2009. Том 50, № 6

Ноябрь – декабрь

C. 1121 – 1131

УДК 539.192+543.422.27+547.546

ВНУТРЕННЕЕ ЗАТОРМОЖЕННОЕ ВРАЩЕНИЕ ГРУППЫ СF₃ В АНИОН-РАДИКАЛЕ 2-ТРИФТОРМЕТИЛНИТРОБЕНЗОЛА В СМЕСЯХ ДМФА:H₂O

© 2009 Л.А. Шундрин¹*, П.В. Мельников², Е.А. Поленов²

¹Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН ²Московская государственная академия тонкой химической технологии им. М.В. Ломоносова

Статья поступила 15 мая 2009 г.

Измерены и численно реконструированы температурные зависимости спектра ЭПР анион-радикала 2-трифторметилнитробензола в смесях ДМФА:H₂O, вызванные динамической модуляцией фторного изотропного сверхтонкого взаимодействия заторможенным внутренним вращением CF₃-группы. Энергия активации вращения (E_F) и динамический режим зависят от содержания воды в смеси. Для смесей с мольной долей воды $\chi = 0$, 0,186, 0,315, 0,409, 0,534, 0,650, 0,810, 0,910 величины $E_F = 34,70$, 41,31, 42,30, 38,41, 37,01, 34,51 24,10, 21,78 кДж/моль. В ДМФА и в смеси с $\chi = 0,186$ в доступных для измерений температурных интервалах режим динамического обмена медленный, при $\chi = 0,315$, 0,409, 0,534, 0,650 наблюдаются переходы от медленного режима к промежуточному и быстрому, а при $\chi = 0,810$, 0,910 в изученных температурных интервалах $T \in [252; 309]$; [254; 297] (K) режим обмена быстрый. В диапазоне 0,6 < χ < 0,9 наблюдается резкое уменьшение E_F и максимальное значение энергии активации вращательной диффузии (E_T) анион-радикала, что соответствует интервалу составов смеси ДМФА:H₂O с максимальными отклонениями от идеальности.

Ключевые слова: анион-радиклы, заторможенное вращение, внутреннее вращение, ЭПР спектроскопия, нитробензол.

Спектр ЭПР анион-радикала (АР) 2-трифторметилнитробензола (I) в ДМСО, ДМФА и ацетонитриле (MeCN) был впервые описан в работах [1, 2]. Вращение группы CF₃ существенно заторможено уже при комнатной температуре, но его динамический режим не был подробно изучен. Спектры ЭПР, измеренные в отдельных температурных точках при 253 К и 233 К, интерпретированы не были [2], и энергию активации заторможенного вращения не определяли.

В работах [3, 4] нами было показано, что в интервалах 205 < T < 298 К (ДМФА) и 217 < T < 296 К (MeCN) температурно-зависимая динамическая модуляция β-фторного изотропного СТВ (ИСТВ) у АР I вызвана медленным заторможенным вращением СF₃-группы, быстрый режим вращения не достигается на исследованных интервалах, а вблизи нижней температурной границы наблюдается спектр ЭПР равновесной конформации АР I. Энергии активации вращения в ДМФА и MeCN равны 34,7 и 36,5 кДж моль⁻¹ соответственно. Аналогичный эффект и близкую величину энергии активации заторможенного вращения *орто*-расположенной (по отношению к группе NO₂) группы CF₃ (34,2 кДж моль⁻¹) наблюдали у AP 2-нитро-1,4-бис(трифторметил)бензола в MeCN [5].

По данным [1, 2] малые добавки воды в ДМФА (~2 % H_2O) практически не сказываются на динамическом режиме вращения группы CF_3 у AP I, но при увеличении содержания H_2O влияние состава среды становится значительным, что было впервые отмечено в работах [6, 7]

^{*} E-mail: shundrin@nioch.nsc.ru

(T = 298 K). Однако температурных измерений спектров ЭПР и определения активационных параметров заторможенного вращения при разных составах не проводилось, и такое исследование — цель данной работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

АР I был получен электрохимическим восстановлением в смесях ДМФА:H₂O переменного состава с мольной долей H₂O $\chi = 0,186\ 0,315,\ 0,409,\ 0,534,\ 0,650,\ 0,810,\ 0,910$ в температурных диапазонах, нижний предел которых определялся соответствующей температурой замерзания раствора, а верхний — достаточной для получения высокоразрешенного спектра ЭПР устойчивостью АР. Спектры ЭПР измеряли на радиоспектрометре "Bruker ESP-300" (Х-диапазон, рабочая частота $\nu = 9,762667 \cdot 10^9$ Гц), снабженном двойным резонатором с температурной приставкой "Bruker B-ST 100/700". Точность температурной стабилизации составляла ±0,5 К. Точную калибровку температуры выполняли в диапазоне 195 < *T* < 320 К по эталонному термометру, помещаемому в резонатор.

Измерения осуществляли на оптимальных параметрах с амплитудной модуляцией на частоте 100 Гц. Восстановление проводили в стандартной электрохимической ячейке для измерений ЭПР с платиновым катодом в анаэробных условиях при потенциале первого обратимого одноэлектронного пика восстановления ($E_p = -1,06$ В отн. н.к.э. в ДМФА*). Отделение рабочего электрода ячейки помещали в переднее плечо резонатора ЭПР-спектрометра. В качестве фонового электролита использовали перхлорат тетра-*н*-этиламмония (0,1 М). Концентрация деполяризатора — 2-трифторметилнитробензола составляла 1,5 ммоль/дм³ для составов 0 < χ < 0,5 и оптимизировалась в пределах 1,5—2,5 ммоль/дм³ для смесей с более высоким содержанием воды до получения спектра ЭПР с максимальным разрешением.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ СПЕКТРОВ ЭПР

Численный расчет динамических спектров ЭПР осуществляли по программе, описанной в [5] и предназначенной для феноменологического анализа формы линии спектров при динамическом обмене.

В областях медленного и промежуточного обмена СТС реконструирована по наиболее общей схеме сверхтонких расщеплений**: $2F_1 \times 2F_2 \times 2F_3 \times 2H_4 \times 2H_6 \times 2H_3 \times 2H_5 \times 3N$ (модель SE). В области быстрого обмена схема сверхтонких расщеплений следующая: $4F \times 2H_4 \times 2H_6 \times 2H_3 \times 2H_5 \times 3N$ (модель FE). Положение *k*-й линии относительно центра спектра (H₀) задается выражением

$$H_{0k} = H_0 + \sum_n a_n m_{nk},$$
(1)

где $\{a_n\} = \{a_N; a_{F1}; a_{F2}; a_{F3}; a_{H4}; a_{H6}; a_{H3}; a_{H5}\}, \{m_{nk}\} = \{m_{N;} m_{F1}; m_{F2}; m_{F3}; m_{H4}; m_{H6}; m_{H3}; m_{H5}\}_k$. Модель контура спектра имеет вид:

$$Y'(\mathbf{H}) = -Amp \sum_{k} \{ \Gamma_{k} (\mathbf{H} - \mathbf{H}_{0k}) / [\Gamma_{k}^{2} + (\mathbf{H} - \mathbf{H}_{0k})^{2}]^{2} \}.$$
 (2)

Полуширина *k*-й лоренцевой компоненты СТС, Г_k, представлена как сумма трех вкладов:

$$\Gamma(m_{\rm N}; m_{\rm F1}; m_{\rm F2}; m_{\rm F3}) = W_0 + W_{\rm N}(m_{\rm N}) + W_{\rm F}(m_{\rm F1}; m_{\rm F2}; m_{\rm F3}), \tag{3}$$

где $W_N(m_N)$ — вклад, связанный с модуляцией анизотропного СТВ с ядром ¹⁴N вращательной диффузией АР I; $W_F(m_{F1}; m_{F2}; m_{F3})$ — релаксационный вклад, обусловленный модуляцией изотропного СТВ с ядрами ¹⁹F СF₃-группы; W_0 — вклад, учитывающий все другие каналы спино-

^{*} Циклическая вольтамперограмма 2-трифторметилнитробензола измерена на потенциостате НЕКА PG 310 (Германия) на Pt стационарном электроде. Фоновый электролит — Et₄NClO₄ (0,1 M), скорость развертки потенциала v = 100 мB/с. Отметим, что первый пик восстановления сохраняет обратимость в смесях ДМФА:H₂O в диапазоне развертки потенциалов 0 < E < -1,5 В отн. н.к.э. Полное исследование механизма электрохимического восстановления — предмет отдельного сообщения, и в данной работе не рассматривался.

^{**} Положения заместителей в бензольном кольце пронумерованы сообразно общепринятой нумерации для нитробензола.

вой релаксации, не связанные с рассматриваемыми уширениями. Программа предусматривает оптимизацию всех констант СТВ, уширений, входящих в формулу (3), и ординатного множителя *Атр*, вводимого для соответствия шкал модельного и экспериментального спектров. Критерием оптимизации является минимум суммы квадратов разностей ординат между числовыми массивами модельного и экспериментального спектров: $D = \sum_i [\Delta Y_i]^2 / \sum_i Y_i^2$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1. Заторможенное вращение группы CF₃. Во всем диапазоне составов смесей ДМФА:H₂O AP I обладает достаточной устойчивостью для получения спектров ЭПР высокого разрешения (см. также [7]). Анализ температурных зависимостей спектров ЭПР для всех измеренных χ унифицирован. На рис. 1 приведены примеры экспериментальных спектров AP I и их численных реконструкций в смесях с $\chi = 0,534, 0,910$, измеренных в интервалах 242 < T < 314 и 254 < T < 297 K.

У нижней границы интервала (T = 242 K) для $\chi = 0,534$ наблюдается спектр ЭПР, близкий к статической конформации AP I, два из трех атомов фтора спектрально эквивалентны (табл. 1), что означает их симметричное расположение относительно узловой плоскости нитробензольного фрагмента (ср. с данными работ [3, 4]), а третий фиксирован в плоскости. Схема фторного мультиплета показана на рис. 2. При повышении температуры статическая конформация AP I сменяется медленным движением (SE), приводящим к уширению и динамическому сдвигу линий *B*, *C* (*E*, *D*) до их коалисценции при температуре T_{ex} .

В области быстрого обмена (модель FE) действительная часть спектральной плотности, ответственная за уширения, определяется выражением [8]:

$$j_{12} = (2/9)\gamma_{\rm e}^2 (\Delta a_{\rm F})^2 \tau_{\rm F}$$
(4)

где $\tau_{\rm F}$ — время корреляции ([$\tau_{\rm F}$] = c/рад); $\gamma_{\rm e}$ = 1,76 · 10⁷ рад · c⁻¹ · Г c⁻¹ — гиромагнитное соотношение электрона; $\Delta a_{\rm F}$ — разность фторных констант в равновесной конформации AP при данном составе смеси. При переориентациях группы CF₃ мгновенные константы $a_{\rm Fi}$ изменяются в противофазе, и в этом случае соотношение спектральных плотностей равно $j_{12} = j_{13} = j_{23} = -(1/2) \cdot j_{11}$ [2], а уширения компонент B+C (D+E) ($M_{\rm F} = \pm 1/2$) связаны со спектральной плотностью формулой [2]:

$$W_{\rm F}(\pm 1/2) = \gamma_{\rm e}^{-1}(T_2^{-1}) = \gamma_{\rm e}^{-1}(\sum_{ij} j_{ij}m_im_j) = \gamma_{\rm e}^{-1} \cdot j_{11},$$
(5)

где i, j = 1 - 3 — индексы ядер ¹⁹F. Величины $W_F(\pm 3/2) = 0$ и, следовательно, крайние линии A и F (см. рис. 2) не уширяются. При трехпозиционном обмене константа скорости связана со временем корреляции соотношением

$$k_{\rm F} = (6\pi\tau_{\rm F})^{-1},$$
 (6)

где $[k_{\rm F}] = {\rm c}^{-1}$. Величины $k_{\rm F}$ для $\chi = 0,534$ приведены в табл. 1.

Для количественного анализа температурных зависимостей $a_{F(i)}(T)$ в наблюдаемых динамических режимах и определения T_{ex} удобно применить подход на основе теории Блоха. Взаимосвязь сдвигов констант СТВ и константы скорости при динамическом обмене определяется выражением:

$$((\Delta a_{\rm F})^2 - (\Delta a_{\rm Fex})^2)^{0.5} = 3k_{\rm F} \cdot \gamma_{\rm e}^{-1},\tag{7}$$

где $\Delta a_{\text{Fex}} = a'_{\text{F}(12)} - a'_{\text{F}(3)}$ — расстояние между сигналами *B* и *C* при динамическом обмене, $a'_{\text{F}(12)} = (a'_{\text{F}(1)} - a'_{\text{F}(2)})/2$ — среднее значение расчетных констант с некомпланарными ядрами ¹⁹F, $\gamma_e = 2,801 \cdot 10^6 \text{ c}^{-1} \cdot \Gamma \text{ c}^{-1}$. Из общего уравнения динамической взаимосвязи фторных констант при трехпозиционном обмене

$$\langle a_{\rm F} \rangle = (1/3)(2a_{\rm F(12)} + a_{\rm F(3)})$$
 (8)

следует:

Рис. 1. Температурные трансформации спектра ЭПР АР I в смесях ДМФА:H₂O: $a - \chi = 0,534$ в интервале 241,6 < *T* < 313,8 K, $\delta - \chi = 0,91$ в интервале 254 < *T* < 297 K. (Слева — эксперимент, справа — реконструкция)

$$\begin{aligned} a'_{F(12)} &= (3\langle a_F \rangle - a'_{F(3)})/2, \\ a'_{F(3)} &= (3\langle a_F \rangle - 2a'_{F(12)}). \end{aligned}$$
(9)

Объединяя (7) и (9) с учетом аррениусовской зависимости константы скорости, $k_{\rm F} = k_{\rm F}^0 \times$

Таблица 1

Константы сверхтонкого взаимодействия (Гс), вклады в ширину линии (Гс) по данным численных расчетов ЭПР-спектров, константы скорости заторможенного вращения группы CF₃ и время корреляции вращательной диффузии AP I в бинарной смеси ДМФА:H₂O (χ = 0,534) при разных температурах

<i>T</i> , K	$a_{ m N}$	$a_{\mathrm{F(1)}}$	$a_{\rm F(2)}$	$a_{F(3)}$	<i>a</i> _{H(6)}	<i>a</i> _{H(4)}	<i>a</i> _{H(3)}	<i>a</i> _{H(5)}	W _F	$W_{\rm N}(1)$	W _N (-1)	<i>k</i> _F , МГц	т _r ×10 ¹² , с/рад
241,6	10,221	10,845	10,846	0,929	3,257	3,910	1,019	1,204	0,6581	0,0143	0,4075	0,353	557,690
246,6	10,216	10,793	10,796	0,983	3,252	3,907	1,020	1,200	0,7198	0,0193	0,2712	0,512	357,282
251,2	10,219	10,766	10,771	1,002	3,248	3,903	1,024	1,201	0,7661	0,0173	0,2174	0,667	283,818
256,2	10,224	10,684	10,725	1,092	3,243	3,897	1,023	1,201	0,8231	0,0165	0,1591	0,909	202,172
260,9	10,236	10,608	10,670	1,189	3,239	3,898	1,023	1,200	0,8778	0,0166	0,1214	1,214	148,754
265,7	10,245	10,398	10,706	1,328	3,236	3,894	1,023	1,202	0,9326	0,0142	0,0932	1,632	112,140
270,5	10,247	10,423	10,889	1,097	3,230	3,890	1,021	1,203	1,0456	0,0095	0,0777	2,814	96,742
275,4	10,252	10,533	10,866	0,976	3,224	3,886	1,023	1,205	1,1368	0,0090	0,0636	3,383	77,456
280,5	10,260	10,505	10,866	0,976	3,219	3,885	1,022	1,208	1,2005	0,0057	0,0534	5,001	67,634
289,0	10,270		7,431		3,208	3,877	1,021	1,212	2,9215	0,0059	0,0387	6,987	46,387
294,7	10,274		7,424		3,204	3,876	1,021	1,212	2,3063	0,0052	0,0332	8,851	39,721
294,7	10,278		7,416	_	3,203	3,872	1,022	1,212	2,4451	0,0021	0,0314	8,348	41,470
299,5	10,284		7,409	_	3,200	3,871	1,021	1,213	1,9752	0,0026	0,0274	10,335	35,223
304,3	10,291		7,399		3,191	3,867	1,022	1,215	1,4964	0,0023	0,0210	13,641	26,557
309,2	10,298		7,390		3,187	3,865	1,022	1,217	1,1159	0,0017	0,0196	18,293	25,302
313,8	10,305		7,381		3,180	3,861	1,022	1,219	0,8540	0,0009	0,0159	23,902	21,311
318,8	10,310		7,372		3,173	3,857	1,022	1,220	0,7413	0,0019	0,0132	27,536	16,056
323,4	10,317		7,364	—	3,169	3,853	1,021	1,223	0,6131	-0,0003	0,0119	33,291	17,337

Примечание. В интервале 241,6 < T < 280,5 К расчет осуществляли по модели SE, а в интервале 289 < T < 323,4 К — по модели FE. Константа фторного ИСТВ в интервале 289 < T < 323,4 К представляет собой динамически усредненную величину (формула 8).

 $\times \exp(-(E_F/R)T^{-1})$, получаем выражения для температурных зависимостей фторных констант при динамическом обмене:

$$a'_{Fi}(T^{-1}) = (S_i)[-(3k_F^0\gamma_e^{-1})^2 \cdot \exp(-2(E_{Fi})T^{-1}) + (\Delta a_F)^2]^{0.5} + \langle a_F \rangle + Q_iT^{-1} + P_i,$$
(10)

где i = 12, 3; E_{Fi} — энергии активации ($[E_{Fi}] = K$); S_i — параметры, определяющие динамические сдвиги констант. Уравнения (10) содержат два дополнительных слагаемых, Q_i и P_i , введенных для описания температурных сольватационных вкладов. На изученных температурных интервалах при всех χ эти вклады линейны для всех констант ИСТВ, включая константы, не зависящие от частоты обмена (см. табл. 1). Пример температурных зависимостей (10) для $\chi = 0,534$ показан на рис. 3. В области промежуточного обмена функции $a'_{Fi}(T^{-1})$ сходятся к точке $T_{ex} = 286$ К. Оптимизированные значения параметров уравнений (10) для всех изученных составов суммированы в табл. 2. Сдвиги S_{12} и S_3 во всех случаях близки к теоретическим (1/3

Рис. 3. Аппроксимация температурной зависимости констант ИСТВ $a_{F(12)}(\circ)$ и $a_{F(3)}(\times)$ функциями (10) для смеси с $\chi = 0,534$ (левая ось), а также аррениусовская зависимость времени корреляции заторможенного вращения группы CF₃, рассчитанная по моделям SE (•) и FE (∇) (правая ось)

и -2/3 соответственно). Точность определения температуры смены режима при независимой оптимизации параметров уравнений (10) для $a'_{F(12)}(T^{-1})$ и $a'_{F(3)}(T^{-1})$ составляет ± 1 К и соизмерима с ошибкой при измерении температуры в условиях эксперимента.

Корректный расчет τ_F и, соответственно, k_F в области медленного обмена (модель SE) может быть выполнен с учетом взаимосвязи уширений и динамических сдвигов

уширяющихся компонент (см. рис. 2). В этом случае ($\omega^2 \tau^2 >> 1$) действительная и мнимая части общей спектральной плотности $J(\omega) = j(\omega) + ik(\omega)$ определяются соответственно выражениями [8]:

$$j(\omega) = G(0)(\omega^2 \tau_F)^{-1},$$
 (11)

$$k(\omega) = G(0)\omega^{-1},\tag{12}$$

где не зависящая от частоты часть спектральной плотности для трехпозиционной задачи с тригонально-симметричным барьером $G(0) = (2/9)\gamma_e^2(\Delta a_F)^2$. Выражая ω из (12) и подставляя в (11) с учетом (5), получаем уравнение для расчета времени корреляции в области медленного обмена:

$$\tau_{\rm F} = 9k^2/2\gamma_{\rm e}(\Delta a_{\rm F})^2 \cdot W_{\rm F}(\pm 1/2), \tag{13}$$

где динамические сдвиги линий *B*, *E* и *C*, *D* зависят от температуры ([*k*] = Гс), определяются соответственно формулами: $k_{B,E} = \pm (2/3)(a'_{F(12)} - a'_{F(13)}), k_{C,D} = \pm (1/3)(a'_{F(12)} - a'_{F(3)})$ (см. рис. 2 и [4, 5]) и легко вычисляются по уравнениям (10). Времена корреляции, рассчитанные в приближении SE и FE, хорошо описываются единой аррениусовской зависимостью* (см. рис. 3, пример для $\chi = 0,534$), за исключением относительно небольшого участка в области промежу-

Таблица 2

χ	$\Delta a_{\rm F}, \Gamma { m c}$	<i>S</i> ₁₂	$Q_{12}, \Gamma c \cdot K$	<i>P</i> ₁₂ , Гс	<i>E</i> _{F(12)} , K	S_3	<i>Q</i> ₃ , Гс•К	<i>P</i> ₃ , Гс	<i>E</i> _{F(3)} , K	$(3 \cdot k_{\rm F}^0 \gamma_{\rm e})^2$	T _{ex} , K	
0*	12,556	0,327	46,506	-0,143	5148,6	-0,637	-214,301	0,660	5163,6	$1,70 \cdot 10^{16}$	320	
0,186	11,425	0,308	193,605	-0,645	4771,3	-0,654	-141,551	0,471	4778,2	$1,50 \cdot 10^{16}$	300	
0,315	10,884	0,318	272,544	-0,835	4794,3	-0,644	-28,376	0,111	4766,5	$1,44 \cdot 10^{16}$	297	
0,409	10,526	0,327	201,652	-0,231	4503,9	-0,644	-74,935	0,682	4523,8	$2,39 \cdot 10^{15}$	295	
0,534	9,916	0,326	223,338	-0,766	4276,2	-0,627	-319,916	1,030	4288,5	$9,38 \cdot 10^{14}$	286	
0,650	9,212	0,365	128,322	-0,460	3960,2	-0,613	-243,791	0,808	3998,8	$4,49 \cdot 10^{14}$	273	

Разность констант фторного ИСТВ в равновесной конформации, параметры уравнений температурных зависимостей констант фторного ИСТВ и температуры смены режима (T_{ex}) заторможенного вращения группы CF₃ AP I в смесях ДМФА:H₂O с различным содержанием воды

* Аппроксимация экспериментальных данных, приведенных в [3].

^{*} Расчет времени корреляции непосредственно из уширений [3] без учета сдвигов приводит к "разрыву" на соответствующих аррениусовских зависимостях в точке смены режима.

Таблица 3

χ	Интервал <i>T</i> , K	k _F ⁰ , Гц (SE)	<i>Е</i> _F , кДж/моль (SE)	k _F ⁰ , Гц (FE)	<i>Е</i> _F , кДж/моль (FE)	(g ': A _N '), Гс	τ_r^0 , с/рад	<i>Е</i> _r , кДж/моль
0*	207—293	2,68 · 10 ¹²	34,70		_	-0,03159	$1,16 \cdot 10^{-13}$	12,89
0,186	205—299	$7,29 \cdot 10^{13}$	41,31			-0,03718	$2,38 \cdot 10^{-14}$	17,54
0,315	212—303	$1,59 \cdot 10^{14}$	42,32	$1,12 \cdot 10^{14}$	42,28	-0,03943	$7,26 \cdot 10^{-15}$	20,23
0,409	232—313	$1,07 \cdot 10^{14}$	40,58	$2,07 \cdot 10^{13}$	36,23	-0,04122	$5,62 \cdot 10^{-15}$	22,06
0,534	242—323	$3,89 \cdot 10^{13}$	37,30	$2,85 \cdot 10^{13}$	36,71	-0,04310	$6,54 \cdot 10^{-16}$	26,99
0,650	242—314	$2,54 \cdot 10^{13}$	34,55	$1,97 \cdot 10^{13}$	34,46	-0,04609	$2,30 \cdot 10^{-17}$	34,94
0,810	252—309			6,38 · 10 ¹¹	24,10	-0,05058	$1,27 \cdot 10^{-16}$	31,72
0,910	254—297	—		5,12·10 ¹¹	21,78	-0,05460	$6,55 \cdot 10^{-17}$	32,18

Параметры активационных уравнений констант скоростей заторможенного вращения группы CF₃ и времени корреляции вращательной диффузии, а также оценочные величины внутренних произведений дипольных частей тензоров g и A_N AP I в смесях ДМФА:H₂O с различным содержанием воды

* Расчеты по данным работы [3].

точного обмена, характеризуемого предельными уширениями и минимальной точностью определения спектральных параметров. По этой причине величины τ_F и k_F в этой области исключены из рассмотрения. При выбранном способе описания динамических режимов температурный диапазон промежуточного обмена для $\chi = 0,534$ составляет ~16 K (см. рис. 3).

Для смесей с $\chi = 0,315, 0,409, 0,534, 0,650$ наблюдаются все три области динамического обмена, а в случае $\chi = 0$ [3], 0,186 — лишь область медленного обмена.

Параметры активационных уравнений констант скоростей для всех изученных составов смесей приведены в табл. 3. Величины энергии активации и частотные факторы $k_{\rm F}^0$, рассчитанные независимо по моделям SE и FE, близки, и расхождения не превышают экспериментальной ошибки.

Для составов с $\chi = 0,810, 0,910$ (см. рис. 1, б) в доступных для измерений температурных интервалах динамический обмен быстрый ($\omega^2 \tau^2 \ll 1$), фторная константа представляет собой динамически усредненную величину и температура смены режима $T_{\rm ex}$ непосредственно не определяется. В этих случаях величины $\Delta a_{\rm F}$, необходимые для расчета $k_{\rm F}$, определим экстраполяционным методом. В изотермических условиях при увеличении χ зависимость $\langle a_{\rm F} \rangle(\chi)$ нелинейна (рис. 4, *a*) и описывается эмпирической двухэкспоненциальной функцией, впервые введенной в работах [7, 9]:

Рис. 4. Зависимость динамически усредненной константы фторного ИСТВ АР I от мольной доли воды в смесях ДМФА:H₂O (298 K) и соответствующие аппроксимации $a_{F(12)}$ (\circ) и $a_{F(3)}$ (\times) по уравнению (14) (a), а также зависимость $ln(\Delta a_F)$ от обратной величины температуры смены режима (δ). Величины Δa_F оценены косвенным методом по функциям (14)

$$a_{\rm F}(\chi) = A_0 + A_1 \cdot \exp(-K_1 \chi) + A_2 \cdot \exp(-K_2 \chi).$$
(14)

Параметры (*A*₀, *A*₁, *A*₂, *K*₁, *K*₂, *r*²) = (7,066 Гс, 2,551 Гс, -0,023 Гс, 2,628, -4,856, 0,99946), где *г* — коэффициент корреляции.

С другой стороны, величины фторных констант в равновесной конформации AP I связаны с $\langle a_F \rangle$ соотношением (8) с точностью до линейной температурной поправки (см. табл. 2). Это позволяет построить независимые эмпирические аппроксимации сольватационных зависимостей констант $a_{F(12)}(\chi)$ и $a_{F(3)}(\chi)$ функциями вида (14) (см. рис. 4, *a*) и рассчитать Δa_F при любых χ . Для смесей с $\chi = 0,810, 0,910$ рассчитанные величины $\Delta a_F = 8,115, 6,739$ Гс, а параметры активационных уравнений для соответствующих величин k_F приведены в табл. 3. Температуру смены режима для рассматриваемых составов можно оценить на основе (10). Для T_{ex} подкоренное выражение в формуле (10) равно нулю, откуда получаем уравнение, связывающее величины Δa_F и T_{ex} :

$$\ln(\Delta a_{\rm F}) = \ln(3k_{\rm F}^0 \cdot \gamma_{\rm e}^{-1}) - E_{\rm Fi}(T_{\rm ex})^{-1}.$$
(15)

Линейная зависимость (15) (см. рис. 4, δ) выполняется с хорошей точностью даже с учетом непрямого определения Δa_F для смесей с высоким содержанием воды. Для смеси с $\chi = 0,810$ температура смены динамического режима находится вблизи нижней границы доступного интервала, а для $\chi = 0,910$ лежит за пределами низкотемпературной границы и в условиях эксперимента не достижима.

2. Вращательная диффузия. Модуляция АСТВ с ядром ¹⁴N вращательной диффузией АР I проявляется в температурных уширениях компонент азотного триплета с $M_N = \pm 1$ (см. рис. 1), которые учитывались при численных расчетах спектров. Во всех случаях наблюдался быстрый режим вращательной диффузии.

Вклад в ширину линии за счет модуляции АСТВ с ядром ¹⁴N описывается уравнением [10]:

$$T_2^{-1}(M_N) = (A + BM_N + CM_N^2) \cdot \tau_r,$$
(16)

где *A*, *B*, *C* — электронно-спиновые параметры AP; τ_r — время корреляции вращательной диффузии ([τ_r] = c/paд) в приближении быстрого изотропного вращения сферической частицы. В нашем случае время корреляции удобно рассчитать по разности уширений компонент с M_N = ± 1 [5, 11]:

$$\Delta W = W_{\rm N}(-1) - W_{\rm N}(1) = \gamma_{\rm e}^{-1} \cdot (T_2^{-1}(-1) - T_2^{-1}(1)) = -2\gamma_{\rm e}^{-1}B\tau_r, \tag{17}$$

где $B = (2/15)\gamma_e \omega \cdot (\mathbf{g}': \mathbf{A}'_N), \omega = 6,13406 \cdot 10^{10} (pag/c)$ — угловая частота СВЧ поля в условиях резонанса; ($\mathbf{g}': \mathbf{A}'_N$) внутреннее произведение дипольных частей **g**-тензора и тензора АСТВ АР **I**.

Прямое определение тензоров **g** и **A**_N для анион-радикалов представляет собой достаточно сложную задачу. Кроме того, величины компонент тензоров СТВ ароматических AP весьма чувствительны к сольватному окружению. В диапазоне $0 < \chi < 0,650$ нитробензольный фрагмент у AP I, как и AP нитробензола, плоский. *g*-Фактор AP I в ДМФА ($g_{iso} = 2,0050$) близок к *g*-фактору AP нитробензола ($g_{iso} = 2,0049$), практически не зависит от χ и температуры в изученных интервалах. Для оценочных расчетов предположим, что величины компонент *g*-тензора AP I и AP нитробензола совпадают.

Главные значения тензора A_N AP I оценим, исходя из соответствующих величин для AP нитробензола и пердейтеронитробензола, тензоры g и A_N которых точно известны [11]. Примем хорошо известную для азотсодержащих свободных радикалов линейную взаимосвязь изотропного и анизотропного СТВ, обусловленную тем, что эффективность обоих типов взаимодействий определяется одной и той же величиной — π -спиновой плотностью на атоме азота [12]:

$$\mathbf{A}_{\zeta\zeta} = K a_{\mathrm{N}}.\tag{18}$$

Для АР нитробензола и пердейтеронитробензола величины *К* близки: (K_{NB} , $K_{5\text{D}-\text{NB}}$) = (2,2341, 2,2286), и их среднее значение равно 2,2314. Для оценочных расчетов достаточно принять средние значения a_{N} для каждого χ на соответствующих температурных интервалах. Внутреннее произведение рассчитывается обычным способом [10]:

Таблица 4

Анион-радикал	Тензор	ξξ	ηη	ζζ	$a_{\rm iso}, \Gamma c$	$g_{ m iso}$	$(\mathbf{g'}:\mathbf{A_N'}), \Gamma \mathbf{c}$
$C_6D_5NO_2$	g _{<i>ii</i>} A _N , Γc	2,0063 3,77	2,00575 4,80	2,0026 25,00	11,19	2,00488	-0,0476
$C_6H_5NO_2$	Α _N , Γc	3,56	4,99	24,7	11,08		-0,0470

Главные значения тензоров g и A_N AP пердейтеронитробензола* и нитробензола по данным работы [11]

* В составе кристалла бензоата триметилфениламмония. В пределах экспериментальной ошибки система координат монокристалла бензоата триметилфениламмония является также системой главных осей тензоров **g** и **A**_N для AP.

Расположение главных осей следующее:

$$(\mathbf{g}': \mathbf{A}'_{\mathbf{N}}) = [\mathbf{g}^{(0)} \mathbf{A}^{(0)} + 2\mathbf{g}^{(2)} \mathbf{A}^{(2)}],$$

$$\mathbf{g}^{(0)} = (3/2)^{1/2} (\mathbf{g}_{\zeta\zeta} - g_{iso}),$$

$$\mathbf{A}^{(0)} = (3/2)^{1/2} (\mathbf{A}_{\zeta\zeta} - a_{\mathbf{N}}),$$

$$\mathbf{g}^{(2)} = (\mathbf{g}_{\xi\xi} - \mathbf{g}_{\eta\eta})/2,$$

$$\mathbf{A}^{(2)} = (\mathbf{A}_{\xi\xi} - \mathbf{A}_{\eta\eta})/2,$$

(19)

где \mathbf{g}_{ii} , \mathbf{A}_{ii} — главные значения тензоров в молекулярных осях ($i = \xi$, η , ζ , табл. 4). Рассчитанные внутренние произведения в приближении аксиально-симметричного тензора* \mathbf{A}_{N} AP I для изученных составов, а также параметры активационных уравнений вращательной диффузии

$$\tau_r(T) = (\tau_r^0) \cdot \exp(E_r \cdot (RT)^{-1}$$
⁽²⁰⁾

приведены в табл. 3. Численные значение времен корреляции τ_r при принятом способе расчета для $\chi = 0,534$ в качестве примера приведены в табл. 1 и в изученном интервале составляют по порядку величины от нескольких сотен при низких *T* до полутора десятков пикосекунд/рад при температурах, близких к комнатной.

3. Зависимость активационных параметров внутреннего заторможенного вращения группы CF₃ и вращательной диффузии от состава смеси ДМФА:H₂O. Система ДМФА:H₂O термодинамически не идеальна, и ее свойства при изменении состава не аддитивны. Так, максимум диэлектрической проницаемости наблюдается при $\chi = 0,73$ [13], максимальная вязкость при $\chi = 0,75$ [14]. В близком диапазоне составов $0,75 < \chi < 0,8$ лежат максимальные значения скорости (1/*T*₁) релаксации протонов групп CH₃ ДМФА [15].

Зависимость средних величин энергии активации внутреннего заторможенного вращения группы CF₃, рассчитанных по моделям SE и FE (см. табл. 3), от χ показана на рис. 5, *a*. В диапазоне 0 < χ < 0,6 E_F максимальна при $\chi \approx 0,3$, но ее возрастание относительно значения в ДМФА невелико. Неожиданный результат состоит в том, что на достаточно узком интервале 0,6 < χ < 0,9 наблюдается резкое падение E_F относительно значения в ДМФА. Интервал падения близок к области составов смеси, в которой наблюдаются максимумы скорости релаксации протонов метильных групп ДМФА [15] (см. рис. 5, *в*) и вязкости [14] (см. рис. 5, *г*).

Экстремумы зависимостей макроскопических свойств системы ДМФА: H_2O связывают с образованием ассоциатов типа $H_2O \times n$ ДМФА [15], время жизни которых по данным ЯМРрелаксационных измерений лежит в пределах нескольких пикосекунд при температуре, близкой к комнатной. Очевидно, что резкое падение E_F вызвано специфической пересольватацией

^{*} $\mathbf{A}_{\xi\xi} = \mathbf{A}_{\eta\eta}$.

Рис. 5. Зависимость энергии активации внутреннего заторможенного вращения группы СF₃ (*a*), энергии активации вращательной диффузии (б) AP I от мольной доли воды в смесях ДМФА:H₂O, а также соответствующие зависимости скорости спиновой релаксации ядер ¹Н групп CH₃ ДМФА [15] (*в*) и вязкости бинарной системы ДМФА:H₂O [14] (*г*)

АР I в достаточно узком интервале χ , в котором происходит реорганизация сольватной оболочки АР. Детальное исследование эффекта выходит за рамки данной работы. Отметим лишь, что он может быть связан с асимметричной сольватацией соседней с CF₃ группы NO₂, многочисленные проявления которой описаны в [7] на примере широкого ряда АР *орто*-замещенных нитробензолов.

Зависимость энергии активации ротационной диффузии, E_r , от χ типична для свободных радикалов в растворе с переменной вязкостью и прямо пропорциональна ее изменению (см. рис. 5, δ). Максимум E_r для измеренных составов приходится на $\chi = 0,65$, что близко к значению χ , соответствующей максимальной вязкости системы (см. рис. 5, ϵ).

ЗАКЛЮЧЕНИЕ

Таким образом, на основании температурных зависимостей ширины линий в спектрах ЭПР измерены энергии активации и описаны динамические режимы заторможенного вращения группы CF₃ анион-радикала 2-трифторметилнитробензола в смесях ДМФА:H₂O различного состава.

Энергия активации $E_{\rm F}$ и динамический режим вращения зависят от содержания воды в смеси. Для смесей с мольной долей воды с $\chi = 0$ и 0,186 режим динамического обмена медленный в доступных для измерения температурных интервалах, при $\chi = 0,315, 0,409, 0,534$ и 0,650 наблюдаются переходы от медленного режима к промежуточному и быстрому, а при 0,810 и 0,910 — быстрый. Средние величины $E_{\rm F}$, рассчитанные по моделям медленного и быстрого динамического обмена, равны 34,70, 41,31, 42,30, 38,41, 37,01, 34,51 24,10, 21,78 кДж/моль соответственно. В диапазоне составов смеси 0,6 < χ < 0,9 наблюдается резкое уменьшение $E_{\rm F}$ и максимальное значение энергии активации вращательной диффузии анион-радикала E_r , что соответствует интервалу составов смеси с максимальными отклонениями от идеальности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Janzen E.G., Gerlock J.L.E. // J. Amer. Chem. Soc. 1967. 89, N 19. P. 4902 4910.
- 2. Rogers J.W., Watson W.H. // J. Phys. Chem. 1968. 72. P. 68 74.
- 3. Поленов Е.А., Шундрин Л.А., Мельников П.В., Боженко К.В. // Изв. РАН. Сер.физ. 2006. **70**, № 8. С. 1112 1115.
- 4. Поленов Е.А., Шундрин Л.А., Мельников П.В. // Изв. РАН. Сер. хим. 2006. № 6. С. 926 931.

заторможенное вращение группы сf3 в анион-радикале 2-трифторметилнитробензола в смесях дмфа:H20 1131

- 5. Поленов Е.А., Шундрин Л.А., Мельников П.В., Платонов Д.В. // Журн. структур. химии. 2007. **48**, № 2. С. 251 258.
- Shundrin L.A., Platonov D.V., Polenov E.A. // Thesis of report. Ampere 2000 30th Congress AMPERE of Magnetic Resonance and Related Phenomena (Lisbon, 23—28 July 2000) Portugal, 2000, Proceedings. Chapter 6. – P. 511.
- 7. Шундрин Л.А., Стариченко В.Ф., Щеголева Л.Н., Штейнгарц В.Д. // Журн. структур. химии. 2003. **44**, № 4. С. 647 660.
- 8. Freed J.H., Fraenkel G.K. // J. Chem. Phys. 1963. 39. P. 326 348.
- 9. Стариченко В.Ф., Шундрин Л.А., Щеголева Л.Н., Штейнгарц В.Д. // Журн. структур. химии. 2000. **41**, № 5. С. 949 963.
- 10. Кузнецов А.Н. Метод спинового зонда. М.: Наука, 1976. С. 46.
- 11. Mason R.P., Harriman J.E.J. // J. Chem. Phys. 1976. 65, N 6. P. 2274 2287.
- 12. Cohen A.H., Hoffman B.M. // J. Amer. Chem. Soc. 1973. 95. P. 2061 2062.
- 13. Douheret G., Morenas M. // C. R. Acad. Sci. Ser. C. 1967. 264. P. 729.
- 14. Mazurkiewich J., Tomasik P. // J. Phys. Org. Chem. 1990. 3. P. 493 502.
- 15. Мишустин А.И., Кесслер Ю.М. // Журн. структур. химии. 1974. 15, № 5. С. 205 209.