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Углеродсодержащие (шунгитовые) породы содержат высокие концентрации микроэлементов, ко-
торые могут попадать в окружающую среду в результате выветривания. Шунгитовые породы представ-
ляют собой группу докембрийских углеродсодержащих пород Карелии вулканогенного и осадочного 
генезиса. В данной работе приводятся результаты изучения минерального и геохимического составов 
шунгитовых пород в районах их выхода на береговой линии Онежского озера. Взаимодействие вод 
Онежского озера с шунгитовыми породами привело: 1) к выносу большинства элементов за исключе-
нием K, Mn, Ba, Mg, для которых характерно увеличение концентраций в породах; 2) формированию 
ассоциаций вторичных минералов, таких как гематит, ярозит, гетит, халькозин, англезит, брукит, ги-
дроксиды Mn. На основании полученных результатов предложена модель преобразования высокоугле-
родистых (шунгитовых) пород водами Онежского озера.

Шунгитовые породы, минералогия, геохимия, Fe-Mn конкреции, Онежское озеро 

Alterations of High-Carbon (shungite) Rocks by the Lake Onega Waters:  
Mineralogy and Geochemistry of the Process
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Carbonaceous (shungite) rocks have high contents of trace elements, which can get to the environment 

through natural weathering. Shungite rocks are a group of Precambrian carbonaceous rocks of volcanic and 
sedimentary genesis in Karelia. In this work we present results of studying the mineral and geochemical compo-
sitions of shungite rocks at their outcrops on the shoreline of Lake Onega. The interaction of the Onega waters 
with shungite rocks led to: (1) the removal of most elements, except for K, Mn, Ba, and Mg, whose contents in 
the rocks increased; (2) the formation of an assemblage of secondary minerals, such as hematite, jarosite, goe-
thite, chalcocite, anglesite, brookite, and Mn hydroxides. Based on the results obtained, we propose a model of 
the transformation of high-carbon (shungite) rocks by the Onega waters.

Shungite rocks, mineralogy, geochemistry, ferromanganese nodules, Lake Onega

введение

Поступление тяжелых металлов в окружающую среду и длительное воздействие их высоких кон-
центраций потенциально опасно для здоровья человека. Особый риск возникает при достижении крити-
ческих концентраций в компонентах геосфер (почва, вода, донные отложения и т. д.), играющих важ-
ную роль в жизнедеятельности живых организмов. Воздействие даже низких концентраций повышает 
риск возникновения различных видов рака и эндемических заболеваний, например, болезнь Итай-Итай 
и синдром Минамата [Zhao et al., 2014; Arain et al., 2015; Aoshima, 2016; Núñez et al., 2016].

Геологическое строение территории является одним из ключевых факторов формирования гео-
химического фона, особенно для слабоурбанизированных регионов. Природное поступление тяжелых 
металлов составляет значительную долю в регионах с их высоким геохимическим фоном.

Одним из источников тяжелых металлов могут выступать породы, содержащие большое количе-
ство органических веществ и сульфидов, что делает их восприимчивыми к химическому выветриванию 
при воздействии окислительной среды [Nordstrom, 2011]. На данный момент в ряде научных и научно-
технологических работ установлено, что в процессе окисления шунгитовых пород на поверхности про-
исходит в первую очередь разрушение сульфидов, которое сопровождается увеличением пористости 
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породы и образованием серной кислоты [Бородулина, Мазухина, 2005; Рожкова и др., 2012; Berlendis et 
al., 2014; Petsch, 2014; Чаженгина и др., 2019]. 

Мобилизация микроэлементов в процессе окисления при химическом выветривании делает такие 
породы значимым источником тяжелых металлов, особенно если изначально породы имеют повышен-
ное их содержание. Породами, имеющими повышенное содержание тяжелых металлов, органических 
веществ и сульфидов, являются черные сланцы, угли, а также шунгиты [Ketris, Yudovich, 2009].

В соответствии с современными литературными данными, шунгитовые породы представляют со-
бой группу докембрийских углеродсодержащих пород Карелии вулканогенного и осадочного генезиса 
[Онежская…, 2011; Дейнес и др., 2021]. 

В настоящее время не существует единообразия в терминологическом определении углеродсо-
держащих пород докембрийского возраста: «углеродсодержащие породы», «шунгитовые породы», 
«шунгитоносные породы», «шунгиты», «максовиты» и др. [Филиппов, 2002; Калинин, Ковалевский, 
2013; Дейнес и др., 2021; и др.] В данной работе используется термин «шунгитовые породы» для описа-
ния всех пород заонежской свиты, содержащих шунгитовое вещество. Шунгитовое вещество — углеро-
дистое вещество, являющееся продуктом высокой степени карбонизации углеводородов. Изучение мо-
лекулярной структуры шунгитового углерода показало, что он представляет собой твердый углерод, 
компоненты которого могут находиться в состоянии, близком как к графиту, так и к газовой саже и 
стеклоуглероду, т. е. максимально разупорядоченным разновидностям [Голубев, 2000].

Шунгитовые породы широко распространены в Онежской структуре [Онежская…, 2011]. По ряду 
признаков установлено, что рассматриваемый шунгитовый комплекс горных пород является уникально 
сохранившимся окаменелым месторождением нефти. Признаки, подтверждающее это, включают в себя 
свидетельства нефтяных ловушек и путей миграции углеродистого вещества [Melezhik et al., 2009; Би-
скэ, 2017].

Шунгитовые породы, как и другие углеродсодержащие горные породы (черные сланцы), характе-
ризуются повышенным содержанием ряда микроэлементов (рис. 1). Согласно литературным данным, 
шунгитовые породы [Melezhik et al., 1999; Филиппов, 2013; Кулешевич и др., 2019; Кондрашова, Мед-
ведев, 2021], как и углистые сланцы [Ketris, Yudovich, 2009], обогащены следующими элементами от-
носительно верхней континентальной коры [Teylor, Mclennan, 1985]: V, Co, Ni, Cu, Zn, As, Se, Br, Mo, 
Ag, Cd, Sb, U, Hg. 

Шунгитовые породы способны выступать в качестве локального источника потенциально опас-
ных веществ [Котельников и др., 2021; Кондрашова, Медведев, 2021]. Процессы выветривания, особен-
но в прибрежной зоне Онежского озера, могут приводить к мобилизации токсичных элементов посред-
ством разрушения первичных минералов, миграции и накопления их во вторичных минералах. Так, 
например, в водах Максовского месторождения (карьер) установлено превышение ПДК для Li (7); Be 
(3); Mg (2); Ti (5); Cr (4.5); Mn (63); Fe (460); Co (4.5); Ni (370); Cu (175); Zn (520); Cd (17.5); Tl (32); Pb 
(1.5); U (30) — в скобках приведено соотношение концентрация/ПДК [Котельников и др., 2021].

Изучению преобразования шунгитовых пород в результате выветривания природными водами в 
местах добычи шунгита посвящено значительное количество статей [Пудовкин, Гульмалиева, 1996; Бо-
родулина, Мазухина, 2005; Рожкова и др., 2012; Чаженгина и др., 2019; и др.].

Рис. 1. Распределение микроэлементов в черных сланцах и шунгитовых породах, нормированных 
к содержанию в верхней континентальной коре (ВКК) [Taylor, McLennan, 1985]. 
* [Ketris, Yudovich, 2009]; ** [Филиппов, 2013]; *** [Кулешевич и др., 2019];**** [Melezhik et al., 1999].
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Так, например, в экспериментальной работе [Бородулина, Рыжаков, 2008] выявлено, что при вза-
имодействии шунгита с водой происходит повышение содержания (мкг/л) Fe в воде до 1.1 (при перво-
начальном содержании его в воде 0.2), Mn до 16 мкг/л (<10), Cu до 1.5 (1.0), Zn до 242 (при отсутствии 
в воде).

Однако в большей части работ говорится о моделировании процессов выветривания в лабораторных 
условиях. Наша работа посвящена изучению преобразования шунгитовых пород в природных условиях.

Цель работы — изучение современных процессов разрушения водой шунгитовых пород в райо-
нах их выхода на береговой линии Онежского озера.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В ходе экспедиционных работ 2021—2022 гг. в рамках изучения современных процессов разру-
шения водой шунгитовых пород проведен отбор проб указанных пород, галек и песка на береговой 
линии Онежского озера: о. Березовец (шунгитовый пляж), м. Карновалок, р-н Кузарандское Онего (в 
местах коренных выходов шунгитов и гора Андома (галька, коренные выходы отсутствуют) (рис. 2).

Аналитические работы по изучению отобранного фактического материала выполнены в ЦКП 
многоэлементных и изотопных исследований СО РАН, Новосибирск.

Валовые концентрации макроэлементов (K, Na, Ca, Al, Fe, Mn, Mg) и микроэлементов (Sr, Sb, Ba, 
Be, Cd, Ni, Co, Pb, Cr, Zn и т. д.) в пробах определялись методом атомно-абсорбционной спектрометрии 

Рис. 2. Карта-схема и фото мест отбора проб шунгитовых пород на береговой линии Онежского 
озера: 
в 2022 г. (1) — м. Карновалок, (2) — р-н Кузарандское Онего и (4) — гора Андома; в 2021 г. (3) — о. Березовец; фото коренных 
выходов максовитов и шунгитового пляжа (3а; 3б).
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на спектрометре Solaar M6 (Thermo Electron, США), снабженном зеемановским и дейтериевым коррек-
тором фона. Применялась пламенная (пламя ацетилен—воздух или закись азота—ацетилен) или элек-
тротермическая атомизация (выбор был обусловлен концентрациями элемента в пробе). Холостой рас-
твор подготовлен с использованием тех же реактивов и материалов, что и для анализируемых проб. Для 
проверки точности результатов анализа использовались государственные стандартные образцы (ГСО). 
Относительное отклонение значения массовой доли элемента в стандарте от аттестованного значения 
составляло ± 0.84 δ.

Анализ новообразованных минеральных фаз осуществлялся методом рентгеновской дифрактоме-
трии (XRD), дифрактометр ARLX’TRA (Thermo Fisher Scientific (Ecublens) SARL, Швейцария), излуче-
ние CuKα и методом КР-спектроскопии на спектрометре Jobin Yvon LabRAM HR800 (Horiba, Япония), 
оснащенном стереомикроскопом Olympus BX41 (Olympus, Япония). В качества источника возбуждения 
использовался твердотельный лазер с диодной накачкой и длиной волны 532 нм Torus (Laser Quantum, 
Великобритания). Спектры собраны со спектральным разрешением 2 см–1. Калибровка проводилась по 
эмиссионным линиям неоновой газоразрядной лампы 540.06 и 585.25 нм. Интерпретация полученных 
спектров выполнена с использованием базы данных RRUFF, обработка спектров (устранение шумов, 
корректировка базовой линии, идентификация пиков) проводилась с применением программного обе-
спечения OPUS версии 5.5.

Для исследования морфологии, фазового и химического составов образцов применялся сканиру-
ющий электронный микроскоп MIRA 3 TESCAN (Tescan, Чехия), оснащенный энергетическим спектро-
метром Oxford (Oxford Instruments, Великобритания) с использованием Si(Li) энергетического детекто-
ра Oxford, позволяющий определять элементный состав микровключений и микрочастиц, а также 
проводить количественный химический анализ. Для проведения количественного химического анализа 
по эталонам используется программа INCA Energy300.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ходе изучения современных процессов разрушения водой шунгитовых пород в районах их вы-
хода на береговой линии Онежского озера получены следующие результаты. В районе Кузарандское 
Онего установлено, что окатывание отдельных образцов валунно-галечникового материала, т. е. сгла-
живание их поверхности по сравнению с исходными шунгитами, сопровождается выщелачиванием и 
механическим разрушением микрочастиц углерода с сохранением геометрии каркаса, состоящего из 
мелкодисперстных кристаллических пластинок кварца размерами 1—10 мкм, мельчайших кристалли-
ков ярозита (рис. 3). Процесс сохранения геометрии каркаса шунгитовых пород при их выветривании 
описан в работе [Мосин, Игнатов, 2013]. 

По данным рентгенофазового анализа образцов шунгитовых пород с береговой линии Онежского 
озера, на рентгеновских дифрактограммах выявлено рентгеноаморфное гало в интервале углов 20—30° 
2Θ CuKα. Согласно материалам статьи [Тарасов и др., 2008], на рентгеновских дифрактограммах неиз-
мененного шунгита разных месторождений наблюдается рентгеноаморфное гало в интервале углов 
20—40° 2Θ CuKα, что указывает на наличие фазы, состоящей почти на 100 % из аморфного углерода. 
Кроме того, на рентгенограмме присутствуют системы узких рефлексов кристаллических фаз α-кварца, 
пирита, алюмосиликатов Na и K. Таким образом, наблюдаемое нами гало в интервале углов 20—30° 2Θ 
CuKα можно объяснить наличием фазы аморфного углерода. Стоит отметить, что на фоне гало также 
присутствуют системы узких рефлексов кристаллических фаз α-кварца, ярозита, полевых шпатов (с рез-
ким доминированием кпш) и слоистых силикатов (серицита, хлорита, иллита) (рис. 4). 

Сопоставление концентраций элементов в валунах, гальке, песке шунгитов, отобранных в при-
бойной береговой линии о. Березовец и концентраций этих же элементов в исходном шунгите, по дан-

ным [Филиппов, 2002; Садовничий, 2017], 
показало, что коэффициенты концентрации 
большинства элементов в образцах с пляжа 

Рис. 3. Фото СЭМ MIRA 3 Tescan (режим 
BSE) черной сажистой массы из каверны 
гальки (10 см) шунгита из зоны прибоя 
береговой линии Кузарандского Онего: 
1, 2 — образцы сохранения геометрии каркаса, состо-
ящего из тончайших пластинок, сложенных мелкодис
персным кварцем, ярозитом и остатками рентгено
аморфного углеродистого вещества.
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ниже единицы или близки к ней, что свидетельствует о процессах выщелачивания, за исключением 
концентрирования Mn, K, Ba, иногда Mg (рис. 5).

Схожие результаты о процессах выщелачивания элементов из шунгитовых пород при взаимодей-
ствии с водой отмечаются и в работе [Бородулина и др., 2020]. Авторами вышеуказанной работы пока-

Рис. 4. Дифрактограмма образцов шунгитовых пород из береговой линии о. Березовец Онежского 
озера.

Рис. 5. Распределение содержаний макро- и микроэлементов в валунах, гальке, песке шунгитов на 
береговой линии о. Березовец, нормированных к их содержанию в исходных максовских шунгитах 
[Филиппов, 2002; Садовничий, 2017].
1 — галька (до 2 см), 2 — крупная галька, 3 — песок, 4 — валун.
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зано, что шунгитовые породы (а именно широко представленные в них сульфиды) играют важнейшую 
роль в формировании состава подземных вод Онежской структуры.

Визуальный осмотр отобранного материала позволил установить, что в валунно-галечниковом 
материале по трещинам, пустотам и на поверхности в процессе преобразования происходит в первую 
очередь разрушение пирита (FeS2), что приводит к увеличению пористости поверхности гальки и валу-
нов шунгитовых пород и образованию в пустотах и трещинах вещества черного, желтого и красного 
цветов (рис. 6). По данным рентгенофазового анализа вещество сажистого цвета сложено агрегатом 
графит + кварц + ярозит; вещество красного цвета — агрегатом гематита; вещество желтого цвета — 
агрегатом ярозита +  гетит + гидрогетит.

В результате проведенных исследований на сканирующем электронном микроскопе в валунах, 
гальке, песке с береговой линии в местах выхода коренных шунгитовых пород установлено, что в ва-
лунно-галечниковом материале по трещинам, в пустотах выщелачивания на поверхности происходит 
замещение слюд и амфибола железистым хлоритом, иллитом, а пирита — гетитом, ярозитом, а других 
акцессорных минералов (ильменита, титаномагнетита, рутила, титанита, халькопирита, сфалерита, мо-
нацита, галенита) — халькозином, гетитом, англезитом, брукитом (рис. 7).

На поверхности гальки шунгитов нами установлены бактериальные пленки, аналогичные тем, что 
обнаружены на ЖМК из океанов [Лысюк, 2008] (рис. 8). Данный факт позволяет предположить, что 
формирование новообразованных минералов происходит при воздействии микробиоты.

Активное участие микробиологических процессов в преобразовании минеральных форм шунги-
товой гальки (особенно сульфидов) приводит к образованию гематита, а также к появлению многочис-
ленных псевдоморфоз вторичных минералов по акцессорным (гетита по магнетиту, хлорита по муско-
виту или амфиболу, брукита по титаниту, халькозина по халькопириту), а в пустотах выщелачивания 
формируются срастания мелких зерен этих же вторичных минералов (друзочки хлорита, гетита, бруки-
та, отдельные зерна самородного серебра и т. д. (рис. 9). 

Рис. 6. Фото галек (до 10 см) шунгита из зоны прибоя береговой линии Кузарандское Онего с пу-
стотами, заполненными рыхлым веществом.

Рис. 7. Фото СЭМ MIRA 3 Tescan (режим BSE) валунно-галечного материала: 
гальки (до 10 см) шунгита (а) из зоны прибоя м. Карновалок с кавернами (б), заполненными пористым веществом, представленным 
срастанием крупных отдельных зерен (г): хлорита (1), кварца, кпш (2), амфибола (3), серицита, створок диатомей (4) и агрегатов 
тонкодисперсных зерен англезита (в): кварца (1), хлорита (2), тончайших пластинок иллита (3), кпш; д — кристаллы брукита (1) 
в ассоциации со створками диатомей (2) по титаниту; е — гетит (1) по магнетиту в ассоциации со створками диатомей (2).
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Прибрежные отложения о. Березовец представлены валунами, гальками, гравием шунгитовых по-
род и материалом более мелкого размера. Среди материала размерностью менее 2 мм начинают преоб-
ладать округлые частицы черного цвета. Более детальное изучение данных частиц показало, что они 
представляют собой Mn конкреции. Стоит отметить, что среди валунов, галек, гравия шунгитовых по-
род минералы марганца не установлены. 

Центральная часть конкреции может быть представлена обломками шунгитовых пород, чаще зер-
нами кварца, либо отвечать по составу самой конкреции (рис. 10).

Интересно, что в валунах Mn минералы не встречаются в массе шунгитовых пород и в виде от-
дельных агрегатов. Небольшое количество марганца в качестве изоморфной примеси выявлено в гети-
те, который формируется по трещинам, зонам контакта и в пустотах шунгитовых пород при их разру-
шении в зоне прибоя совместно с ярозитом (рис. 11). В составе минералов, слагающих шунгитовые 
породы, каких-либо примесей Mn не выявлено. Фрагменты шунгитовых пород размерностью меньше 

Рис. 8. Фото СЭМ MIRA 3 Tescan (режим BSE) бактериальных пленок на поверхности шунгитовой 
гальки  береговой линии м. Карновалок (а) и (б) на поверхности океанической ЖМК, по [Лысюк, 
2008].

Рис. 9. Фото СЭМ MIRA 3 Tescan (режим BSE) галек (от 1 до 10 см) шунгита из зоны прибоя бере-
говой линии Кузарандского Онего с пустотами, 
заполненными: а — рентгеноаморфными мелколистоватыми выделениями гематита (1), б — псевдоморфозами гетита по кри-
сталлам магнетита (1) в хлорите (2), в — одиночными зернами самородного серебра (1) в хлорите, е — скелетными кристаллика-
ми брукита (1) в ассоциации с хлоритом (2); г — мелкие листоватые кристаллы мусковита (1) во внутренней части гальки шунги-
та; д — псевдоморфозы хлорита (1) по листоватым кристаллам мусковита с поверхностной части гальки шунгита в ассоциации 
со створками диатомей (2).
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5 мм полностью разрушаются и не встречаются в песчаной фракции. В формировании железомарганце-
вых конкреций важную роль играет деятельность микроорганизмов, особенно бактерий [Nealson, 2006].

Сложность диагностики Mn минералов рентгеноструктурными методами связана с морфологией 
их выделений (тонкодисперсные агрегаты), близостью параметров элементарной ячейки, схожими 
структурами и т. д. Для установления основной минеральной фазы Mn конкреций был использован ме-
тод рамановской спектроскопии.

Получены 10 спектров из центральных и краевых частей Mn конкреций, при этом из каждой от-
дельной части снимались спектры с разной степенью кристалличности. На рисунке 12 представлена 
часть полученных спектров.

Все полученные спектры характеризуются одинаковыми слабыми полосами при 492 см–1 и широ-
кими полосами при 581 и 645 см–1. Для ряда спектров пики комбинационного рассеяния при волновых 
числах 581 и 645 см–1 сливаются в один пик. Согласно литературным данным, спектральные положения 
пиков комбинационного рассеяния минералов Mn фазы проявляются в основном при волновых числах 

Рис. 10. Фото СЭМ MIRA 3 Tescan (режим BSE) Mn конкреций размером < 2 мм: 
а — общий план Mn конкреций (2 мм в диаметре и меньше), имеющих колломорфное зонально-концентрическое строение; б — 
фрагмент марганцевой конкреции, где зональность обусловлена степенью кристалличности Mn фазы.

Рис. 11. Фото СЭМ MIRA 3 Tescan (режим BSE) валунов береговой линии о. Березовец: 
а — в зоне контакта агрегата шунгитовой породы (1) и зонально-концентрического кремнезема (2) находится фосфат железа (3) с 
примесью марганца до 1 %, со структурой удлиненных листоватых зерен — врезка (в); б — трещина в кристаллическом агрегате 
кварца (1), заполненная агрегатом ярозита и гетита с небольшой примесью марганца (до 1 %) (2).
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ниже 900 см–1 [Bernardini et al., 2019]. Положения пиков 
комбинационного рассеяния полученные нами, соответ-
ствует пикам для тодорокита (Na, Ca, K, Ba, Sr)1–x(Mn, 
Mg, Al)6O12·3 – 4H2O и голландита (Ba(Mn4+6Mn2

3+)O16). 
Согласно изучению минеральных фаз данных конкре-
ций на СЭМ, они имеют разную степень кристаллично-
сти и содержат всегда Ba (от 2 до 5 %) и Ca (от 0,5 до 
2.0 %) (см. рис. 9). Таким образом, можно сделать пред-
положение, что конкреции преимущественно слагаются 
голландитом разной степени кристалличности.

Стоит отметить, что подобные конкреции марган-
ца обнаружены только в прибрежных отложениях о. Бе-
резовец.

На участие микроорганизмов в формировании Mn 
конкреций указывает ряд факторов: 

1. Шунгитовые породы при разрушении водой яв-
ляются источником высоких концентраций углерода, что, по всей видимости, играет благоприятную 
роль для жизнедеятельности микроорганизмов. В кавернах крупных галек шунгитовых пород формиру-
ются оксиды Mn, а минералы Fe (ярозит, гетит, фосфат железа) образуются по пириту, которого много 
в этих породах (рис. 13, а). Наряду с гидроксидами Mn (см. рис. 13, б, в) в этих кавернах присутствуют 
скелеты диатомовых водорослей (см. рис. 13, г). 

2. Находки биоморфных структур в Mn конкрециях (см. рис. 13, д, е). Поверхность глобул подоб-
на поверхности бактерий, чехол которых выполнен минерализованным гликокаликсом [Школьник и 
др., 2012]. Это напрямую указывает на участие живых организмов в формировании конкреций. Подоб-

Рис. 12. Рамановские спектры Mn конкреций: 
а — центральная часть; б — центральная часть с плохой кристаллич-
ностью; в — краевая часть.

Рис. 13. Фото СЭМ MIRA 3 Tescan (режим BSE) гравия из зоны прибоя о. Березовец (Онежско озеро): 
а — общий план гравия: среди обломков встречаются зерна шунгитовой породы, конкреции марганца, зерна кварца; б — зерно 
шунгитовой породы (1) с кавернами растворения, заполненными оксидом марганца (2, 3); в — каверна растворения шунгитовой 
породы, заполненная агрегатом с кристалломорфной микроструктурой кремнезема (1), насыщенного углеродистым веществом 
в рубашке зерен, состоящих из иллита и оксидов Mn (2); г — каверна растворения шунгитовой породы, заполненная окислами 
марганца (1) и скелетами диатомовых водорослей (2); д — биоморфные структуры в Mn конкрециях; е — биоморфные структуры 
в строматолитах, по [Lozano, Rossi, 2012].
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ные структуры описаны в ферромарганцевых строматолитах пещеры Эль Соплао (см. рис. 13, е) [Lozano, 
Rossi, 2012]. Известно, что марганец входит в состав ферментов, способствующих окислительно-вос-
становительным процессам биоты и донных отложений. Это обеспечивает функцию биоты — извлече-
ние марганца из воды. 

3. Состав Fe-Mn конкреций, а именно абсолютное доминирование марганца над железом. Как 
было уже отмечено выше, формирование Fe-Mn конкреций может идти при окислении растворенного 
Mn2+ с образованием нерастворимых оксидов. При этом и Fe2+ должно подвергаться окислению и вы-
падать в осадок. Количество железа в воде на порядки больше марганца, но конкреции в зоне прибоя 
имеют исключительно Mn состав. В публикациях ряда авторов описано, что за счет наибольшей гео-
химической подвижности, которой обладает марганец относительно других элементов конкреции, фор-
мирующиеся на поверхности илы более обогащены Mn, тогда как в погребенных резко преобладает Fe 
[Moore, 1981; Авдонин и др., 2007; Дубинин, 2008; и др.]. Сохранение восстановительных условий в 
воде в зоне прибоя обусловлено непосредственным контактом воды и шунгитовых пород, богатых угле-
родом. Углерод в шунгитах выступает в роли сильного восстановителя, который поглощает кислород из 
воды. В работе [Калинин, 2008] показано, что в ходе экспериментов установлено, что шунгит поглоща-
ет растворенный кислород активнее, чем железо.

Согласно литературным данным, количество Mn и Fe новообразований находится в тесной связи 
с гидрологическим режимом [Брусницын, 2012; Основы…, 2020; и др.]. Присутствие серы в образцах 
шунгитовых пород в значительных количествах (в виде пирита) является важным параметром для рас-
пределения железа [Кузнецов, 1970]. Активное окисление пирита приводит к образованию раствори-
мых форм железа, образованию сульфата и впоследствии отложению ярозита.

Как показывают работы [Aller, Rude, 1988; Canfield et al., 1993; Schippers, Jorgensen, 2001], Mn 
может поддерживаться в восстановленной форме в результате реакции с сульфидами во время раннего 
выветривания. Отсутствие карбонатной щелочности ограничивает образование карбонатов [Burdige, 
1993], а Mn2+ остается в растворе в виде свободного иона или органического комплекса, который может 
легко мигрировать [Calvert et al., 1980; McDaniel et al., 1992; Lee et al., 1997; Mucci et al., 2003; Perkins, 
Mason, 2015].

ВЫВОДЫ

Наблюдаемое обогащение K, Mn, Ba, Mg в процессе выветривания объясняется образованием 
следующих минералов: обогащение калием происходит за счет формирования значительных количеств 
ярозита при разрушении пирита в образцах шунгитовых пород любой размерности; магнием обогащены 
валуны за счет процесса хлоритизации; повышенное содержание марганца отмечается в агрегатах круп-
ной гальки и песка за счет новообразований микроконкреций и корочек оксидов марганца. 

Проникновение воды в неоднородные по структуре дунитовые породы по преимущественным 
путям (крупным трещинам, макропорам, карманам) постепенно сменяется изменением окислительно-
восстановительного потенциала, когда вода проникает в более тонкие поры и пустоты. Это обеспечива-
ет вовлечение новых дополнительных порций растворимых соединений железа и образование гематита, 
т. е. в условиях более восстановительной обстановки осаждение железа начинает происходить уже вну-
три образцов, а марганец, находясь в растворенном виде, постепенно выносится. 

При поступлении все новых порций воды и господстве аэробных условий железо накапливается 
непосредственно внутри образцов и на поверхности шунгитовых пород в виде гематита, ярозита, гети-
та, а марганец выносится водами.

Нахождение марганца в воде регулируется количеством растворенного кислорода в воде, а имен-
но условиями водообмена вблизи выходов шунгитоносных пород. Можно выделить принципиально два 
различных случая: 1) в условиях большой проточности вод, т. е. обогащения придонных вод кислоро-
дом (о. Березовец) происходит окисление сконцентрированного в водах марганца уже в зоне прибоя и 
перевод его в твердое состояние (образование конкреций); 2) в условиях застойного водообмена в зоне 
контакта образца шунгита с водой (мелководные заливы мысов Карноволок и Кузаранда-Наволок) 
большие количества марганца аккумулируются в водной толще и переносятся на большее расстояние, и 
в этих условиях на пляжах не формируются новообразованные конкреции марганца.

Работа выполнена по государственному заданию ИГМ СО РАН № 122041400193-7, при финансо-
вой поддержке Минобрнауки РФ и, частично, при финансовой поддержке РНФ в рамках научного про-
екта № 18-17-00176-п.
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