Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2018 year, number Неопубликованное

Evolution of the geomagnetic field and mantle plume magmatism applied to space-time reconstructions in absolute coordinates

D.V. Metelkin1,2, E.V. Vinogradov1,2, A.A. Eliseev1,2, M.E. Luzan1,2, V.V. Abashev3
1Novosibirsk State University, Novosibirsk, Russia
2Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
3Geological Institute Russian Academy of Sciences, Moscow, Russia
Keywords: Hotspots, mantle plumes, geodynamo, geomagnetic reversal frequency, paleointensity, geocentric axial dipole, equatorial dipole, anomalous geomagnetic field, global magnetic anomalies, absolute plate reconstructions

Abstract

We present an analysis of modern paleomagnetic data from large igneous provinces and palaeorift structures in Siberia and the High Arctic that are potentially related to mantle plumes. The interrelationship between plume magmatism, geomagnetic reversal frequency, and field intensity over the last 600 Myr exhibits a periodicity of 70–100 Myr. Periods of mantle plume activity were preceded by an increase in geomagnetic reversal frequency, accompanied by a decrease in geomagnetic field intensity. Our proposed hypothesis explains this effect by changes in the thermal convection in the Earth’s outer core while mantle plumes are regarded as regulators of the state of the hydromagnetic dynamo. “Overheating” of the core increased the turbulence of convective currents, and therefore, the amount of reversals. During reversals, the value of the main component of the geomagnetic field – the geocentric axial dipole – first fell to zero and returned to high values only afer a full reversal of the poles. Reduction of relaxation time in periods of frequent reversals led to prolonged low values of the absolute intensity of the geomagnetic field. Mantle plumes forming during such periods could remove the excess heat and stabilize the state of the geodynamo, even almost completely stopping reversals. We link the Vendian and Devonian geomagnetic phenomena to periods of ultra-frequent reversals. During these extended periods of low value of the axial dipole, the configuration of the geomagnetic field was determined by low-order non-zonal harmonics and by the global magnetic anomalies. We observe a qualitative coincidence of the position of paleopoles with centers of lower mantle gravitational and magnetic anomalies and postulate that the anomalies were stationary. This is the basis for substantiating a new reference framework for paleotectonic reconstructions in absolute coordinates. Examples of reconstructions made using this system also agree with the hypothesis of stationary hotspots. From the terminal Precambrian to the Mesozoic inclusively, the Siberian paleocontinent was located in the area of effect of the African mantle hot field, migrating northwards along the 0° meridian from the latitude of Tristan da Cunha to that of Iceland.




Articles 1 - 1 of 1
First | Prev. | 1 | Next | Last Paged