СРОЧНОЕ СООБЩЕНИЕ

УДК 539.83

УДАРНО-ВОЛНОВОЙ СИНТЕЗ КУБИЧЕСКОГО НИТРИДА КРЕМНИЯ

А. С. Юношев

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, asyn@ngs.ru

Показано, что при ударно-волновом нагружении смеси порошков β -Si₃N₄ давлением 53 ГПа в плоских апмпулах сохранения выход кубического нанодисперсного нитрида кремния близок к 100 %.

Ключевые слова: кубический нитрид кремния, ударно-волновой синтез.

Интерес к синтезу новых сверхтвердых материалов сохраняется до настоящего времени, что обусловлено их потенциально широкой областью применения. Развитие квантовомеханических методов расчета структуры и свойств веществ привлекло внимание исследователей к двум гипотетическим веществам: нитриду углерода (C₃N₄) и кубическому нитриду кремния $(c-Si_3N_4)$ [1]. Поиски возможности синтеза кристаллического нитрида углерода еще продолжаются [2], а кубический нитрид кремния уже синтезирован. Предсказанный модуль объемного сжатия *c*-Si₃N₄ достигает 280÷310 ГПа, что ставит этот керамический материал на третье место по твердости после алмаза и кубического нитрида бора. Дополнительный интерес к Si₃N₄ вызывает предположение, что твердость гипотетического β -C₃N₄, имеющего гексагональную структуру β -Si₃N₄, может быть сравнима с твердостью алмаза [1]. В более позднем исследовании [3] полагается, что кубический нитрид углерода *с*-C₃N₄ имеет модуль объемного сжатия (и, возможно, твердость) больше, чем у алмаза.

До недавнего времени были известны две полиморфные формы нитрида кремния, так называемые α - и β -фазы. В 1999 г. при статическом сжатии в алмазных наковальнях была синтезирована фаза высокого давления нитрида кремния при лазерном нагреве кристаллов кремния, а также аморфного или поликристаллического Si₃N₄ в среде азота при давлении 15 ГПа и температуре 2000 К [4]. В результате была получена прозрачная сфера светложелтого цвета размером 15 мкм. Анализ материала на просвечивающем электронном микроскопе показал, что синтезированное вещество есть *с*-Si₃N₄. Позже кубическая модификация была получена ударно-волновым способом с использованием ударников, метаемых легкогазовой пушкой [5]. Образец представлял смесь чистого порошка β -Si₃N₄ субмикронного размера с медным порошком. При давлении 19 ГПа и расчетной температуре 3000 К зарегистрировано появление новой фазы. Выход *c*-Si₃N₄ не наблюдался при давлении 21 ГПа и температуре 1270 К, что, по мнению авторов, говорит о наличии пороговой температуры синтеза. Максимальный выход с-Si₃N₄ при ударно-волновом синтезе (давление 49 ГПа, температура 2400 К) составлял ≈ 80 %. Продуктом синтеза был порошок c-Si₃N₄ с размером зерна $10 \div 50$ нм.

Цель данной работы — синтез кубического нитрида кремния ударно-волновым способом с применением взрывных методов нагружения и получение нитрида кремния в количестве, достаточном для последующего изучения физикомеханических свойств. При этом планировалось установить параметры нагружения, необходимые для максимального выхода новой фазы.

Для простоты оценки параметров нагружения синтез проводился в плоской ампуле сохранения. Нагружение осуществлялось либо ударниками из дюралюминия толщиной 5 и 8 мм, ускоренными до 5,3 и 3,4 км/с соответственно при помощи взрыва, либо зарядом литого ТГ 50/50 в контакте со сборкой. Нагружаемые образцы изготавливались статическим и

Работа выполнена при поддержке Интеграционного проекта СО РАН (номер проекта 29), Российского фонда фундаментальных исследований (номер проекта 03-03-33174) и гранта Президента РФ (номер НШ-2073.2003.1).

Номер	Состав образца*, %		$\rho/\rho^0, \%$	р, ГПа	<i>T</i> , K	$\eta, \%$	Герметичность
опыта	β -Si ₃ N ₄	Cu					
1	100	0	60	53	9600	0	+
2	100	0	80	40	3000	0	+
3	100	0	80	53	4000	8	_
4	100	0	80	75	6200	25	_
5	67	33	83	40	2300	25	+
6	50	50	70	53	5400	75	+
7	50	50	70	53	5400	80	+
8	40	60	70	53	5370	100	+
9	30	70	75	53	4200	95	+
10	20	80	70	53	5150	100	+
11	20	80	85	40	2000	65	+

Результаты экспериментов по синтезу кубического нитрида кремния

Примечание. *Объемные доли (плотность гексагонального нитрида кремния 3,2 г/см³). Обозначения: ρ — плотность образца, ρ^0 — теоретическая плотность монолита смеси, η — выход новой фазы, +, - соответствуют сохранению и нарушению герметичности ампулы сохранения после эксперимента.

динамическим прессованием чистого порошка β -Si₃N₄, а также его смеси с медью (объемная доля меди варьировалась в диапазоне 30÷80 %) до плотностей соответственно 60 и 85 % от плотности монолита. Образец помещался в герметичную медную ампулу. Толщина образцов составляла 2÷3 мм. Предполагалось, что конечное давление в образце за счет многократного отражения плоской ударной волны приближается к начальному давлению в крышке ампулы.

В таблице приведены условия и результаты экспериментов. Расчет динамических параметров нагружения образца осуществлялся методом p-u-диаграмм. Ударное давление и температура смеси меди и β -Si₃N₄ рассчитывались с помощью уравнения состояния типа Ми — Грюнайзена и смесевого метода [6]. В качестве «холодной» изотермы для гексагонального нитрида кремния использовалась его изоэнтропа из [7]. Фазовый переход β -Si₃N₄ в кубическую модификацию не учитывался.

После эксперимента ампула вскрывалась. Для удаления меди сохраненный образец отмывался в HNO₃, промывался в воде и высушивался. После этого проводился его структурный анализ на рентгеновском дифрактометре ДРОН-3. Использовалось излучение Cu K_{α} с длиной волны 1,5418 Å. С целью более точной оценки содержания кубической фазы в исследуемых образцах на дифрактометре ДРОН были исследованы смеси β - и *с*-фаз в известных пропорциях. Кубическую фазу при этом брали из экспериментов, аналогичных № 8, 10 из таблицы (в них линии, соответствующие β -фазе, неразличимы).

При динамическом нагружении чистого гексагонального нитрида кремния в интервале давлений 40÷60 ГПа фазовый переход не обнаружен при сохранении герметичности ампулы. Очевидно, сказывается негативное влияние высокой остаточной температуры, обусловливающей отжиг новой фазы. При давлении в крышке ампулы около 100 ГПа (опыт № 4) выход новой фазы составил 25 %. Однако в этом эксперименте использовался слишком толстый образец (толщина 5 мм). Поэтому волна сжатия успела пройти только два раза по образцу до прихода волны разгрузки со стороны ударника, и давление в нем не превысило 75 ГПа. При этом в крышке ампулы образовалось небольшое отверстие, и часть образца была потеряна. Синтез с-фазы в этом эксперименте, повидимому, связан с большей скоростью охлаждения образца из-за образования отверстия и, следовательно, более интенсивной разгрузкой. Эксперимент при этом давлении не повторялся.

Для уменьшения остаточной температуры исходный порошок смешивался с медным по-

Рис. 1. Дифрактограммы исходного материала β -Si₃N₄ (*a*) и кубического нитрида кремния (δ), полученного в опыте № 9

Рис. 2. Электронные фотографии порошков нитрида кремния: *a* — исходная β-фаза, *б* — кубическая фаза

рошком. При объемной доли меди более 60 %, пористости образца 1,43 и ударном давлении 53 ГПа выход новой фазы близок к 100 %.

На рис. 1 приведены рентгенограммы исходного гексагонального нитрида кремния и образца, полученного в опыте № 9. Для нового материала отчетливо видны три широких максимума, середина которых приходится на углы $2\theta = 32,2, 38,2$ и $46,5^{\circ}$. Данные максимумы являются самыми интенсивными в интервале $2\theta = 20 \div 50^{\circ}$ и с точностью $0,5^{\circ}$ соответствуют данным для кубического нитрида кремния из работы [5]. На рентгенограмме рис. 1,6 также заметны слабые максимумы, соответствующие наиболее интенсивным линиям исходной гексагональной фазы.

В результате синтеза образуется c-Si₃N₄, ультрадисперсный порошок с областью когерентного рассеивания ≈ 30 нм, что составляет менее одной трети размера соответствующей области для исходной фазы (0,1 мкм). На рис. 2 показаны фотографии порошков β - и *c*-фазы, полученные на электронном сканирующем микроскопе. Наблюдается значительное различие в морфологии порошков. β -Фаза содержит как частицы со средним размером $1\div3$ мкм, так и нитевидные частицы с поперечным размером $1\div3$ мкм, достигающие в длину 15 мкм. Кубическая фаза более однородная по составу и состоит из частиц преимущественно одной фракции — $1 \div 2$ мкм. Кроме того, в отличие от светло-серого порошка β -Si₃N₄, кубический нитрид кремния имеет темно-серый цвет.

Таким образом, при нагружении смеси порошков β-фазы нитрида кремния и меди динамическим давлением ≈ 53 ГПа практически весь нитрид кремния переходит в кубическую модификацию. Реализованная схема показывает достоинства взрывного нагружения, позволяющего в одном опыте синтезировать до 0,5 г нанодисперсного порошка *с*-Si₃N₄.

Автор благодарен В. В. Сильвестрову, В. И. Мали и А. А. Дерибасу за полезные советы при выполнении работы, Т. С. Тесленко за выполнение рентгеноструктурного анализа образцов.

ЛИТЕРАТУРА

 Liu A. Y., Cohen M. L. Prediction of new low compressibility solids // Science. 1989. V. 245. P. 841–842.

- 2. Милявский В. В., Жук А. З., Бородина Т. И. и др. Кристаллический сверхтвердый нитрид углерода от прогноза к синтезу // VI Забабахинские научные чтения, 2001; http://www.vniitf.ru/rig/konfer/6zst/dokl/sec5/27.pdf
- Teter D. M., Hemley R. J. Low-compressibility carbon nitrides // Science. 1996. V. 271. P. 53–55.
- Zerr A., Miehe G., Serghiou G., et. al. Synthesis of cubic silicon nitrid // Nature. 1999. V. 400. P. 340–342.
- 5. Sekine T., Hongliang He, Kobayashi T., et. al. Shock-induced transformation of β -Si₃N₄ to a high-pressure cubic-spinel phase // Appl. Phys. Lett. 2000. V. 76, N 25. P. 3706–3708.
- Мак-Куин Р., Марш С., Тейлор Дж. и др. Уравнение состояния твердых тел по результатам исследований ударных волн // Высокоскоростные ударные явления / Под ред. В. Н. Николаевского. М.: Мир, 1973. С. 299–427.
- Hongliang He, Sekine T., Kobayashi T., Hirosaki H. Shock-induced phase transformation of β-Si₃N₄ to c-Si₃N₄ // Phys. Rev. B. 2000. V. 62, N 17. P. 11412–11417.

Поступила в редакцию 20/XI 2003 г.