Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Journal of Mining Sciences

2023 year, number 3

Interface Structures and Strength Characteristics of Coal Freezing Adhesion on Transportation Equipment in Cold Regions

Da An, Yifei Chi ,Chunhua Wang
Shenyang Aerospace University, Shenyang, China
Keywords: Coal transportation, coal freezing adhesion, interface structure, coal freezing adhesive strength

Abstract

The coal freezing adhesion tests on typical substrates including metal, rubber and plastic substrates were carried out, the steady and separated interfacial structures between coal and substrate surfaces were investigated, and the strength characteristics of coal freezing adhesion on substrates were analyzed in depth. At the stable interface of coal freezing adhesion, the frozen coal slime area is formed in some areas, while the direct contact area as well as the void area may appear between the frozen coal and substrate surface in other areas. The surfaces of metal and rubber substrates have small water contact angle and good wettability, and the separation failure of freezing adhesion occurs at the interior of the frozen coal slime area or the frozen coal itself, thus the coal freezing adhesion strength is reflected by the freezing strength of the frozen coal slime or the frozen coal itself. The surfaces of plastic substrates have large water contact angle and poor wettability, and the separation failure occurs at the bonding interface between the frozen coal slime area and substrate surface, thus the coal freezing adhesion strength is reflected by the bonding strength. The coal freezing adhesive strength on plastic substrates is 4-12 time less than on metal and rubber substrates.