УДК 669-1,544.427

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ГОРЕНИЯ ВЫСОКОКАЛОРИЙНОЙ ТЕРМИТНОЙ СМЕСИ НА ПОВЕРХНОСТИ ТИТАНОВОЙ ОСНОВЫ

Д. Е. Андреев, Д. М. Икорников, В. И. Юхвид, В. Н. Санин

Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка ade@ism.ac.ru

Рассмотрены закономерности горения и химического превращения высокоэкзотермических смесей MoO₃/NiO/Al/C и MoO₃/NiO/Al/B на поверхности титановой основы под действием центробежного ускорения. Показано, что химические реакции протекают не только в волне горения, но и на поверхности титановой основы, между продуктами горения и материалом основы (титаном). Изучены динамика и механизм формирования слоевых (градиентных) материалов титан — керамика (Mo—Ni—C—Ti или Mo—Ni—B—Ti).

Ключевые слова: CBC-наплавка, металл — керамика, высококалорийная термитная смесь, градиентные материалы, гравитационная сепарация.

DOI 10.15372/FGV20170511

ВВЕДЕНИЕ

Градиентные и слоевые материалы могут быть получены методами классической и порошковой металлургии [1]. Область практического применения таких материалов достаточно широка, начиная от защитных покрытий до материалов и конструкций, предназначенных для однократного удержания высокоскоростного высокоэнергетического удара различной интенсивности (бронеэлементы из градиентной керамики). Для получения таких материалов также успешно используют материалообразующие процессы горения и взрыва [2, 3]. Наиболее сложной задачей является получение градиентных и слоевых материалов типа металл — керамика. Эту задачу удалось решить методами СВС-металлургии на примере материалов сталь — твердые сплавы [4-6]. В настоящей статье изучены возможности получения градиентных материалов титан — керамика методом центробежной СВС-наплавки. Рассмотрены закономерности горения и химического превращения исходных смесей, динамика и механизм формирования слоевых материалов.

МЕТОДИКА ЦЕНТРОБЕЖНОЙ СВС-НАПЛАВКИ

Схема СВС-наплавки представлена на рис. 1. Для реализации СВС-наплавки карбидной или боридной керамики на титановую основу на ее поверхности размещается слой высокоэкзотермической смеси термитного типа. В экспериментах использовали две смеси — $MoO_3/NiO/Al/C$ и $MoO_3/NiO/Al/B$. Их состав и расчетная температура горения (T_{comb}) приведены в таблице. Из результатов расчета по программе THERMO следует, что температура горения обеих смесей существенно превышает температуру плавления титановой основы ($T_{sub} = 1.941$ K) [7].

В качестве исходных компонентов исполь-

Рис. 1. Схема СВС-наплавки:

1 — электроспираль, 2 — исходная смесь, 3 — металлическая основа

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-03-01986).

[©] Андреев Д. Е., Икорников Д. М., Юхвид В. И., Санин В. Н., 2017.

Исходная смесь	Содержание реагентов, %					T V
	MoO_3	NiO	Al	С	В	I_{comb}, K
$MoO_3/NiO/Al/C$	35.3	40.3	22.9	1.5		2920
MoO ₃ /NiO/Al/B	48.1	25.4	22.1		4.4	2912

Состав и расчетная температура горения исходных смесей

зовали полидисперсные порошки оксидов металлов — MoO₃ и NiO марки «ч»; алюминий ACД-1 и Па-4; графит искусственный измельченный марки A с массовой долей углерода не менее 99 % и размером частиц 40 \div 100 мкм; бор аморфный марки Б-99В с содержанием основного компонента не менее 99.00 % и размером частиц менее 5 мкм. Массу смеси варьировали от 40 до 100 г. Для наплавки использовали цилиндрические образцы титана диаметром 39 мм и высотой 10 мм. Эксперименты проводили в графитовых стаканчиках в интервале перегрузок $a = (1 \div 300)q$.

Эксперименты в центробежной установке [6] в оптимальных условиях показали, что после воспламенения и сгорания смеси на поверхности титановой основы формируется литой двухслойный продукт горения, верхний слой оксидный (шлаковый), нижний — керамический (карбидный или боридный). Керамический слой прочно соединен с титановой основой (рис. 2), а оксидный слой легко отделяется от керамического.

На протравленных шлифах образцов можно выделить темную зону (покрытие) толщиной $4 \div 5$ мм и светлую зону толщиной $8 \div 9$ мм (титановая основа).

В экспериментах определяли среднюю линейную скорость горения (u), относительную массу металлического продукта (η_1) , относительную потерю массы при горении (η_2) и относительную массу оксидного продукта (η_3) . Параметры рассчитывали по формулам u = $h/t_{comb}, \eta_1 = (m/m_0) \cdot 100 \%, \eta_2 = (\Delta m/m_0) \cdot$ 100 %, где h — высота слоя исходной смеси в стаканчике, t_{comb} — время горения смеси, *т* — масса металлического продукта, *m*₀ исходная масса смеси, Δm — потеря массы при горении. Время горения t_{comb} определяли по результатам видеонаблюдения и видеосъемки камерой Canon Legria HF M36 с частотой 50 кадр/с и разрешением 1920×1080 . Интегральный химический состав металлического и оксидного слоев, микроструктуру и состав структурных составляющих определя-

Рис. 2. Наплавленные образцы: *a* — Mo/C/Ni/Al — титан, *б* — Mo/B/Ni/Al титан; *m*₀ = 60 г, *a/g* = 100

ли на сканирующем электронном микроскопе сверхвысокого разрешения Carl Zeiss Ultra Plus.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Эксперименты показали, что горение при атмосферном давлении без воздействия перегрузки сопровождается интенсивным разбросом смеси (диспергированием). Потери массы достигают $50 \div 60$ %. Воздействие перегрузки подавляет разброс смеси и при $a \ge 100g$ позволяет довести относительную массу слитка практически до расчетного значения (рис. 3). С увеличением перегрузки скорость горения смесей MoO₃/NiO/Al/C и MoO₃/NiO/Al/B и относительная масса металлического продукта возрастают, а разброс смеси уменьшается.

Рис. 3. Влияние перегрузки на скорость горения, относительную массу металлического продукта (η_1) и относительную потерю массы при горении (η_2) :

исходные смеси:
 a — MoO_3/NiO/Al/C, δ — MoO_3/NiO/Al/B

При наплавке на титан карбидной (Mo— Ni—Al—C) или боридной (Mo—Ni—Al—B) керамики формируется трехслойная композиция: собственно покрытие, переходная зона и титановая основа, прочно соединенная с керамическим покрытием (рис. 4).

Содержание всех элементов покрытия практически постоянно по его толщине. В состав покрытия входит значительное количество титана, источником которого является титановая основа (рис. 5). Титан проникает на всю толщину покрытия. В переходной зоне содержание Мо, Ni, C, B и примесного Al уменьшается до нуля, а содержание Ti возрастает до максимального значения — 99.2 %. Толщина переходной зоны около 1 мм.

Рис. 4. Макроструктура наплавленых образцов по высоте. Наплавка на титан:

исходная смесь: $a - MoO_3/NiO/Al/C$, $\delta - MoO_3/NiO/Al/B$; $m_0 = 60$ г, a/g = 100; прямоугольниками выделены области анализа методом сканирующей электронной микроскопии

Материал основы, титан, является активным элементом. Он вступает в химические реакции с бором и углеродом. Из результатов микроанализа следует, что при кристаллизации расплава в покрытии формируется композиционная микроструктура, в которой Ti— Mo—Ni—Al образует матрицу, а зёрна Ti— Mo—C, Ti—Ni—C и Ti—Mo—B распределены в ней.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Наблюдение, видеосъемка, осмотр и анализ продуктов горения показали, что процесс СВС-наплавки керамики на титановую основу протекает стадийно (рис. 6):

Рис. 5. Состав и распределение элементов по высоте покрытия: I — покрытие, II — переходная зона, III — основа; $a - MoO_3/NiO/Al/C$, $\delta - MoO_3/NiO/Al/B$; $m_0 = 60$ г, a/g = 100

Рис. 6. Исходное (a) и конечное (c) состояние системы. Базовые стадии CBC-наплавки (б, в): δ — стадия горения и химического превращения исходной смеси, в — стадия формирования керамического покрытия; 1 — исходная смесь, 2 — основа, 3 — оксидный (шлаковый) слой, 4 — керамический слой

1) движение фронта горения по смеси с постоянной скоростью; во фронте происходит химическое превращение исходной смеси, за фронтом формируется высокотемпературный двухфазный расплав продуктов горения, в котором оксидная фаза (Al₂O₃) образует сплошную среду, а капли Mo—Ni—Al—C, Ni-Mo-Al—B распределены в ней;

2) гравитационная сепарация фаз, которая приводит к расслоению расплава и накоплению металлического продукта на поверхности основы;

3) теплообмен высокотемпературного двухслойного расплава продуктов горения с металлической основой, вследствие которого расплав охлаждается, а металлическая основа разогревается; результатом разогрева основы являются формирование фронта плавления и расплавление поверхностного слоя основы;

4) активный массообмен и химическое взаимодействие целевого продукта горения (керамического расплава) с материалом основы;

5) охлаждение, кристаллизация расплава, формирование состава и структуры покрытия.

В результате формируется слой литого композиционного материала, прочно соединенного с титановой основой. Таким образом, в предлагаемом методе слой высокоэкзотермической смеси является не только источником получения керамики, но и источником разогрева и плавления поверхностного слоя основы, что необходимо для соединения керамики с металлической основой. Экспериментальные исследования показали, что для реализации СВС-наплавки и получения слоевых композиционных материалов необходимо, чтобы исходные смеси термитного типа были способны к горению и температура их горения была бы выше температуры плавления керамического и шлакового продуктов, а также металлической основы. В отличие от СВС-наплавки на стальную основу, при СВСнаплавке на титан высокоэкзотермические химические реакции протекают не только в волне горения, но и на поверхности титановой основы, между продуктами горения и материалом основы (титаном).

В волне горения последовательно идут процессы восстановления исходных оксидов (1) и их взаимодействия с неметаллом (2):

$$MoO_3/NiO/Al \rightarrow Mo-Ni + Al_2O_3$$
, (1)

$$Mo/Ni/C \rightarrow Mo-Ni-C$$

или $Mo/Ni/B \rightarrow Mo-Ni-B.$ (2)

На поверхности титановых образцов происходит химическое взаимодействие расплавов Mo/Ni/C или Mo/Ni/B с расплавом титана, сопровождающееся выделением тепла:

$$Mo/Ni/C/Ti \rightarrow Mo-Ni-C-Ti$$

или $Mo/Ni/B/Ti \rightarrow Mo-Ni-B-Ti.$ (3)

При последующем охлаждении расплавов они кристаллизуются, что сопровождается образованием карбидных и боридных фаз, Ti—Mo— С, Ti—Ni—С и Ti—Mo—B, и формированием матрицы из Ti—Mo—Ni—Al.

Для качественного описания процессов формирования покрытия используем три характерных времени, соотношение которых определяет конечный результат:

 $t_1 = h_1/v_{drop}$ — время гравитационной сепарации фаз, где h_1 — толщина слоя расплава продуктов горения, $v_{drop} = (\rho_2 - \rho_1) d_m^2 a / 18 \mu$ скорость движения металлических капель в оксидном расплаве, μ — вязкость оксидной фазы, ρ_2 , ρ_1 — плотность керамического и оксидного расплавов, d_m — диаметр частицы металла, a — перегрузка;

 $t_2 \approx h_1^2/\chi$ — время охлаждения продуктов горения от T_{comb} до T_{sub} (Ті) при условии, что толщина слоя исходной смеси меньше диаметра слоя расплава (χ — коэффициент температуропроводности);

 $t_3 = t_2 - t_1$ — время активного контакта расплава продуктов горения с основой.

Для обеспечения полного выхода металлической фазы на поверхность металлической основы необходимо выполнение следующего условия $t_1/t_2 \leq 1$. При его выполнении на поверхности титановой основы формируется слой керамического расплава толщиной $\Delta_1 = m_0 n/\rho_2 S$, где n — расчетная массовая доля керамики в продуктах горения, S — площадь металлической основы.

В предыдущих исследованиях [4] при $t_3/t_2 \leq 1$ авторами были получены формулы для расчета толщины расплавленного слоя основы (Δ_2). При наличии высокоэкзотермических реакций Ті с С или В формула принимает вид

$$\Delta_2 = Ah_1 \frac{T_{comb} - T_{sub}}{(T_{sub} - T_0) - (L + Q)/c}, \qquad (4)$$

где $A = (\rho_1 z_1 + \rho_2 z_2)/\rho; \rho_1, \rho_2$ и z_1, z_2 — плотности и объемные доли капель металла и оксида в расплаве продуктов горения; ρ — плотность материала металлической основы; h_1 — высота столба двухфазного расплава продуктов горения, основы; L — удельная теплота плавления материала основы; Q — удельный тепловой эффект взаимодействия Ті с С или В; c — теплоемкость основы. Из формулы следует, что протекание экзотермических процессов при наплавке приводит к увеличению толщины расплавления основы.

Общая толщина покрытия (Δ) равна сумме толщин слоя керамического продукта и расплавленного слоя основы:

$$\Delta = \Delta_1 + \Delta_2 = = \frac{m_0 n}{\rho_2 S} + A h_1 \frac{T_{comb} - T_{sub}}{(T_{comb} - T_0) - (L+Q)/c}.$$
 (5)

выводы

1. При горении слоя высококалорийных термитных смесей $MoO_3/NiO/Al/C$ и $MoO_3/NiO/Al/B$ на поверхности титановой основы химические превращения протекают как в волне горения, так и на поверхности основы, между продуктами горения и титаном.

2. В волне горения исходная смесь превращается в двухфазный расплав, в котором капли Mo—Ni—Al—C и Mo—Ni—Al—B распределены в оксидном слое из Al₂O₃. 3. Гравитационная сепарация фаз приводит к расслоению, в результате которого слой высокотемпературного расплава Мо— Ni—Al—C или Mo—Ni—Al—B вступает в контакт с титановой основой.

4. Интенсивный теплообмен приводит к плавлению поверхностного слоя основы, взаимному растворению Mo—Ni—Al—C или Mo— Ni—Al—B и титана, высокоэкзотермическому взаимодействию Ti с C или B.

5. После охлаждения и кристаллизации расплавов на поверхности титановой основы формируется покрытие из твердых сплавов Мо—Ti—C—Ni—Al или Мо—Ti—B—Ni—Al, прочно сцепленное с основой.

ЛИТЕРАТУРА

 Leushake U., Winter A. N., Rubin B. H., Gorff B. A. General aspects of FGM fabrication by powder stacking // Proc. of 5th Intern. Symp. on Functionally Graded Materials, Drezden, Germany, October 26–29, 1998. — P. 13–18.

- Pityulin A. N., Bogatov Yu. V., Rogachev A. S. Gradiet hard alloys // Intern. J. SHS. — 1992. — V. 1, N 1. — P. 111–118.
- 3. Merzhanov A. G. Theory and practice of SHS: worldwide state of the art // Intern. J. SHS. 1993. V. 2, N 2. P. 113–158.
- 4. Юхвид В. И. Динамическое взаимодействие высокотемпературного многофазного расплава с металлической основой // Изв. АН СССР. Металлы. 1988. № 6. С. 130–135.
- Yukhvid V. I., Kachin A. R., Zakharov G. V. Centrifugal SHS surfacing of the refractory inorganic materials // Intern. J. SHS. — 1994. — V. 3, N 4. — P. 321–332.
- 6. Горшков В. А., Качин А. Р., Юхвид В. И. CBC-металлургия литого композиционного материала Cr₃C₂—NiAl и защитные покрытия на его основе // Перспективные материалы. — 2014. — № 10. — С. 60–67.
- Shiryaev A. A. Thermodynamics of SHS: Modern approach // Intern. J. SHS. — 1995. — V. 4, N 4. — P. 351–362.

Поступила в редакцию 1/XII 2016 г.