших числах δ значение ΔL справедливо и может превышать L^*. Это означает, что расход газа, вычисляемый по формуле (3.8), может быть в несколько раз меньше, чем расход в бесконечном канале. По данным таблицы можно оценить длину канала, при которой погрешность за счет концевых эффектов меньше заданной. Такие оценки необходимы при постановке эксперимента.
5. Максимальное влияние предыдущих областей на расход газа следует ожидать в вязком режиме. Для оценки этого влияния полное сопротивление канала L/G_n представим в виде суммы (как предложено в [6])

$$(5.1) \quad L/G_n = L/G + 1/G_0,$$

где G_n — приведенный расход газа в канале с учетом предыдущих областей; L/G — сопротивление внутренней части канала; $1/G_0$ — сопротивление предыдущих областей. Отсюда несложно получить выражение для относительной разности G_n и G:

$$(5.2) \quad \gamma = \frac{(G - G_n)G_n}{G_n} \cdot 100\% = G/G_0 L \cdot 100\%.$$

Значение $1/G_0$ сравнимо с сопротивлением бесконечно тонкой щели, расход через которую в режиме сплощенной среды найден в [16] и равен $G_0 = \delta \times 16$. Подставляя в (5.2) значения G (данная работа) и G_0 [16], при $\delta = 10$ для различных L получим при $L = 10$; 20; 60 $\gamma = 8$; 6; 3% соответственно. С уменьшением числа δ влияние предыдущих областей будет понижаться.

Литература

Поступила 24/III 1986 г.