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By applying a three-dimensional holographic vector of the atomic interaction field (3D-
HoVAIF) to express the structure of three classical peptide drugs, quantitative structure acti-
vity relationship (QSAR) models are built by the multiple linear regression. The accuracy of 
the proposed model is illustrated using 2

LOOQ  (cross-validation) and r2 (test set validation). 
Moreover, the 2

mr  metrics is used to further refine the predictive ability of the developed QSAR 
models. The results show that 3D-HoVAIF, due to the high predictive ability, offers a useful 
alternative to the costly and time-consuming experiments determining the bioactivity of pep-
tide drugs. 
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The hottest topic of peptide drugs which play an important role [ 1, 2 ] in all living systems have 
been widely debated. Most experimental methods on peptide drugs were inefficient and expensive, 
while the computational methods such as QSAR have been brought into the spotlight. They consider 
the key idea of pharmacology and underlie the drug design. In the QSAR study of peptides, major in-
formation about the structure and function of peptides is contained in their amino acid sequence, and 
hence, it is crucial to characterize the sequence structure. The pioneering work on amino acid descrip-
tors was undertaken by Sneath et al. [ 3 ] who used physicochemical semi-quantative data to derive 
descriptors for the 20 naturally occurring amino acids. Kidera et al. [ 4, 5 ] collected 188 properties of 
the 20 natural amino acids and employed the factor analysis to obtain 10 orthogonal factors that are 
most important for determining the three dimensional structure of proteins. Soon afterwards, Hellberg 
et al. [ 5—9 ] extracted three principal components (PCs), or z-scales, from 29 physicochemical pro-
perties of coded amino acids by the principal component analysis (PCA). In the recent year, a new se-
ries of amino acid indices based on quantum topological molecular similarity (QTMS) descriptors 
[ 10, 11 ] have been proposed for peptide QSAR studies and yielded a good result. Since then, many 
amino acid quantitative descriptors have been successfully proposed and used in practice [ 12, 13 ]. 
They were then applied to the peptide QSAR analysis and showed good structural characterization 
ability. 

Based on the previous work, a novel 3D molecular structural characterization method, the three-
dimensional holographic vector of the atomic interaction field (3D-HoVAIF) [ 14, 15 ], which in-
cluded the merits of traditional 2D and 3D descriptors for it does not require conformation alignment, 
was derived from multi-dimensional vectors to represent molecular steric structural characteristics. In 
this study, 3D-HoVAIF was used to express the structure of amino acid molecules and for further re-
search of peptide QSAR. 
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MATERIALS AND METHODS 

Peptide data sets. For the present work we have used three different datasets for the QSAR mo-
deling of peptides: (i) bitter tasting thresholds (BTT) of 48 dipeptides were selected by Collantes 
[ 16 ], their activities are expressed as a negative logarithm of bitter-tasting threshold concentrations 
(pT); (ii) oxytocin (OT) of 21 tripeptides [ 3, 17 ] varying at positions 2, 3, and 8; they are often uti-
lized to the test effectiveness of diverse kinds of amino acid descriptors for the oxytocin activity de-
noted by OA [ 3 ]; and (iii) a dipeptide sequence of 58 angiotensin-converting enzyme (ACE) inhibi-
tors [ 6—9, 16, 18 ]. Each peptide biological activity was expressed in the form of pIC50. The datasets 
are shown in Table 1. 

Three-dimensional holographic vector of the atomic interaction field. 3D-HoVAIF was de-
veloped considering three common atomic non-covalent bond interactions of biological activities, i.e., 
electrostatic, steric, and hydrophobic interactions related to the atomic relative distance and atomic 
self-properties. These descriptors neither resort to any experimental parameters nor consider the con-
figurational overlap of samples. Ordinary atoms of organic molecules, including H, C, N, P, O, S, F, 
Cl, Br, and I, are classified into five types in the Periodic Table of Elements. According to the hybridi-
zation state of atoms, the atoms are furthermore subdivided into ten types. Thus, there are 55 inter-
atomic interactions (Supplementary Table 1) in a molecule. For specific details see the previous arti-
cles [ 14, 15 ]. 

In this study, electrostatic, steric, and hydrophobic potential energies take part in the representation 
of different interactions, producing 3�55 = 165 interaction items for amino acid molecules. Since there 
are no halogen atoms as the fifth atoms and sp hybridized C, N, etc. in amino acid molecules, 84 all-
zero-terms having no statistical significance appear and we get rid of these variables. Each amino acid 
molecule is characterized by the other 81 3D-HoVAIFs (shown in bold in Supplementary Table 1). 

Feature selection. In the QSAR study, the feature selection refers to a procedure which selects a 
subset of descriptors from a pool of candidate descriptors. This procedure increases the reliability and 
reduces the cost and time of the modeling process [ 19 ]. In this study, the stepwise multiple regression 
(SMR) was carried out to select the variables. 

MLR modeling and model validation. The multiple linear regression [ 20, 21 ] (MLR) is a clas-
sical mathematical modeling method to obtain a more detailed insight into the structure-activity rela-
tionships between the molecular structure and bioactivity. The MLR analysis has been carried out to 
derive the best QSAR model. 

A rigorous validation of the developed models plays the key role in their successful application 
for the prediction of new peptide drugs. In this study, the model was selected based on the leave-one-
out (LOO) cross-validation correlation coefficient ( 2

LOOQ ) for the internal validation and the correla-
tion coefficient between the predicted and observed activities (r2) for the external validation. More-
over, a novel metrics 2

mr  is used to further refine the predictive ability of the developed QSAR models. 
It was introduced by Roy and coworkers [ 22, 23 ] and determined the proximity between the observed 
and predicted response data, denoting the ability of the model to ideally predict the test set molecules. 
Models are considered acceptable if they satisfy all of the following conditions [ 24, 25 ]: 
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T a b l e  1  

Amino acids sequences of three different peptide drugs and their activities 

 Sample Obsd Pred a Pred b Sample Obsd Pred a Pred b Sample Obsd Pred a Pred b 

GV a,b 1.13 1.29 1.12 LL a,b 2.35 2.53 2.38 IS a 1.49 1.31 1.35 
GL 1.68 1.62 1.48 LF 2.75 2.87 2.77 IT 1.49 1.46 1.42 
GI 1.7 1.59 1.43 LW 3.4 3.11 3.12 PA 1.32 1.32 1.29 
GP 1.35 1.45 1.47 LY 2.46 2.54 2.54 PL 2.22 2.16 2.08 
GF a 1.8 1.97 1.86 IG a,b 1.68 1.58 1.69 PI a,b 2.33 2.13 2.03 
GW 1.89 2.19 2.00 IA 1.68 1.65 1.66 PY 1.8 2.17 2.12 
GY b 1.77 1.63 1.63 IV 2.05 2.15 2.08 PF 2.8 2.5 2.46 
AV 1.16 1.1 1.09 IL 2.26 2.48 2.44 FG 1.77 1.95 1.98 
AL a 1.7 1.43 1.45 II a 2.26 2.45 2.4 FL a,b 2.87 2.85 2.73 
AF 1.72 1.77 1.83 IP 2.4 2.32 2.43 FP 2.7 2.68 2.72 
VG b 1.19 1.13 1.37 IW b 3.05 3.06 3.17 FF 3.1 3.19 3.11 
VA 1.16 1.19 1.34 IN 1.49 1.42 1.37 FY 3.13 2.86 2.88 
VV a 1.71 1.69 1.76 ID a 1.37 1.3 1.34 WE a 1.56 1.88 1.69 
VL 2 2.02 2.12 IQ 1.49 1.57 1.46 WW 3.6 3.56 3.49 
LG 1.72 1.63 1.64 IE b 1.37 1.38 1.37 YL b 2.4 2.46 2.7 

BTT 

LA 1.72 1.7 1.61 IK 1.65 1.65 1.83 SL 1.49 1.38 1.65 
YYL a,b 2 2.15 1.91 SIK 1 1.02 0.91 YFL 4.3 4.35 4.39 
FFL 3.52 3.39 3.21 YWK a 1 0.93 0.89 YII 5.46 5.27 5.49 
YWL 1.6 1.64 1.7 FIK 3 3.63 3.54 YFK a,b 3.7 3.64 3.57 
YLL 4.65 5.06 4.63 YIR b 4.88 4.57 4.7 YYK 1 1.43 1.1 
YVL a 4.77 6.09 4.77 YFH 3.18 3.13 2.99 FFK 2.48 2.67 2.39 
YIV 5.3 5.22 5.4 YIL a 5.65 5.31 5.54 YIK 4.89 4.59 4.72 

OT 

FYK b 1 0.47 0.88 FIL 4.5 4.34 4.35 YFR a,b 4.3 3.82 5.67 
VW a,b 5.8 5.26 5.93 IG a,b 2.92 2.62 2.68 GG a,b 2.14 2.01 1.91 
IW 5.7 5.39 5.19 GI 2.92 2.72 2.69 QG 2.13 2.12 1.96 
IY 5.43 4.99 5.53 GM 2.85 2.66 2.87 SG 2.07 1.95 1.88 
AW 5 5.3 4.94 GA 2.7 2.65 2.65 LG 2.06 2.64 2.11 
RW a 4.8 5.27 4.9 YG a 2.7 2.4 2.46 GD a 2.04 1.72 1.92 
VY 4.66 4.86 4.66 GL 2.6 2.55 2.66 TG 2 2.13 2.1 
GW b 4.52 4.78 4.42 AG b 2.6 2.54 2.43 EG b 2 1.84 1.77 
VF 4.28 3.81 3.87 GH 2.51 2.58 2.7 DG 1.85 1.8 1.68 
AY a 4.06 4.6 4.58 GR a 2.49 2.47 2.26 PG a 1.77 1.58 1.77 
IP 3.89 3.78 3.75 KG 2.49 2.79 2.75 LA 3.51 3.28 3.45 
RP b 3.74 3.67 3.45 FG b 2.43 2.36 2.48 KA b 3.42 3.43 3.49 
AF 3.72 3.65 3.69 GS 2.42 2.35 2.24 RA 3.34 3.15 3.13 
GY a 3.68 4.17 3.95 GV a 2.34 2.69 2.34 YA a 3.34 3.04 3.21 
AP 3.64 3.69 3.5 MG 2.32 2.42 2.44 AA 3.21 3.18 3.17 
RF 3.64 3.62 3.65 GK 2.27 2.58 2.47 FR 3.04 2.82 2.83 
VP 3.38 3.65 3.58 GE 2.27 2.29 2.29 HL 2.49 2.56 2.81 
GP a,b 3.35 3.17 2.97 GT a,b 2.24 2.59 2.44 DA a,b 2.42 2.44 2.42 
GF 3.2 3.13 3.17 WG 2.23 2.43 2.54 EA 2 2.48 2.31 
IF 3.03 3.74 3.44 HG 2.2 2.02 2.06     

ACE 

VG 2.96 2.5 2.51 GQ 2.15 2.21 2.13     
 

 

 

a Dataset I.     A b b r e v i a t i o n s:  Obsd — observed value;   
b Dataset II.              Pred — predicted value. 
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Here, Yobs and Ypred indicate the observed and predicted activities, while obsY , and predY  refer to the 
mean values of the observed and predicted activities, respectively. trainingY  indicates the mean activity 
value of the training set. The squared correlation coefficient between the observed (Y axis) and pre-
dicted (X axis) values with the intercept (r2) and without the intercept ( 2

0r ) are calculated to determine 
2

mr . A change in the axes gives the value of 2
0r� . The k and k� parameters indicate the slopes in the for-

mer and latter cases, respectively. 
The advantage of this metrics is that it is comparable to all other commonly used validation met-

rics in terms of the threshold value. The parameters were calculated at a web application (accessible 
from http://aptsoftware.co.in/DTCMLRWeb/index.jsp). 

Splitting of the dataset. In order to prove the validity and stability of the model, the splitting of 
the dataset plays a crucial role in the development of a QSAR model. The dataset was divided into 
training and test sets [ 10 ] used for the model development and validation, respectively. The datasets 
were divided into training and test sets two times: in dataset I, one of every four samples was chosen 
as the test set (highlighted with �a�), while the 1st, the 7th, the 11th, the 17th sample, etc. were chosen 
as the test set (highlighted with �b�) in dataset II. 

RESULTS AND DISCUSSION 

QSAR model for BTT. The results of the 2
mr  parameter in dataset I obtained for each model are 

given in Fig. 1, a. It shows that 2
mr  changes with SMR-introduced variables, reaching the maximum at 

the 11th step. With 2
mr  up to 0.861, the optimal model (Eq. 9) was then selected. Likewise, the optimal 

model (Eq. 10) was selected when 2
mr  reached 0.870 (Fig. 1, b) at the 7th step in dataset II. All other 

calculated parameters are quite good and the satisfactory conditions are summarized in Table 2. 
 1st 2nd 2nd 1st 1st 2nd

1-2 1-1 1-8 1-3 1-1 1-5  2.301 – 1.334  – 0.356  1 .098  – 0.001  – 15.461 – 1.132 ,pT E E E H S E� �  (9) 

 1st 1st 1st
1-3 1-9 2-8  0.860 –  0.493  1 .014  – 0.142 .pT E H E� �  (10) 

Based on Eq. 9, we consider the independent variable 2nd
1-8E  to be in the positive correlation with 

the dependent variable pT, while the independent variables 1st
1-2E , 2nd

1-1E , 1st
1-3H , 1st

1-1S , and 2nd
1-5E  are in 

negative correlations with pT. (Since some interaction items have a zero coefficient, they are not listed 
in the equation. The superscript of variables denotes the position for the interaction (the same below)). 
It can be seen that the H—H steric interaction in the 1st amino acid is the most important factor affect-
ing pT. Eq. 10 shows that the H—Osp2 electrostatic interaction in the 1st amino acid is the key factor 
affecting pT. Variation of the key factors can greatly improve pT. Fig. 2, a (I) and 2, b (II) presents the 
scatter plot of the observed values versus the predicted ones (Table 1) of BTT. The solid line indicates 
the fitted line of the training set and the dotted line indicates the fitted line of the test set (the same be-
low). The activities predicted using Eq. 9 were plotted against the observed activity data, and the 
 

 
 

Fig. 1. Comparison of 2
mr  of different models in dataset I and dataset II 
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T a b l e  2  

Results of the different validation metrics for the MLR model and the satisfactory conditions 

Calculated value 
Criteria 

BTT OT ACE 
Satisfactory value 

2
LOOQ  0.903 a 0.879 b 0.897 a 0.970 b 0.883 a 0.852 b > 0.5 
r 2 0.875 a 0.939 b 0.872 a 0.955 b 0.891 a 0.955 b > 0.6 

2
0r  0.861 a 0.937 b 0.855 a 0.777 b 0.871 a 0.949 b 
2
0r �  0.874 a 0.939 b 0.872 a 0.881 b 0.890 a 0.938 b 

( 2
0r  or 2

0r � ) 	 r 2 

(r 2 – 2
0r )/r 2 0.014 a 0.00189 b 0.019 a 0.187 b 0.022 a 0.006 b 

(r 2 – 2
0r � )/r 2 0.0002 a 0.00031 b 0.00003 a 0.078 b 0.001 a 0.017 b 

one of these criteria < 0.1 

K 0.984 a 0.993 b 0.960 a 1.103 b 0.972 a 1.060 b 
k � 1.006 a 1.00102 b 1.015 a 0.883 b 1.014 a 0.938 b 

0.85 � k or k � � 1.15 

2
mr  0.861 a 0.870 b 0.811 a 0.841 b 0.826 a 0.865 b 
2
mr�  0.852 a 0.820 b 0.884 a 0.887 b 0.836 a 0.823 b 

> 0.5 

 
 

 

a Dataset I.  
b Dataset II. 

 
resulting graph (Fig. 2, a) showed that the points were minutely scattered about the line of fit, i.e., the 
results are relatively close to the observed values and the model possesses the strong fitting capacity, 
and so does Fig. 2, b (II). Therefore, the models may be considered satisfactory for predicting the ac-
tivity of a new set of such peptide drugs. 

QSAR model for oxytocin. The scales combined with SMR to select the variables, and then a 
MLR model with the best optimal number of variables is built. In Fig. 1, a, it was shown that 2

mr  
changed with SMR-introduced variables, reaching the maximum (0.811) at the 5th step in dataset I; 
the optimal model is Eq. 11. The optimal model (Eq. 12) was selected when 2

mr  reached 0.841 
(Fig. 1, b) at the 5th step in dataset II. The other calculated parameters summarized in Table 2 are 
fairly satisfactory. 
 2nd 1st 2nd 1st

3-8 5-9 5-9 8-9 – 78.874 –1 8.948   0.196  –  60.167   3.684 ,OA E H E H� � �  (11) 
 

 
 

Fig. 2. Scatter plot of the observed vs. predicted values for the MLR model developed of BTT, OT, and ACE 
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 1st 2nd
3-9 1-8 – 27.198  0.013   3.509 .OA H E� � �  (12) 

In accordance with Eq. 11, it can be seen that OA is influenced by two interactions: electrostatic 
and hydrophobic interactions. The coefficients of 2nd

3-8E , 2nd
5-9E , 1st

8-9H  variables are relatively large, and 
this shows that Csp2—Osp3 electrostatic interactions in the 2nd amino acid, Nsp3—Osp2 electrostatic in-
teractions in the 2nd amino acid, and Osp3—Osp2 hydrophobic interactions in the 1st amino acid are 
important factors affecting OA, especially the former two interactions. According to the coefficients of 
model (Eq. 12) variables, the H—Osp3 electrostatic interaction in the 2nd amino acid has a significant 
impact. The pT value can be substantially improved by varying the important interactions. Fig. 2, c (I) 
and 2, d (II) show that the results in both are relatively close to the observed values and uniformly dis-
persed around the fitted line, with the exception of 5# in Fig. 2, c. The errors can be caused by the 
characterization method, experiment, or other reasons. Whatever the reasons, there was only one sam-
ple with large errors, and the excellent results of this study should be recognized. Thus, the predictive 
ability of the model was found to be satisfactory. 

QSAR model for angiotensin converting enzyme. The optimal model (Eq. 13 (I)) was selected 
when 2

mr  reached 0.826 (Fig. 1, a), while the optimal model (Eq. 14) was selected when 2
mr  reached 

0.865 (Fig. 1, b) at the 8th step in dataset II. The other calculated parameters are summarized in Table 2. 
 1st 2nd 1st 2nd 2nd

50 1-1 3-3 1-3 1-9 2-3  2.013  47.655 – 7.466  – 0.511   0.005  – 3.173E ,pIC S E E H� � �  (13) 

 
1st 1st 2nd 2nd 2nd

50 1-1 1-3 3-3 2-2 2-8
2nd 2nd
1-1 1-2

 1 .732  52.148  –  0.604  – 5.824  0.010   0.022  – 

34.914  –  0.802 .

pIC S E E S S

S E

� � � �

�
 (14) 

It is seen from Eq. 13 that the coefficients of 1st
1-1S , 2nd

3-3E , and 2nd
2-3E  variables are more than 1. Es-

pecially 1st
1-1S , the H—H steric interactions in the 1st amino acid, is the key factor affecting pIC50. In 

Eq. 14 it is shown that pIC50 is greatly affected by 1st
1-1S  (H—H steric interactions) and 2nd

1-1S . A plot of 
the predicted (Table 1) against observed values yielded a straight line with points well predicted about 
the line (Fig. 2, e) in dataset I. The pIC50 values of all the peptide sequences predicted using Eq. 14 
were plotted against the observed values, and the resulting graph (Fig. 2, f ) showed that the points 
were minutely scattered about the line of fit. The established models will help in the design of novel 
peptide drugs. 

CONCLUSIONS 

In this paper, the MLR model has been developed for different peptide drugs with 3D-HoVAIF. 
Its predictive ability and robustness are reflected by the 2

mr  parameters: leave-one-out ( 2
LOOQ ) for the 

internal validation and predictive (r2) for the external validation. Satisfying results showed that the 
QSAR models constructed with 3D-HoVAIF had a good predictive ability and strong robustness. 
Hence, 3D-HoVAIF proves to be an effective methodology for the characterization of complex inter-
actions of amino acid molecules and the prediction of bioactivity of peptide drugs. Moreover, it will 
provide theoretical guidance for the design of new peptide drugs. 
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