2009. Том 50, № 2

Март – апрель

C. 365 – 368

КРАТКИЕ СООБЩЕНИЯ

УДК 539.172.3:541.6

МЕССБАУЭРОВСКИЕ СПЕКТРЫ СУЛЬФИДОВ CuCrS₂, ДОПИРОВАННЫХ ЖЕЛЕЗОМ

© 2009 В.А. Варнек¹*, В.В. Соколов¹, И.Ю. Филатова¹, С.А. Петров²

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск ²Институт химии твердого тела и механохимии СО РАН, Новосибирск

Статья поступила 15 декабря 2008 г.

Методом мессбауэровской спектроскопии изучено состояние атомов железа в образцах, имеющих валовый состав CuCr_{1-x}Fe_xS₂ ($x = 0,01 \div 0,30$). Показано, что при $x \le 0,02$ образцы представляют собой твердые растворы, в которых атомы железа имеют степень окисления 3+ и замещают атомы хрома в октаэдрических позициях. При увеличении концентрации железа наряду с твердым раствором образуется вторая фаза — халькопирит CuFeS₂. Относительное содержание железа в данной фазе увеличивается от 11 % при x = 0,03 до 52 % при x = 0,30.

Ключевые слова: сульфиды, железо, мессбауэровские спектры, фазовый состав, строение.

Интерес к соединениям переходных металлов со слоистой структурой в последнее время возрастает в связи с развитием спинтроники. К таким соединениям относится медь-хромовый сульфид состава CuCrS₂, структура которого состоит из S—Cr—S слоев, разделенных слоями, содержащими атомы меди. Как показано в [1—3], замещение части атомов хрома в данном соединении атомами железа и ванадия представляет интерес для исследования магнитных свойств и явлений электропереноса в получаемых материалах.

Цель настоящей работы заключалась в изучении фазового состава и строения сульфидов состава CuCr_{1-x}Fe_xS₂ методом мессбауэровской спектроскопии. Для синтеза образцов использовали коммерческие оксиды CuO, Cr₂O₃ и Fe₂O₃ и сульфидирующий реагент NH₄CNS, а в качестве газа носителя — высокочистый аргон.

Образцы с $x = 0,01 \div 0,05$ и x = 0,15 готовили с использованием изотопа ⁵⁷Fe (обогащение 95 %), а образец с x = 0,30 был приготовлен на основе природного железа.

Для синтеза сульфидов рассчитанную смесь оксидов помещали в стеклоуглеродной лодочке в кварцевую трубу, из которой при помощи аргона и продуктов разложения роданида аммония вытесняли воздух, после чего включали печь. Синтез проводили в несколько стадий, увеличивая температуру опытов и проводя неоднократное измельчение сульфидов. Сведения о характеристиках данных опытов приведены в табл. 1. Полноту сульфидирования контролировали методом рентгенофазового анализа (РФА) и взвешиванием образцов.

Рентгенофазовый анализ сульфидов проводили на дифрактометре Дрон-3 с использованием Cu K_{α} -излучения. Полученные рентгенограммы приведены на рис. 1, а в табл. 1 даны рассчитанные параметры ромбической решетки твердых растворов на основе медь-хромового сульфида CuCrS₂. Видно, что по мере увеличения концентрации железа в образцах параметр *a* несколько увеличивается. Данный эффект можно связать с образованием твердых растворов замещения типа CuCr_{1-x}Fe_xS₂, а также с более высоким ионным радиусом Fe³⁺ (0,645 Å) в сравнении с ионным радиусом Cr³⁺ (0,615 Å) [4].

^{*} E-mail: varnek@che.nsk.su

Таблица 1

х <i>с</i>	0	T	D	Параметр решетки, Å		
л∘ ооразца	Состав шихты	температура, ч	время, ч	а	С	
1	$CuCr_{0,99}Fe_{0,01}S_2$	300—500	1	3,478	18,69	
		850	3,3 14			
		900	16,5			
2	$Cu_{0,99}CrFe_{0,01}S_2$	300-500	1	3,478	18,68	
		700	3,5			
		850	14			
		900	16,5	a 4 - 0	10 (-	
3	$CuCr_{0,98}Fe_{0,02}S_2$	300—600	1,5	3,478	18,67	
		800	2,5			
		900	4	0.450	10 (7	
4	$CuCr_{0,97}Fe_{0,03}S_2$	300-500	1	3,478	18,67	
		/00	1			
		830	4,5			
_	Co-Co-E-C	300 500	0,5	2 492	10 (0	
3	$CuCr_{0,96}Fe_{0,04}S_2$	300-300	1	3,482	18,08	
		700 850	1/1/5			
		900	12.5			
6	CuCr	300-500	12,5	3 182	18 68	
0	CuC10,951 C0,0552	650	2	5,402	10,00	
		850	50.5			
7	CuCraseFears	800	5	3 482	18 67	
/	CuC10,851 C0,1502	850	33	5,102	10,07	
		950	7			
		1000	1			
8	$CuCr_{0,7}Fe_{0,3}S_2$	800	8,5	3,482	18,67	

Условия синтеза образцов $CuCr_{1-x}Fe_xS_2$ и параметры решетки твердых растворов на основе $CuCrS_2$

Мессбауэровские спектры измеряли при 295 К на спектрометре NP-610 57 Co(Rh). При обработке спектров использовали оригинальную программу их разложения на лоренцовские линии. Изомерные сдвиги измеряли относительно α -Fe.

Мессбауэровские спектры некоторых полученных образцов приведены на рис. 2. Установлено, что для составов с малым содержанием железа (x = 0,01 и 0,02) спектры являются одиночными уширенными линиями, а начиная с x = 0,03 они представляют собой суперпозицию синглетной линии и магнитного секстета. Параметры данных линий при разных x даны в табл. 2. Здесь δ_1 — изомерный сдвиг, а Γ_3 — экспериментальная ширина синглетной линии; δ_2 — изомерный сдвиг для секстета; $H_{3\phi}$ — величина эффективного магнитного поля на ядрах железа; α — отношение площади линий секстета к общей площади спектра, равное приблизительно доле атомов железа в магнитоупорядоченном состоянии. График зависимости $\alpha(x)$ приве-

ден на рис. 3.

Полученные результаты свидетельствуют о том, что в изученных образцах атомы железа при $x \le 0,02$ находятся только в одном парамагнитном состоянии Fe³⁺, а при x > 0,02 в них дополнительно появляется магнитоупорядоченная фаза, атомы железа в которой также имеют степень окисления 3+.

Рис. 1. Дифрактограммы образцов $CuCrS_2$ (1), $CuCr_{0.95}Fe_{0.05}S_2$ (2), $CuCr_{0.85}Fe_{0.15}S_2$ (3) и $CuCr_{0.7}Fe_{0.3}S_2$ (4). (* — фаза $CuFeS_2$)

Рис. 2. Мессбауэровские спектры образцов $CuCr_{0,98}Fe_{0,02}S_2$ (1), $CuCr_{0,97}Fe_{0,03}S_2$ (2), $CuCr_{0,95}Fe_{0,05}S_2$ (3) и $CuCr_{0,85}Fe_{0,15}S_2$ (4)

Величина изомерного сдвига для парамагнитной формы железа сравнительно велика в ряду сульфидов Fe^{3+} , на основании чего можно сделать вывод о координационном числе 6 для атомов железа в ней [5]. Эту форму железа мы связываем с твердым раствором замещения, в котором атомы железа замещают атомы Cr^{3+} , находящиеся в октаэдрических позициях.

Чтобы дополнительно убедиться в этом, нами был измерен мессбауэровский спектр образца состава Cu_{0,99}CrFe_{0,01}S₂. Идентичность спектров данного образца и образца CuCr_{0,99}Fe_{0,01}S₂ свидетельствует о том, что атомы Fe не входят в позиции меди. Дополнительная информация о состоянии атомов Fe в позициях хрома вытекает из анализа уширения синглетной линии. Разложение данной линии на две компоненты показывает, что частично это уширение связано с небольшим квадрупольным расщеплением ($\varepsilon \sim 0,2$ мм/с), которое свидетельствует об искажении октаэдров FeS₆. Линии отдельных компонент остаются при этом уширенными ($\Gamma_i \sim 0,35$ мм/с), что говорит о некоторой вариации изомерных сдвигов и длин связей Fe—S в твердом растворе. Возрастание ширины линии Γ_3 при увеличении содержания железа в образцах свидетельствует об усилении неоднородности локального окружения атомов Fe.

Таблица 2

	-			-	1					-	
x	δ_1 , мм/с	Г _э , мм/с	δ ₂ , мм/с	<i>Н</i> _{эф} , кЭ	α, %	x	δ_1 , мм/с	Г _э , мм/с	δ ₂ , мм/с	<i>Н</i> _{эф} , кЭ	α, %
0,01	0,41	0,52	_		0	0,05	0,42	0,57	0,25	351	27
0,02	0,40	0,52		_	0	0,15	0,44	0,64	0,25	349	55
0,03	0,43	0,57	0,24	351	11	0,30	0,45	0,70	0,26	334	52
0,04	0,43	0,58	0,24	352	15	Погрешность	±0,02	±0,03	±0,02	±3	±3

Параметры мессбауэровских спектров суль ϕ идов CuCr_{1-x}Fe_xS₂ при разных значениях х

Рис. 3. Зависимость относительного содержания атомов железа в магнитоупорядоченном состоянии для образцов $CuCr_{1-x}Fe_xS_2$ от величины *x*

Появление магнитного секстета в спектрах сульфидов установлено нами надежно для образца с x = 0,03 (см. рис. 2). Однако поскольку величина Δx для "соседних" образцов в данных опытах была равна 0,01, это не исключает появления магнитной формы железа в образцах при 0,02 < x < 0,03. Поэтому для установления более четкой границы появления данной формы нужны дополнительные измерения. Если основываться на графике $\alpha(x)$, то

можно предполагать, что появляется магнитная форма уже при небольшом превышении x = 0.02, и это значение вполне можно считать граничным.

Магнитные секстеты для образцов с $x = 0,03 \div 0,05$ характеризуются небольшим квадрупольным расщеплением ($\epsilon \land 0,02$ мм/с) и некоторым уширением линий ($\Gamma_{1,6} \sim 0,4$ мм/с). При дальнейшем увеличении x уширение линий возрастает, а внутренние склоны их становятся более пологими, величина $H_{3\phi}$ при этом также понижается. Параметры магнитного секстета для образцов с $x = 0,03 \div 0,05$ находятся в хорошем соответствии с параметрами спектра халькопирита CuFeS₂ ($\delta = 0,23$ мм/с, $\epsilon = -0,02$ мм/с, $H_{3\phi} = 356$ кЭ [4]), что позволяет приписать секстет именно этой фазе, атомы железа в которой имеют степень окисления 3+ и находятся в тетраэдрических позициях. Дополнительное уширение линий и понижение $H_{3\phi}$ в образцах с большим содержанием железа (x = 0,15 и 0,30) указывает на слабую окристаллизованность таких образцов.

Следует заметить, что метод мессбауэровской спектроскопии позволяет надежно идентифицировать появление халькопирита в образцах с низким содержанием железа ($x \le 0,05$) при обогащении их изотопом ⁵⁷Fe. Метод РФА при этих концентрациях железа еще не "видит" новой фазы. Однако рефлексы, относящиеся к халькопириту, начинают появляться в дифрактограммах при $x \ge 0,15$, что подтверждает вывод о приписывании секстетов этой фазе.

Наряду с определением форм нахождения железа в изученных сульфидах представляло интерес изучить поведение железа при кристаллизации образцов. С этой целью образец с x = 0,30был нагрет до 1200 °C и выдержан при этой температуре в течение 1 ч. Мессбауэровский спектр данного образца являлся суперпозицией синглетной линии с $\delta = 0,48$ мм/с и $\Gamma_{3} \sim 0,7$ мм/с (81 %) и секстета с $H_{3\phi} \sim 330$ кЭ (19 %), для которого величины δ и ε были близки к нулю.

Эти результаты указывают на то, что образец является двухфазным. Состояние атомов железа для основной фазы близко к тому, что установлено для твердого раствора CuCr_{1-x}Fe_xS₂. Вторую фазу мы идентифицируем как металлическое железо α -Fe. Основной результат данной работы свидетельствует о том, что твердые растворы CuCr_{1-x}Fe_xS₂ как однофазные системы существуют лишь при сравнительно малых содержаниях железа ($x \land 0,02$). При x > 0,02 продукты сульфидирования смеси оксидов Cu, Cr, Fe содержат наряду с твердым раствором дополнительную фазу — халькопирит. Этот результат должен быть принят во внимание при изучении свойств сульфида CuCrS₂, допированного железом.

Работа выполнена по гранту ИНТАС СО РАН № 06-1000013-9002.

СПИСОК ЛИТЕРАТУРЫ

- 1. Tsujii N., Kitazawa H., Kido G. // Phys. Stat. Sol. (c) 2006. 3, N 8. P. 2775 2778.
- 2. Абрамова Г.М., Петраковский Г.А., Втюрин А.Н. и др. // Физика твердого тела. 2009. **51**, № 3. С. 500 504.
- 3. *Abramova G.M., Petrakovskii G.A., Velikanov D.A. et al.* // Phys. Metals and Metallography. 2005. **99**, Suppl 1. P. S173 S140.
- 4. Воган Д., Крейг Д. Химия сульфидных материалов. М.: Мир, 1981.
- 5. Суздалев И.П. Динамические эффекты в гамма-резонансной спектроскопии. М.: Атомиздат, 1979.