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Разработан экономичный метод расчета самовозбуждения колебаний газа в малоэмиссионных

камерах сгорания газотурбинных установок. Метод основан на использовании модели турбу-
лентности SST SAS и модели турбулентного горения с модифицированным уравнением для пе-
ременной степени завершенности горения. В источниковый член этого уравнения введен мно-
житель, связанный с колебаниями давления газа. Склонность камеры сгорания к возбуждению
колебаний газа оценивается двумя параметрами: показателем степени данного множителя (по-
казателя взаимодействия) и логарифмическим декрементом затухания колебаний. При решении
задачи на самовозбуждение колебаний в случае задания однородной метановоздушной смеси на

входе в камеру сгорания появилась первая радиальная мода колебаний с частотой 2 700 Гц. В
случае раздельной подачи воздуха и топлива в камеру сгорания возбудилась первая продольная

мода колебаний с частотой 300 Гц. Применение резонансных поглотителей (антивибрационных
экранов небольшого размера) позволило полностью подавить радиальные колебания.
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ВВЕДЕНИЕ

При создании и доводке малоэмиссионных

камер сгорания (КС) газотурбинных устано-
вок (ГТУ) большое внимание уделяется мето-
дам численного моделирования нестационарно-
го турбулентного горения бедных, заранее под-
готовленных смесей газообразного топлива и

окислителя [1–5]. Такой подход при сокращен-
ном времени расчета и экономичных затратах

на вычислительные ресурсы позволяет значи-
тельно сократить количество дорогостоящих

экспериментальных исследований и время их

проведения. Большое внимание уделяется чис-
ленному моделированию крупных вихрей —
методу LES и его модификациям [6–10]. Ме-
тод LES оказался очень затратным по исполь-
зуемым вычислительным ресурсам и времени

счета. Несмотря на очевидные преимущества
по сравнению с методом осреднения по Рей-
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нольдсу уравнений Навье — Стокса (RANS) в
описании роли крупных газодинамических вих-
рей в механизме самовозбуждения термоаку-
стических колебаний газа, для минимизации
затрат используются методы «средней стоимо-
сти», такие как метод адаптивного масштаби-
рования (SAS) [11–13].

В данной работе этот подход применен

для разработки методики определения наибо-
лее опасных мод термоакустических колеба-
ний газа, способных самовозбудиться в КС

ГТЭ-65.1 с учетом ее конструктивных особен-
ностей. Расчет проведен с 90-градусным сек-
тором выносной КС. Обнаружено самовозбуж-
дение первой продольной и первой радиальной

мод колебаний. Показано, что радиальные ко-
лебания можно подавить с помощью резонанс-
ных поглотителей небольшого размера.

Для оценки устойчивости КС к первой

тангенциальной моде колебаний расчетная об-
ласть должна включать в себя весь объем

КС (360◦), для второй тангенциальной моды
можно ограничиться 180-градусным сектором.
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Результатам исследования устойчивости КС

ГТЭ-65.1 к тангенциальным модам колебаний
авторы намерены посвятить следующую ста-
тью.

ОБ�ЕКТ ИССЛЕДОВАНИЯ
И РАСЧЕТНАЯ ОБЛАСТЬ

В качестве объекта исследования выбран

упрощенный вариант 1/6-й части КС ГТУ,
имеющей шесть жаровых труб (рис. 1).

Каждая выносная КС состоит из корпуса

и жаровой трубы (ЖТ) с горелками. Газосбор-

Рис. 1. 1/6-я часть камеры сгорания ГТУ, рас-
сеченная по плоскости симметрии

Рис. 2. Вид фронтового устройства со стороны турбины и направление закрутки потоков
воздуха

ник является самостоятельным участком ЖТ,
он служит переходником от переднего цилин-
дрического участка ЖТ к 1/6-й части кольце-
вого соплового аппарата турбины. Воздух по-
ступает в кольцевой канал каждой индивиду-
альной КС из общего ресивера через ряды от-
верстий в стенках корпуса ЖТ и газосборник.
Цилиндрический участок ЖТ соединяется с

фронтовым устройством и на другом конце с

газосборником с помощью телескопических со-
единений. Часть воздуха через них попадает
из кольцевого канала в полость ЖТ. Другая
часть воздуха из кольцевого канала в конце га-
зосборника направляется на охлаждение полок

соплового аппарата турбины.
Фронтовое устройствоЖТ состоит из кор-

пуса, воздушных и топливных каналов. Меж-
ду передним фланцем выносной КС и фронто-
вым устройством ЖТ расположен воздушный

ресивер. Воздух попадает в ресивер из коль-
цевого канала и затем через каналы фронто-
вого устройства с осевыми завихрителями —
в полость ЖТ (рис. 2). Газообразное топли-
во (метан) подается равномерно через отвер-
стия в лопатках завихрителей. Основное топ-
ливо подается в периферийные форсунки, пи-
лотное топливо — в центральную форсунку.

Геометрическая модель 1/6-й части полно-
размерной КС для решения нестационарной за-
дачи на самовозбуждение колебаний газа упро-
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Рис. 3. Геометрия расчетной области

щена с учетом выбора границ расчетной обла-
сти, где постановка акустических граничных
условий наиболее очевидна, а их приближен-
ный характер не отражается на параметрах ко-
лебаний газа в полости КС.

Конструкция газосборника упрощена на

осесимметричную с сохранением изменения

проходной площади по его длине. На выходе
модели поставлена решетка с большим загро-
мождением из кольцевых пилонов, имитирую-
щих сопловой аппарат турбины, с присоеди-
ненной «бесконечной» цилиндрической трубой.
Эти изменения не отражаются на возбуждении

колебаний газа и их моде, так как основной
процесс горения должен завершиться до газо-
сборника и время прохождения звукового им-
пульса по длине КС в противоположных на-
правлениях не меняется.

В расчетную область включен 90-
градусный сектор КС (рис. 3).

Такой выбор расчетной области на первом

этапе расчетного исследования позволяет ис-
следовать самовозбуждение нульмерных (объ-
емных), продольных и радиальных мод колеба-
ний и соответствующих им комбинированных

мод колебаний.

ПОСТАНОВКА И МЕТОД РЕШЕНИЯ ЗАДАЧИ

Определяющая система уравнений

В расчетном исследовании рассматрива-
лось трехмерное нестационарное турбулентное

течение сжимаемого газа с горением метано-
воздушной смеси в КС. Для численного инте-
грирования осредненной по Фавру определяю-
щей системы уравнений Навье — Стокса ис-
пользовался подход SST SAS [14], обеспечива-
ющий LES-образное поведение крупных, явно
разрешимых вихрей и RANS-образное поведе-
ние течения у стенок.

Для исследования устойчивости горения

к высокочастотным модам колебаний при-
ходится предварительно устранять наибо-

лее неустойчивые низкочастотные, объемные
(нульмерные) колебания газа, связанные с ко-
лебаниями расхода воздуха на входе в горел-
ку и соответствующими колебаниями коэффи-
циента избытка воздуха. В связи с этим моде-
лирование турбулентного горения выполнено в

двух постановках. Для предварительной оцен-
ки склонности КС к самовозбуждению колеба-
ний и тестированию методики расчета само-
возбуждения колебаний газа сначала рассмат-
ривалось горение предварительно подготовлен-
ной смеси. В КС прямо от входа в расчетную
область поступает однородная смесь. В этом

случае для описания турбулентного горения ис-
пользовалось уравнение переноса для перемен-
ной степени завершенности горения C, модифи-
цированное для учета влияния колебаний дав-
ления на скорость горения [15]:

∂(ρ̄C̃)
∂t

+∇
(
ρ̄C̃ũi

)
−∇

(( k

cp
+

µt

σt

)
∇C̃

)
= W. (1)

Черта сверху означает осреднение по Рей-
нольдсу, тильда — осреднение по Фавру, ρ —
плотность, ui — скорость i-го компонента,
W — скорость изменения C̃, связанная с хи-
мическими реакциями, µt — турбулентная вяз-
кость, σt — турбулентное число Шмидта, k —
теплопроводность, cp — удельная теплоем-
кость при постоянном давлении, t — время.

Переменная степени завершенности горе-
ния C определялась как нормированная сум-
ма массовых концентраций продуктов сгора-
ния. Для моделирования самовозбуждения тер-
моакустических колебаний газа в источнико-
вый член W̄ уравнения (1) введен множитель,
пропорциональный относительным колебани-
ям давления газа в степени n (n — показатель

взаимодействия):

W = ρ̄unbUt|grad C̃|
( p

pср

)n
, (2)

где ρ̄unb — плотность свежей смеси, Ut — тур-
булентная скорость горения, pср — среднее по
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времени давление, p — мгновенное значение

давления.
Турбулентная скорость горения Ut опреде-

лялась с использованием аппроксимации из [16]

Ut = max
[
Un, GA

(u′Lt

a

)1/4( u′

Un

)1/2]
, (3)

где Un — нормальная скорость распростране-
ния ламинарного пламени, которая определя-
лась с помощью пакета прикладных программ

CHEMKIN при использовании детальной кине-
тической схемы горения метана в воздухе GRI-
Mech 3.0 [17], G — коэффициент продольного

растяжения пламени, A = 0.52 — модельный

коэффициент, u′ — пульсационный компонент

скорости, Lt — масштаб турбулентности, a —
температуропроводность. Скорость Un в этом

расчете постоянна во всей расчетной области,
так как смесь на входе гомогенная и изотерми-
ческая.

Во второй постановке задачи топливовоз-
душная смесь формируется путем подачи ме-
тана в поток воздуха через форсунки. В этом
случае для описания турбулентного горения ис-
пользовалась модель FGM (flamelet generated
manifold) [18]. В модели FGM использовались

два уравнения переноса: уравнение для ненор-
мированной переменной степени завершенно-
сти горения Ỹc и уравнение для восстановлен-
ной концентрации топлива Z. Для замыкания
уравнения для Ỹc в источниковом члене ис-
пользовалась модель скорости распростране-
ния турбулентного пламени (модель TFC Зи-
монта [16]). В этом подходе учитывалось вли-
яние локального состава в каждой точке рас-
четной области на скорость нормального горе-
ния Un, а также с помощью интерфейса пользо-
вательского программирования было реализо-
вано влияние колебаний давления на скорость

тепловыделения в виде дополнительного мно-
жителя (p/pср)n к стандартному источнико-
вому члену. Показатель взаимодействия n =
1.2 ÷ 2.0 выбирался с учетом целесообразности
ограничения установившейся амплитуды коле-
баний на уровне 1 ÷ 3 % (точнее |p′|max/pср �
κM, где κ — показатель адиабаты для началь-
ной температуры смеси, М — число Маха).
При |p′|max/pср > κM амплитуда колебаний

скорости газовой среды в звуковой волне ока-
зывается одного порядка со средней скоростью

потока, что недопустимо в практических при-
ложениях.

Методика вычисления средних
и пульсационных параметров газа

При акустических колебаниях давление,
расход смеси, плотность и другие параметры
меняются во времени. Их можно записать как
средние по времени величины и пульсации:

p = p̄ + p′, pv = pv + (pv)′, ρ = ρ̄ + p′, (4)

где чертой сверху обозначено среднее значе-
ние некоторого физического параметра, штри-
хом — возмущение этого параметра в звуковой

волне.
Для выделения средней по времени состав-

ляющей применялась следующая рекуррентная

формула:

p̄N = p̄N−1

(
1− δt

Tfi

)
+ pN

δt

Tfi
. (5)

ЗдесьN — номер шага по времени, δt —шаг по

времени, Tfi — ширина временного фильтра,
который подбирается для каждой моды коле-
баний. Для расчета средних по времени зна-
чений физических параметров ширина филь-
тра, как правило, превышает период колеба-
ний. Для других переменных использовались
формулы, аналогичные (5). Для анализа ре-
зультатов расчета среднеквадратичные значе-
ния амплитуды колебаний давления определя-
лись по аналогичной формуле:

p′2N = p′2N−1

(
1− δt

Tfi

)
+ p′2

δt

Tfi
. (6)

Граничные условия

Граничные условия на входе и выходе вы-
числительного объема должны учитывать аку-
стическое взаимодействие с областями, не во-
шедшими в расчетную область [7, 19]. На вхо-
де в расчетную область граничные условия за-
давались с учетом характера распространения

звуковой волны из КС навстречу потоку. При
свободном, близком к реальности распростра-
нении волны по подводящему каналу без отра-
жения (из-за последующего поглощения звука
на многочисленных струях воздуха, перпенди-
кулярно втекающих в кольцевой канал) мгно-
венный расход воздуха на границе расчетной

области можно задать соотношением

G = Gср

(
1− 1−Mср

κMср

p− pср
pср

)
, (7)
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где Gср — заданный расход воздуха, Mср —
среднее по времени число Маха в сечении вхо-
да, pср — среднее по времени давление в сече-
нии входа, p — мгновенное, среднее по сечению
давление на входе, κ — показатель адиабаты.

Дополнительно на границе входа задава-
лись направляющие векторы потока, полная
температура и параметры характеристик тур-
булентности в соответствии с выбранной моде-
лью турбулентности.

На выходе КС оканчивается участком, ре-
ализующим течение, подобное течению на вхо-
де в турбину ГТУ. Как правило, в ГТУ в сопло-
вом аппарате турбины течение близко к крити-
ческому. В этом случае для моделирования гра-
ничного условия к КС присоединяется имита-
тор соплового аппарата— канал с большим за-
громождением на входе и длиной, достаточной
для выравнивания потока в сечении, принимае-
мом за выход из расчетной области. В этом се-
чении использовалось неотражающее гранич-
ное условие. На выходе из КС колебания мас-
сового расхода газа связывались с колебаниями

его давления соотношением, аналогичным (7),
со знаком плюс после единицы.

На стенках КС использовались адиабати-
ческие граничные условия, на боковых гранях
выбранного периодического сектора КС— гра-
ничное условие периодичности.

Метод расчета

В расчетах использовался пакет приклад-
ных программ ANSYS Fluent [2] с решателем
«pressure based», матричный метод решения
системы уравнений. На начальном этапе вы-
числений для всех уравнений задавался первый

порядок аппроксимации. Затем осуществлял-
ся переход на нестационарный режим со вто-
рым порядком аппроксимации и ограниченны-
ми центральными разностями для уравнения

движения и с неявной схемой второго порядка

по времени. Для задачи на самовозбуждение ко-
лебаний выбирался шаг по времени, обеспечи-
вающий значение числа Куранта порядка еди-
ницы. Для обеспечения сходимости величин на
каждом временном слое количество итераций

решателя задавалось не менее 15.
Размер ячейки около пилотной форсунки

составлял порядка 0.5 мм во всех направлени-
ях. В середине ЖТ максимальный размер яче-
ек не превышал 3 мм.

Расчеты с самовозбуждением колеба-
ний на секторе КС 90◦ проводились на

структурированно-многоблочной сетке, со-
держащей 21 млн гексаэдрических ячеек.
Вычисления велись на 16 узлах c произво-
дительностью узла ≈ 1 ТФлопс и объемом

оперативной памяти 60 Гбайт. Среднее время
счета нестационарной задачи составляло около

10 сут.

УСТАНОВИВШИЙСЯ СТАЦИОНАРНЫЙ
РЕЖИМ ГОРЕНИЯ

Предварительно методом RANS был вы-
полнен расчет стационарного режима горения

в КС при раздельной подаче топлива и окисли-
теля. Использовались следующие модели тур-
булентности, турбулентного горения и режим-
ных параметров:

1) модель турбулентности k–ω SST;
2) модель турбулентного горения FGM с

источниковым членом в виде соотношения (2),
но без сомножителя (p/pср)n;

3) при генерировании Flamelet-библиотеки
использовалась кинетика горения GRI-Mech
3.0. Давление газа за фронтовым устрой-
ством— 16 бар, температура воздуха— 674 К,
температура топлива — 350 К.

Распределения различных параметров в

продольных и поперечных сечениях показаны

на рис. 4. На рис. 4,а приведена схема распо-
ложения продольных сечений, представленных
на рис. 4,б. Отметим, что в продольном сече-
нии 3 (см. рис. 4,а) из-за встречной закрутки
потоков воздуха в соседних периферийных го-
релках около фронта формируется течение газа

от центра к периферии и центральная зона об-
ратных токов вытягивается в сторону стенок

ЖТ. В сечении 1 наблюдается обратная кар-
тина течения — от периферии к центру.

РАСЧЕТ АВТОКОЛЕБАНИЙ ГАЗА
В КАМЕРЕ СГОРАНИЯ

После расчета стационарного режима го-
рения выполняется переход к нестационарному

решению уравнений методом SST SAS с изме-
ненными граничными условиями.

Нестационарное горение однородной смеси

Для решения задачи на самовозбуждение

колебаний показатель взаимодействия был уве-
личен с нулевого значения до n = 1.2 (вели-
чина, близкая к отклику скорости химической
реакции на звуковое давление [21, 22]). Спек-
тры колебаний давления газа в контрольных
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Рис. 4. Распределение модуля скорости в поперечном сечении (вблизи центральных тел пери-
ферийных горелок) и схема расположения продольных сечений со стороны выхода из камеры

сгорания (а). Распределение полной температуры газа в продольных сечениях (б)

Рис. 5. Спектры колебаний давления газа в

трех контрольных точках жаровой трубы:
1 — x = 100 мм, на оси камеры, 2 — x = 100 мм,
y = 100 мм, z = 100 мм, 3 — x = 1 350 мм,
на оси камеры перед имитатором соплового аппа-
рата, ∆p — относительная амплитуда колебаний

давления газа

точках полости КС приведены на рис. 5. Шаг
по времени (частота дискретизации) равнялся
100 кГц, спектры вычислялись по массиву из

5 000 чисел. Разрешение спектра по частоте со-
ставляло 20 Гц. Рабочий диапазон частот для
спектрального анализа 20 ÷ 50 000 Гц.

Распределение амплитуды поперечных ко-
лебаний зависит от формы (моды) колебаний
и от градиента средней температуры по длине

КС. На начальном этапе переходного процесса
в спектре были заметны следующие частоты:
169, 2 702, 5 320, 8 000 и 10 895 Гц. Однако к кон-
цу переходного процесса заметными остались

радиальные колебания с частотой ≈2 700 Гц.
Распределение среднеквадратичных значений

колебаний давления газа в полости ЖТ на ча-
стоте 2 700 Гц приведено на рис. 6 в продольном
сечении и в поперечном сечении x = 300 мм.

Отметим, что счет прекращается после

выхода решения на установившийся режим,
критерием выхода является выполнение соот-
ношения |(2A)t+T − (2A)t| < 0.05(2A)t, где
2A — размах колебаний. Шаг по времени δt
должен составлять 0.03 ÷ 0.003 от периода ко-
лебаний T .

Радиальные колебания с максимальной

амплитудой на оси КС появились в двух обла-
стях по длине ЖТ: на расстоянии 200 и 860 мм
от фронтового устройства.

Распределение локальных среднеквадра-
тичных значений колебаний переменной C̃, ха-
рактеризующей завершенность процесса горе-
ния, приведен на рис. 7. Он приближенно ука-
зывает на места с максимальной амплиту-
дой колебаний скорости образования продук-
тов сгорания, следовательно, и тепловыделе-
ния. Это происходит в свободном пограничном
слое центральной зоны обратных токов и на

участке зоны горения с максимальным гради-
ентом C̃ по x.

На рис. 8 показано распределение сред-
неквадратичных значений поперечных колеба-
ний скорости в продольном сечении КС для ко-
лебаний газа с частотой 2 700 Гц. Максимум
поперечной скорости приходится на узловую

окружность первой моды радиальных колеба-
ний.
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Рис. 6. Распределение среднеквадратичных значений колебаний давления газа на частоте

2 700 Гц в продольном сечении жаровой трубы и в поперечном сечении при x = 300 мм

Рис. 7. Распределение среднеквадратичных значений степени завершенности горения C̃ в про-
дольном сечении камеры сгорания в режиме с колебаниями 2 700 Гц

Рис. 8. Распределение среднеквадратичных значений колебаний поперечной составляющей ско-
рости газа на частоте 2 700 Гц

Нестационарное горение метана в воздухе
при их раздельной подаче

Расчет выполнен при постоянном давле-
нии подачи газообразного метана в форсунки с

показателем взаимодействия n = 2. На началь-
ном этапе расчета в спектре были заметны ко-

лебания с частотами 62.6, 125.6, 293 и 580 Гц.
К концу переходного процесса остались толь-
ко продольные колебания с частотой 300 Гц.
Распределение среднеквадратичных значений

этих колебаний давления газа в продольном се-
чении КС приведено на рис. 9. Вне перегородок
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Рис. 9. Распределение среднеквадратичных значений колебаний давления газа в продольном
сечении камеры сгорания, проходящем через ось одной из периферийных горелок

Рис. 10. Осциллограмма колебаний давления
газа при n = 0

между периферийными горелками оно одинако-
во во всех продольных сечениях КС.

Осциллограмма колебаний давления газа

в КС после присвоения показателю взаимодей-
ствия n значения, равного нулю, приведена на
рис. 10. На начальном участке осциллограммы
до момента времени t = 0.63 с видны гармо-
нические колебания газа с наложенным на них

случайным широкополосным шумом, который
генерируется турбулентным пламенем. Вторая
половина осциллограммы (t > 0.631 с) показы-
вает, что колебания газа превратились в слу-
чайные узкополосные колебания, которые КС
как акустический резонатор выделяет из шума

пламени. Обращает на себя внимание резкий
переход от затухающих автоколебаний газа к

режиму устойчивого горения. Наличие шумов
затрудняет определение логарифмического ко-
эффициента затухания колебаний, который в
данном случае оказывается существенно мень-
ше декремента затухания колебаний для обыч-
ных акустических резонаторов (d ≈ 0.1).

Описанный характер колебаний подтвер-
ждается графиками плотности распределения

Рис. 11. Распределение плотности вероятно-
сти колебаний давления газа при n = 0:
1 — на участке осциллограммы при t < 0.631 с
(см. рис. 10), 2 — на участке осциллограммы при

t > 0.631 с (см. рис. 10)

вероятности колебаний давления газа, пред-
ставленными на рис. 11. Кривая с двумя макси-
мумами свидетельствует о присутствии в КС

гармонических колебаний и шума, а кривая с
одним максимумом при амплитуде, равной ну-
лю, — о случайном узкополосном колебании и

шуме.
Радиальные колебания газа в КС при раз-

дельной подаче газа и воздуха не появились да-
же при значительном увеличении показателя

взаимодействия (n = 10). Отсутствие возбуж-
дения продольных колебаний в расчете с пода-
чей в КС однородной смеси указывает, что при-
чиной их возбуждения в случае раздельной по-
дачи могут быть колебания состава смеси, обу-
словленные колебаниями расхода воздуха на

входе в КС. Продольные колебания с часто-
той, примерно равной 300 Гц, могут оказаться
наиболее опасными для рассматриваемой КС.
Окончательно этот вывод можно будет сделать

после исследования тангенциальных колебаний

газа.
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Рис. 12. Распределение среднеквадратичных значений колебаний давления в продольном сече-
нии после установки одного резонансного поглотителя на стенку жаровой трубы

ПОДАВЛЕНИЕ РАДИАЛЬНЫХ
АВТОКОЛЕБАНИЙ

Для подавления радиальных колебаний га-
за с частотой 2 700 Гц спроектирован коль-
цевой резонансный поглотитель с перфориро-
ванным экраном небольшого размера. Толщи-
на экрана и диаметр отверстий 3.2 и 3.4 мм
соответственно, высота по радиусу и ширина
кольцевой полости 9 и 105 мм, проницаемость
4.6 %. Отверстия (семь рядов) расположены
квадратно-гнездовым способом.

Первоначально расчет КС был выполнен с

одним резонансным поглотителем, первый ряд
отверстий которого располагался на расстоя-
нии, примерно равном 150 мм от конца перифе-
рийных горелок. Радиальные колебания оказа-
лись подавленными (при n = 1.2) только в пер-
вой области радиальных колебаний, где и был
установлен резонансный поглотитель (рис. 12).
Это свидетельствует об относительной незави-
симости возбуждения радиальных колебаний в

каждой из этих областей. Радиальные колеба-
ния во второй области, имеющие ту же частоту
2 700 Гц, были подавлены с помощью резонанс-
ного поглотителя, аналогичного первому. Он
был установлен на стенку ЖТ во второй обла-
сти возбуждения радиальных колебаний. После
подключения второго поглотителя радиальные

колебания полностью исчезли.

ЗАКЛЮЧЕНИЕ

1. Разработан метод расчета самовозбуж-
дения автоколебаний газа в малоэмиссионной

КС ГТД типа ГТЭ-65.1. Расчет выполняется
методом SAS c двухпараметрической моделью

турбулентности SST k–ω. Решение ищется с
помощью комплекса программ ANSYS Fluent
с интегрированными в него дополнительными

процедурами. Граничные условия, которые за-
даются на входе и на выходе КС, — условия

неотражения акустических волн. В источнико-
вый член уравнения для переменной степени

завершенности горения вводится множитель с

показателем степени n — параметром взаимо-
действия, характеризующим зависимость ско-
рости образования продуктов сгорания от зву-
ковых колебаний давления газа. Склонность
КС к возбуждению колебаний газа в заданном

режиме горения характеризуется параметром

возбуждения n и логарифмическим декремен-
том затухания.

2. При решении задачи на самовозбуж-
дение колебаний в КС, работающей на одно-
родной метановоздушной смеси, возбуждается
первая радиальная мода колебаний с часто-
той 2 700 Гц. По длине КС расположилось два
участка таких колебаний с высоким уровнем

интенсивности: вблизи от фронтового устрой-
ства и в начале газосборника. Для полного по-
давления этих колебаний потребовалось уста-
новить на стенке ЖТ два одинаковых резо-
нансных поглотителя: каждый из них подавлял
колебания только в своей зоне установки.

3. При решении задачи на самовозбужде-
ние колебаний с раздельной подачей воздуха

и топлива появилась первая продольная мо-
да колебаний с частотой 300 Гц. По результа-
там проведенного на данном этапе расчета пер-
вая продольная мода колебаний представляется

наиболее опасной формой неустойчивого горе-
ния в КС проектируемой ГТУ.
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