2017. Том 58, № 3

Март – апрель

C. 460 – 468

УДК 542.128.1

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СВЯЗЕЙ АЛЮМИНИЙ—УГЛЕРОД В СОЕДИНЕНИЯХ ТРЕХКООРДИНИРОВАННОГО АЛЮМИНИЯ

Н.В. Алексеев

Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, Москва, Россия E-mail: nalekseev1@rambler.ru

Статья поступила 10 декабря 2015 г.

С доработки — 17 ноября 2016 г.

Методами DFT и HF с использованием программного комплекса PC GAMESS-Firefly проведены расчеты пространственных и электронных структур молекул трехкоординированного алюминия со связями Al—C. Методами NBO и AIM определены основные характеристики связей Al—C в этих молекулах. Показано, что по своим топологическим характеристикам связи Al—C могут быть охарактеризованы как ослабленные связи "промежуточного типа", близкие к связям между атомами с "закрытыми оболочками".

DOI: 10.15372/JSC20170302

Ключевые слова: квантовая химия, метод NBO, метод AIM.

Органические соединения алюминия со связями Al—C уже многие десятилетия являются неизменными объектами исследований специалистов в области синтетической и теоретической органической химии. Они широко используются в тонком органическом синтезе и в промышленности [1—5]. Ученых интересуют своеобразные химические свойства этих соединений и необычное строение их молекул, в которых координационное число атома алюминия, как правило, больше величины, определяемой его формальной валентностью. Исследованиям свойств этих соединений и строения их молекул разнообразными физико-химическими методами и методом квантовой химии посвящено немало работ [6—22], но квантово-химических расчетов распределения электронной плотности и топологических характеристик связей Al—C до сих пор не проводилось, хотя результаты этих расчетов могут представлять большую ценность для всех исследователей, работающих в области химии алюминийорганических соединений. Поэтому нами было предпринято настоящее исследование электронных структур молекул — триалкилаланов с различными заместителями у атомов углерода и алюминия.

Расчеты структур молекул и волновых функций выполнены с использованием программного комплекса PC GAMESS-Firefly [23]. Для визуализации молекулярных графов, распределения электронной плотности, критических точек и лапласиана электронной плотности использовались программы MORPHY и AIMALL [24, 25].

Расчеты молекул алкилаланов с использованием высоких приближений проводились много раз [20—22]. В базе данных NIST приведены результаты расчетов молекулы триметилалюминия. С использованием метода DFT (функционал B3LYP, базисы 6-31+G**, 6-311G*, 6-311G**, 6-31G(2*df*,*p*), TZVP, сс-pVDZ и сс-pVTZ) были получены следующие величины $d_{(AI-C)}$, Å: 1,9747, 1,9723, 1,9705, 1,9646, 1,9749, 1,9772 и 1,9702 [27]. Наилучшее совпадение вычисленных величин с экспериментальной величиной $d_{(AI-C)} = 1,957(3)$ Å, полученной мето-

[©] Алексеев Н.В., 2017

Таблица 1

Межатомное	Экспери- мент, Å	Исполь прибл	зованные ижения	Валентный	Экспери-	Использованные приближения		
расстояние		B3LYP/6- 31+G**	B3LYP/6- 311G(2 <i>df</i> , <i>p</i>)	угол	мент, град.	B3LYP/6- 31+G**	B3LYP/6- 311G(2 <i>df</i> , <i>p</i>)	
Три- <i>t</i> -бутилалюминий								
Al—C _{cp}	2,005(8)	2,023	2,032	C—Al—C _{cp}	118,5(0,3)	120,0	119,9	
C—C(Me) _{cp}	1,532(11)	1,541	1,545	C—C—Al _{cp}	111,1(0,5)	110,9	110,9	
С—Н	0,960(14)	1,096 1,095		C—C—C _{cp}	$C - C - C_{cp}$ 107,6(0,5)		108,0	
Трициклопентадиенилалюминий								
Al—C _{cp}	2,030(7)	2,025	2,026	C—Al—C _{cp}	119,9(0,2)	120,0	120,0	
C—C _{cp}	1,475(9)	1,459	1,461	C—C—Al _{cp}	95,5(0,4)	96,4	97,4	
C=C _{cp}	1,416(11)	1,383	1,381	C—C—C _{cp}	108,7(0,5)	108,3	108,3	
$HCCH_{cp}$	1,436(11)	1,428	1,429	C=CC(Al) _{cp}	102,1(0,5)	105,6	105,5	
С—Н	0,959(15)	1,081	1,082	C=CC _{cp}	112,7(0,6)	108,9	108,9	

Экспериментальные и вычисленные величины структурных параметров три-t-бутил-алюминия и трициклопентадиенил-алюминия

дом электронографии молекул [7], достигается при использовании базиса 6-311G(2df,p). К такому же выводу пришли и авторы работ [20—22], исследовавшие комплексы Al(CH₃)₃ и его димера с галогеносодержащими основаниями Льюиса. Таким образом, методом DFT (функционал B3LYP и базис 6-311G(2df,p)) можно с достаточной точностью получить значения величин структурных параметров интересующих нас молекул.

Но чтобы полностью убедиться в том, что это приближение позволит хорошо передавать характерные особенности строения конкретных молекул соединений трехкоординированного алюминия со связями Al—C, методом DFT (функционал B3LYP) с использованием базисных наборов 6-31+G** и 6-311G(2df,p) были предприняты расчеты строения молекул три-*t*-бутилалюминия и трициклопентадиенилалюминия. Как видно из данных, представленных в табл. 1, экспериментальные и вычисленные величины основных структурных параметров этих молекул хорошо соответствуют друг другу. Расширение базисного набора слабо влияет на величины вычисленных межатомных расстояний и валентных углов, но все же данные, полученные с использованием приближения B3LYP/6-311(2df,p), выглядят в целом предпочтительнее. Поэтому в дальнейшем для расчета строения молекул использовалось именно это приближение.

Были исследованы молекулы с открытыми цепями и циклические молекулы. На рис. 1 представлены вычисленные величины их структурных параметров. Во всех молекулах с открытыми цепями, в четырехчленном цикле молекулы бис(µ2-метилен)-диметилдиалюминий (XII) и в шестичленном цикле молекулы три((µ2-3,3-диметил)-метилалюминий) (XIII) все три связи атомов алюминия лежат в одной плоскости. Аналогичное расположение связей атома алюминия наблюдается и в молекулах AlCl₃, AlBr₃, AlI₃ и Al(CH₃)₃ в газовой фазе [27]. Длины связей Al—С изменяются от 1,946 до 2,032 Å. Самая короткая связь Al—С — в дихлорметилалюминии (III), а самая длинная — в три(*трет*-бутил)алюминии (IX) (см. рис. 1). Замена метильных групп у атома Al атомами хлора или фенильными группами не приводит к заметному изменению длины связи Al-C. Не изменяются существенным образом эти величины и в тех молекулах, у которых массивные заместители у атома Al могут располагаться таким образом, что не возникало существенных стерических затруднений. Например, в молекуле трибензилалюминия (VIII), где фенильные группы находятся далеко от Al и могут развернуться таким образом, чтобы "не мешать" друг другу, связи Al-C равны по нашим данным 1,984 Å, а по данным рентгеноструктурного исследования [11] — 1,989 Å. С ростом стерических затруднений связи Al—C увеличиваются до 2,026 Å в три(циклопента-2,4-диен-1-ил)алюминии (X) (эксперимент — 2,030 Å [11]) и до 2,032 Å в три(*трет*-бутил)алюминии (**IX**) (эксперимент — 2,008 Å [12]).

461

H₂C -CH3 CH₃ Триметилалюминий (I) Диметилалюминийхлорид (II) C-Al-C 120,0° cp. Al-C 1,965 Å Al-C 1,952 Å 1,957(3) Å [7]* 1,935(4) Å [9]* Al-Cl 2,136 Å 2,303(5) Å [9]* НĊ Диметилфенилалюминий (IV) Дифенилметилалюминий (V) Al–CMe 1,967 Å C–Al–C 120,0°_{cp.} Al-CMe 1,968 Å C-Al-C 120,0° cp. Al-CPh 1,965 Å Al-C-C 121,6° cp. Al–CPh 1,966 Å C==C 1,401_{cp.} Å C==C 1,401_{cp.} Å CH₂ ЮH Н Трикарбоксилалюминий (VII) Трибензилалюминий (VIII) C-Al-C 120° cp. Al–C 1,966 Å Al-C 1,984 Å Al-C-O 77,9° cp. C=O 1,572 Å 1,989(6) Å [11]* C–CPh 1,405_{cp.} Å C=C 1,396_{cp.} Å CH₃ Три(циклопента-2,4-диен-1-ил)-(µ2-Метилен)-бис(диметилалюминий (Х) алюминий) (XI) C–Al–C 120,0° cp. Al–C–Al 119,1° cp. Al–CH₃ 1,972 Å Al–C 2,026 Å C-Al-C 120,0°_{cp.} 2,030(5) Å [10]* Al–C–C 97,4°^{cp.} 1,957(6) Å[15]* C=C-C 105,5°_{cp} C–C 1,461 Å_{cp.} Al-CH₂ 1,955 Å C=C 1,381 Å_{cp} 1,938(6) Å [15]* H₃(CH₃ H

Н.В. АЛЕКСЕЕВ Cl ClCH₂ Метилалюминийдихлорид (III) C-Al-C 127,9° Cl-Al-Cl 116,7° Al-C 1,946 Å C-Al-Cl 116,0° Al–Cl 2,107 Å Cl-Al-C 121,6° Три(гидроксиметил)алюминий (VI) C–Al–C 120,0°_{cp.} Al–C 1,966 Å Al–C–O 77,9° cp. Al-C-C 120,9° cp. С–О 1,572 Å Три(*трет*-бутил)алюминий (IX) C–Al–C 120°_{cp.} Al–C–C 109,4°_{cp.} C–Al–C 120,0°_{cp.} Al–C 2,032 Å 2,004(8) Å [12]* АІ-С-С 110,9°ср. С-С 1,545_{ср.} Å С-С-С 108,0°ср. -CH₂ Бис(µ2-метилен)-диметилдиалюминий (XII) $\begin{array}{c} \text{Al-CH}_3 \ 1,968 \ \text{\AA} & \text{C-Al-C} \ 132,0^\circ \text{cp.} \\ \text{Al-CH}_2 \ 1,987 \ \text{\AA} & \text{Al-C-Al} \ 94,7^\circ \text{cp.} \\ \text{Al-C-Al} \ 85,2^\circ \text{cp.} \end{array}$

* Помечены экспериментальные величины длин связей.

Три((µ2-3,3-диметил)-метилалюминий) (XIII) Al-CH₃ 1,971 Å CH₂-Al-CH₂ 113,6°_{cp.} Al-CH₂ 1,963 Å CH₃-Al-CH₂ 123,1°_{cp}.

Рис. 1. Строение и вычисленные величины основных структурных параметров исследованных молекул

Таблица 2

Связь	Длина Связь связи, $\rho(\mathbf{r}_{c}) \nabla^{2}\rho(\mathbf{r}_{c})$		$\nabla^2 \rho(\mathbf{r}_c)$	Собственные значения гессиана (r _c)			I кинетиче	Зклад еской энергии	$V^{\rm e}(\mathbf{r}_{\rm c})$	$E^{e}(\mathbf{r}_{c})$	
	Å _(выч)			λ_1	λ_2	λ_3	$ \lambda_1 /\lambda_3$	$G^{e}(\mathbf{r}_{c})$	$G(\mathbf{r}_{c})/\rho(\mathbf{r}_{c})$		
				Т	риметил	алюми	ний I				
Al—C	1,965	0,087	0,292	-0,127	-0,120	0,539	0,229	0,104	1,195	-0,135	-0,031
				Дим	етилхлор	оидалю	миний l	Π			
Al—C	1,952	0,089	0,286	-0,129	-0,121	0,536	0,233	0,105	1,179	-0,139	-0,033
Al—Cl	2,136	0,068	0,285	-0,094	-0,091	0,470	0,197	0,088	1,294	-0,105	-0,016
				Дих.	поромети	илалюм	иний П	Ι			
Al—C	1,946	0,094	0,295	-0,135	-0,126	0,556	0,235	0,111	1,181	-0,149	-0,038
Al—Cl	2,107	0,073	0,306	-0,102	-0,098	0,506	0,198	0,097	1,329	-0,117	-0,020
				Дим	етилфен	илалюм	иний Г	V			
Al-C _{Me}	1,968	0,087	0,285	-0,125	-0,119	0,530	0,230	0,102	1,172	-0,134	-0,032
$Al - C_{Ph}$	1,965	0,087	0,321	-0,135	-0,121	0,577	0,222	0,109	1,253	-0,139	-0,030
Дифенилметилалюминий V											
Al-C _{Me}	1,967	0,087	0,286	-0,126	-0,119	0,532	0,230	0,103	1,184	-0,135	-0,032
Al-C _{Ph}	1,966	0,087	0,318	-0,135	-0,122	0,575	0,223	0,109	1,253	-0,139	-0,030
				Три(ги,	дроксиме	етил)ал	юминиі	йVI			
Al—C	1,966	0,084	0,315	-0,127	-0,120	0,556	0,222	0,105	1,250	-0,131	-0,026
				Трин	арбокси	лалюми	ний VI	I			
Al—C	1,966	0,081	0,236	-0,120	-0,111	0,467	0,247	0,089	1,099	-0,119	-0,030
				Трі	ибензила	люмин	ий VIII				
Al—C	1,984	0,084	0,265	-0,120	-0,114	0,500	0,234	0,097	1,154	-0,127	-0,030
				Три(п	<i>рет-</i> бут	ил)алю	миний	IX			
Al—C	2,032	0,083	0,236	-0,115	-0,109	0,461	0,243	0,090	1,084	-0,121	0,031
Три(циклопента-2,4-диен-1-ил)алюминий Х											
Al—C	2,026	0,073	0,216	-0,097	-0,085	0,399	0,228	0,078	1,068	-0,103	-0,025
			(μ.	2-Метил	ен)-бис(д	циметил	алюми	ний) XI			
Al—CH ₃	1,972	0,086	0,285	-0,125	-0,118	0,528	0,230	0,102	1,186	-0,132	-0,030
Al—CH ₂	1,955	0,084	0,287	-0,121	-0,107	0,516	0,221	0,101	1,202	-0,130	-0,029
			Бис	с(µ2-мет	илен)-ди	метилд	иалюми	ний XII			
Al—CH ₃	1,968	0,087	0,285	-0,124	-0,118	0,527	0,230	0,102	1,172	-0,134	-0,032
Al—CH ₂	1,987	0,082	0,271	-0,110	-0,106	0,488	0,221	0,097	1,183	-0,126	-0,027
			Три	((µ2-3,3-	диметил)-метил	алюми	ний) ХШ			
Al—CH ₃	1,971	0,086	0,285	-0,124	-0,118	0,527	0,230	0,102	1,186	-0,132	-0,030
Al—CH ₂	1,962	0,083	0,284	-0,120	-0,106	0,509	0,222	0,099	1,193	-0,129	-0,030

Топологические характеристики связей Al—C в исследованных молекулах

Анализ литературных данных Кембриджского банка структурных данных [28], выполненный с помощью программы MOGUL [29], показал, что в соединениях трехкоординированного алюминия со связями Al—C, длины этих связей изменяются в пределах от 1,920 до 2,030 Å. При этом самые короткие связи реализуются в тех молекулах, где атом Al связан не только с атомами углерода, но и с атомами кислорода или азота [13, 14]. В молекулах, где с атомом Al связаны

463

Puc. 2. Корреляционные зависимости между величинами топологических параметров $V^{e}(\mathbf{r}_{c})$ vs $\lambda_{1,2(средн)}$ и $G^{e}(\mathbf{r}_{c})$ vs λ_{3} в критических точках (3, -1) связей Аl—С исследованных молекул

массивные заместители, длины связей Al—C увеличиваются до 2,0 Å и более [11, 12]. Таким образом, экспериментальные данные, полученные методом рентгеноструктурного анализа, и вычисленные нами величины хорошо соответствуют друг другу.

В табл. 2 представлены топологические характеристики связей Al—C исследованных молекул, полученные с использованием приближения HF/6-311G(2*df*,*p*). Как видно из полученных данных, у всех молекул на поверхности $\rho(r)$ (функции, описывающей распределение электронной плотности в молекуле) между атомами Al и C имеются (следуя терминологии P. Бейдера [31]) критические точки типа (3, -1) с координатами \mathbf{r}_c . Наличие таких точек является необходимым условием существования межатомной связи.

Собственные значения гессиана $\rho(\mathbf{r}_c) \lambda_1 - \lambda_2$ характеризуют степень "поперечного сжатия электронной плотности"* в критической точке \mathbf{r}_c . Чем больше эта величина, тем выше должна быть плотность потенциальной энергии $V^e(\mathbf{r}_c)$. Численный анализ полученных данных показал, что между величинами $\lambda_{1,2(средн)}$ и $V^e(\mathbf{r}_c)$ связей Al-C исследованных молекул существует линейная зависимость (рис. 2, *a*). Характеристикой "расширения электронной плотности"* от межатомной поверхности в сторону каждого из ядер атомов, образующих связь, является собственное значение гессиана $\rho(\mathbf{r}_c) - \lambda_3$. Чем больше расширение, тем больше плотность кинетической энергии $G^e(\mathbf{r}_c)$ в критической точке. И здесь для связей Al-C исследованных молекул между величинами λ_3 и $G^e(\mathbf{r}_c)$ существует простая линейная зависимость (см. рис. 2, *б*).

Величины лапласиана электронной плотности $\nabla^2 \rho(\mathbf{r}_c)$ в критических точках (3, -1) у всех молекул положительны, а отношения собственных значений гессиана $\rho(\mathbf{r}_c)$ ($|\lambda_{1,2(cped)}|/\lambda_3$) в этих точках намного меньше единицы. Это указывает на то, что характерной особенностью связей Al—C является расширение электронной плотности по направлению от межатомной поверхности в сторону каждого из ядер атомов.

Как видно из данных табл. 3, валентные электроны атомов алюминия почти полностью сосредоточены в "околоатомном бассейне"*. У атомов углерода это явление выражено в меньшей степени, но и там более 70 % электронов находятся в околоатомных областях. Среднее количество электронов, делокализованных между атомами связей Al—C, нигде не превышает 0,4, во всех исследованных соединениях атом Al имеет высокий положительный заряд (см. табл. 3), под действием которого происходит деформация электронных облаков соседних отрицательно заряженных атомов.

Это хорошо видно на контурных картах распределения лапласиана электронной плотности исследованных соединений. Атом алюминия со всех сторон окружен областями пониженной электронной плотности (рис. 3). В сторону Al тянутся отчетливо выраженные "языки" деформированных электронных облаков соседних атомов.

^{*} По терминологии Р. Бейдера [31].

465

Таблица З

		сктроппо	с ларакте	ристики со	лэси итоми	1110 40	слеоованны	к молекулал		
Моле- кула	Связь	Число эл в атомных	ектронов бассейнах	Локалі электронов	изация в атомах, %	DI _(A,B) * связи	Deloc _(A,B) **	Deloc _(B,A) ***	Заряд атомов	
I	Al—C	10,6	6,6	94,6	72,8	0,341	1,61	2,57	2,41	-0,63
Π	Al—C	10,6	6,7	94,6	72,8	0,371	1,76	2,78	2,42	-0,672
	Al—Cl	10,6	17,9	94,6	98,4	0,310	1,76	0,87	2,42	-0,860
III	Al—C	10,5	6,7	94,7	72,7	0,397	1,88	2,97	2,44	-0,692
	Al—Cl	10,5	17,8	94,7	98,4	0,334	1,88	0,94	2,44	-0,844
IV	Al—C	10,6	6,6	94,6	72,8	0,345	1,63	2,60	2,42	-0,644
	Al-C _{Ph}	10,6	6,7	94,6	72,2	0,327	1,63	2,44	2,42	-0,710
\mathbf{V}	Al—C	10,6	6,6	94,6	72,7	0,345	1,63	2,60	2,42	-0,645
	Al-C _{Ph}	10,6	6,7	94,6	72,2	0,331	1,63	2,46	2,42	-0,714
VI	Al—C	10,5	6,1	94,5	73,1	0,273	1,30	2,23	2,48	0,145
VII	Al—C	10,6	4,9	94,5	73,0	0,322	1,52	3,31	2,38	1,13
VIII	Al—C	10,6	6,7	94,5	70,5	0,336	1,59	2,55	2,39	-0,697
IX	Al—C	10,6	6,6	94,4	70,2	0,344	1,62	2,60	2,36	-0,602
Х	Al—C _{Cp}	10,6	6,7	94,7	72,1	0,331	1,56	2,47	2,43	-0,719
XI	Al-CH ₂	10,6	7,5	94,5	78,1	0,360	1,70	2,42	2,41	-1,49
	Al-CH ₃	10,6	6,6	94,5	72,7	0,342	1,61	2,57	2,41	-0,636
XII	Al-CH ₂	10,6	7,5	94,5	78,1	0,345	1,63	2,30	2,39	$-1,\!48$
	Al-CH ₃	10,6	6,6	94,5	72,7	0,324	1,53	2,78	2,39	-0,651
XIII	Al-CH ₂	10,6	7,5	94,5	77,9	0,353	1,67	2,36	2,40	-1,48
	Al—CH ₃	10,6	6,6	94,5	72,7	0,349	1,64	2,63	2,40	-0,637

Электронные характеристики связей атома A1 в исследованных молекулах

* Среднее количество электронов, делокализованных между атомами связи.

** $\text{Deloc}_{(A,B)} = 100 \cdot (\text{DI}_{(A,B)}/2)/N(A)$, где N(A) — среднее количество электронов, локализованных в атомном объеме атома A.

*** Deloc_(B,A) = $100 \cdot (DI_{(A,B)}/2)/N(B)$, где N(B) — среднее количество электронов, локализованных в атомном объеме атома В.

Рис. 3. Распределение лапласиана электронной плотности $\nabla^2 \rho(\mathbf{r}_c)$ молекул диметилхлоридалюминия (*a*) и диметилфенилалюминия (*б*).

Сплошными линиями выделены области концентрации электронной плотности, штриховыми — области разрежения электронной плотности

Рис. 4. Зависимость между плотностями потенциальной
энергии $V^{e}(\mathbf{r}_{c})$ в критических точках (3, -1) связей Al—C
исследованных молекул и длинами этих связей $d_{ m Al-C}$

Для классификации типа связи существенное значение имеет величина отношения кинетической энергии к электронному заряду $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$. Из соотношения размерностей $G(\mathbf{r}_c)$ и $\rho(\mathbf{r}_c)$ следует, что оно представляет собой меру локальной кинетической энергии, приходящейся на один электрон. Для ковалентных связей ее величина менее 0,3—0,4, а для связей между атомами с "закрытыми оболоч-

ками"* оно может быть увеличено до единицы и более. Из данных табл. 2 видно, что в исследованных молекулах отношения $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$ связей Al—C всюду $\approx 1,1-1,2$. Для связей Al—O эта величина равна ~2, а для связей Al—N ~ $1,4\div 1,8$ [30].

Еще одной важной топологической характеристикой межатомной связи является локальная плотность общей энергии $E^{\rm e}(\mathbf{r}_{\rm c})$ в критической точке (3, –1). У ионных и ван-дер-ваальсовых связей $E^{\rm e}(\mathbf{r}_{\rm c})$ и $\nabla^2 \rho(\mathbf{r}_{\rm c})$ в этой точке положительны, а отношение $G(\mathbf{r}_{\rm c})/\rho(\mathbf{r}_{\rm c})$ близко к единице или превышает ее. У ковалентных связей две первые величины отрицательны, а отношение $G(\mathbf{r}_{\rm c})/\rho(\mathbf{r}_{\rm c})$ менее 0,3—0,4. Наконец, существуют связи, которые нельзя отнести ни к первому, ни ко второму предельному типу. У этих связей в критических точках (3, –1) $\nabla^2 \rho(\mathbf{r}_{\rm c}) > 0$, $E^{\rm e}(\mathbf{r}_{\rm c}) < 0$, $|\lambda_{1,2({\rm cper}_{\rm d})}|/\lambda_3 < 1$, а $G(\mathbf{r}_{\rm c})/\rho(\mathbf{r}_{\rm c}) \ge 1$. По классификации Р. Бейдера — это так называемые "промежуточные связи" [31].

К сожалению, этот раздел классификации не имеет четко очерченных границ. Его критериям удовлетворяют и связь C=O в формальдегиде (типичный пример "промежуточной связи" по мнению Р. Бейдера) и связь Al—H молекулы AlH(1 Σ^+). У последней в критической точке (3, -1) величина $\rho(\mathbf{r}_c)$ равна 0,074, $\nabla^2 \rho(\mathbf{r}_c) - 0,188$, отношение $|\lambda_{1,2(cpen)}|/\lambda_3 - 0,264$, $G(\mathbf{r}_c)/\rho(\mathbf{r}_c)$ -0,98, $G(\mathbf{r}_c)$, V(\mathbf{r}_c) и $E^e(\mathbf{r}_c) - 0,073$, -0,99 и -0,026 соответственно [31]. Полученные нами топологические параметры связей Al—C в исследованных молекулах и по знакам, и по величинам очень близки к тем, которые найдены для молекулы AlH(1 Σ^+). В целом же связи Al—C в исследованных молекулах можно охарактеризовать как ослабленные связи промежуточного типа, близкие к тем, которые характерны для связей между атомами с "закрытыми оболочками". Для подобных связей (в том случае, если величины межатомных расстояний близки к равновесной величине) очень часто существует близкая к линейной зависимость между длинами межатомных связей [32—36]. Как видно из рис. 4, и для наших данных такого рода линейная зависимость выполняется в полной мере.

Результаты топологических расчетов очень хорошо соотносятся с данными, полученными методом NBO (использована программа NBO 5.G) [37]. Для "натуральных орбиталей" связей Al—C характерны низкие величины заселенностей (до 1,87), малый вклад AO Al (от 19,4 до 9,9%) и большая разница зарядов атомов алюминия и углерода. Уменьшение ковалентной составляющей связей Al—C и увеличение их полярности обусловлено перераспределением электронной плотности между связывающими NBO данной связи Al—C и разрыхляющими NBO* соседних с ней связей Al—C (заселенность последних в молекулах с самыми длинными связями Al—C повышена до 0,08—0,09). NBO самой короткой связи Al—C в ряду исследованных молекул (III) может быть описана как:

$$\sigma_{\text{AIC}} = 0,441(sp^{1,32})_{\text{AI}} + 0,898(sp^{2,56})_{\text{C}},$$

$$\sigma_{\text{AIC}}^{\star} = 0,898(sp^{1,32})_{\text{AI}} - 0,441(sp^{2,56})_{\text{C}}.$$

^{*} По терминологии Р. Бейдера [31].

Вклад АО алюминия в NBO этой связи составляет 19,4%, а заселенность — 1,989. Для NBO одной из самых длинных связей Al—C (в IX) подобное же описание выглядит следующим образом:

$$\begin{split} \sigma_{\text{AIN}} &= 0,314(\textit{sp}^{1,92})_{\text{AI}} + 0,949(\textit{sp}^{4,39})_{\text{C}}, \\ \sigma_{\text{AIN}} &* = 0,949(\textit{sp}^{1,92})_{\text{AI}} - 0,314(\textit{sp}^{4,39})_{\text{C}}. \end{split}$$

Вклад АО алюминия в NBO этой связи составляет 9,9 %, а заселенность — 1,877.

В заключение автор статьи хотел бы выразить благодарность А.А. Грановскому и его сотрудникам (МГУ им. М.В. Ломоносова, Химический факультет) за предоставление программы PC GAMESS-Firefly, адаптированной для параллельных вычислений.

Руководству и сотрудникам Межведомственного суперкомпьютерного центра за предоставление вычислительных ресурсов Центра.

К.х.н. А.В. Вологжаниной (ИНЭОС РАН им. А.Н. Несмеянова) — за предоставление возможности использования последней версии Кембриджского банка структурных данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zigler K. // Angew. Chem. 1956. 68. P. 721 741.
- 2. Циглер К. // Хим. наука и пром. 1957. 2, № 1. С. 19 89.
- 3. *Циглер К.* // Успехи химии. 1957. **26**. С. 1187 1253.
- 4. Корнеев Н.Н. Химия и технология алюминийорганических соединений. М.: Химия, 1979.
- 5. Толстиков Г.А., Юрьев В.П. Алюминийорганический синтез. М.: Наука, 1979.
- 6. Бочкарев В.Н., Белоконь А.И., Хромых Н.Н. / Тез. докл. III Всесоюз. конф. по металлоорганической химии. Уфа, Институт химии Башкирского филиала АН СССР, 1985. Ч.1. С. 48 51.
- 7. Almenningen A., Halvorsen S., Haaland A. // Acta Chem. Scand. 1971. 25. P. 1937 1945.
- 8. Drew D.A., Haaland A. // Acta Chem. Scand. 1973. 27. P. 3735 3745.
- 9. Brendhaugen K., Haaland A., Novak D.P. // Acta Chem. Scand. 1974. A28. P. 45 47.
- 10. Fisher J.D., Budzelaar P.H.M., Shapiro P.J., Staples R.J., Yap G.P.A, Rheingold A.L. // Organometallics. 1997. 16. P. 871 877.
- 11. Rahman A.F.M.M., Siddiqui K.F., Oliver J.P. // Organometallics. 1982. 1. P. 881 886.
- 12. Woski M., Mitzel N.W. // Z. Naturforsch., B. Chem. Sci. 2004. 59. P. 269 277.
- Wang L., Yang L. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2014. P. 70. doi:10.1107/S1600536814020492
- 14. Niesmann J., Klingebiel U., Ropken C., Noltemeyer M., Herbst-Irmer R. // Main Group Chem. 1998. 2. P. 297 302.
- 15. Layh M., Uhl W. // Polyhedron. 1990. 9. P. 277 281.
- 16. Williams K.C., Brown T.L. // J. Am. Chem. Soc. 1966. 88. P. 5460 5465.
- 17. Henrickson C.H., Eyman D.P. // Inorg. Chem. 1967. 6. P. 1461 1465.
- 18. Панкратьев Е.Ю., Тюмкина Т.В., Хурсан С.Л., Парфенова Л.В., Халилов Л.М., Джемилев У.М. // Вестн. Башкир. ун-та. – 2008. – **13**, 3(1). – С. 802.
- 19. Муслухов Р.Р., Халилов Л.М., Джемилев У.М. и др. // Изв АН. Сер. хим. 1997. Р. 12.
- 20. Вакулин И.В., Загидуллина А.Э., Талипов Р.Ф., Вострикова О.С. // Журн. структур. химии. 2006. 47, № 6. С. 1179 1184.
- 21. Вакулин И.В., Загидуллина А.Э., Талипов Р.Ф., Вострикова О.С. // Вестн. Башкир. ун-та. 2006. 47, № 3. С. 37 39.
- Загидуллина А.Э. Сборник трудов Международной Школы-конференции для студентов, аспирантов и молодых ученых "Фундаментальная математика и ее приложения в естествознании". Том 3. Химия. – С. 31 – 44.
- 23. Granovsky A.A. // GAMESS Firefly version 7.1.G. http://classic.chem.msu.su/gran/ firefly/index.html.
- 24. *Popelier P.L.A.* // Comput. Phys. Commun. 1996. **93**. P. 212 223. *Popelier P.L.A.* // MORPHY 98: A Topological Analysis Program, UMIST, England, EU, 1998.
- 25. Todd A. Keith // AIMAll (Version 12.11.09), TK Gristmill Software, Overland Park KS, USA, 2012.
- Computational Chemistry Comparision and Benchmark Data Base, Release 15a, April 2010, NIST Standart Reference Database 101.

- 27. *Haaland A*. Stereochemical Application of Gas-phase Electron Diffraction / I. Hargittai, M. Hargittai (Eds.) N.Y.: VCH Publishers Inc., 1988. **2**. P. 325 383.
- 28. Cambridge Structural Database, release 2014, version 5.36.
- 29. Mogul v 1.7 CSD System Molecular Geometry Library. The Cambridge Crystallographic Data Centre. 2014.
- 30. Алексеев Н.В. // Журн. структур. химии. 2013. 54, № 3. С. 437 439; Алексеев Н.В. // Журн. структур. химии. 2015. 56, № 6. С. 1095 1099.
- 31. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. С. 357 363.
- 32. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. 285. P. 170 173.
- 33. Spackman M.A. // Chem. Phys. Lett. 1999. 301. P. 425 429.
- 34. Alkorta I., Rozas I., Elguero J. // Struct. Chem. 1998. 9. P. 243 247.
- 35. Espinosa E., Alkorta I., Elguero J., Molins E. // J. Chem. Phys. 2002. 117. P. 5529 5532.
- 36. Zborowskil K., Alkorta I., Elguero J. // Polish J. Chem. 2007. 81. P. 621 629.
- Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. // NBO 5.G. http://www.chem.wisc.edu/~nbo5(Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004).

468