2009. Том 50, № 2

Март – апрель

C. 374 – 377

КРАТКИЕ СООБЩЕНИЯ

УДК 546.3+548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОЙ ПОЛИМОРФНОЙ МОДИФИКАЦИИ β-К2[Pd(NO3)4]

© 2009 С.П. Храненко, И.А. Байдина, С.А. Громилов*

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 23 мая 2008 г.

Проведено рентгеноструктурное исследование новой кристаллической модификации K₂[Pd(NO₃)₄]—β-K₂[Pd(NO₃)₄]. Установлено, что фаза изоструктурна Na₂[Pd(NO₃)₄] и Rb₂[Pd(NO₃)₄]. Квадратная координация атома Pd образована атомами кислорода монодентатно координированных нитратных групп.

Ключевые слова: палладий, нитраты, координационные соединения, кристаллическая структура, кристаллохимия.

Интерес к нитратным системам с платиновыми металлами обусловлен потребностью в переработке отработанного ядерного топлива, которое по содержанию в продуктах деления платиновых металлов (Rh, Ru, Pd) соизмеримо с природным сырьем. Вскрытие топливных отходов азотнокислым методом, а также наличие в технологических растворах щелочных металлов указывает на целесообразность получения конкретной информации по физико-химическим параметрам именно нитратных комплексов, которые могут быть использованы для идентификации соединений. Одной из наиболее важных характеристик является кристаллическая структура. Однако нитрат-ион в качестве лиганда для платиновых металлов обладает слабой координаци-

* E-mail: grom@che.nsk.su

онной способностью, что вызывает определенные трудности при синтезе комплексов и получении монокристаллов. К настоящему времени описаны кристаллические структуры четырех комплексов — $M_2[Pd(NO_3)_4]$ (M = Na, K, Rb, Cs) [1-3]. В структурах с M = Na, Rb, Cs атом Pd расположен в центре симметрии и координирован по квадрату четырьмя атомами кислорода, при этом монодентатные нитратные группы попарно развернуты относительно координационной плоскости Pd в противоположные стороны. В структуре $K_2[Pd(NO_3)_4]$ (далее α - $K_2[Pd(NO_3)_4]$) все нитратные группы развернуты в одну сторону, образуя как бы "корзину" (рис. 1, а и рис. 2, а). В работе [4] мы сообщали об

Рис. 1. Вид комплексного аниона [Pd(NO₃)₄]²⁻ в кристаллических структурах: *a* α-K₂[Pd(NO₃)₄] и *б* — β-K₂[Pd(NO₃)₄]

Рис. 2. Кристаллические структуры: $a - \alpha$ -К₂[Pd(NO₃)₄] и $\delta - \beta$ -К₂[Pd(NO₃)₄]

обнаружении другой модификации K₂[Pd(NO₃)₄] (далее β- K₂[Pd(NO₃)₄]). Целью настоящей работы была разработка методики получения β-K₂[Pd(NO₃)₄] и изучение ее кристаллической структуры.

Экспериментальная часть. Для синтеза β -K₂[Pd(NO₃)₄] использовали комплекс K₂[Pd(NO₂)₄], полученный по методике [5]. Смесь 1,71 г комплекса с 30 мл концентрированной азотной кислоты упаривали трижды на горячей плитке до минимального объема (~5 мл). Затем реакционную смесь переносили на водяную баню, упаривали до влажных солей и растворяли в 10—15 мл 7 М HNO₃. Полученный раствор имел красно-коричневый цвет. При медленном концентрировании на воздухе через двое суток в чашке образовалась кристаллическая фаза красного цвета. Сравнение данных рентгенофазового анализа с известными литературными данными показало, что получена новая фаза.

В другой методике, приводящей к образованию такой же фазы, мы использовали KNO₃ (марки OCЧ) и *транс*-[Pd(H₂O)₂(NO₃)₂], полученный по методике [6]. Смесь исходных компонентов в мольном соотношении 2:1 растворяли в 10 мл 1,65 М HNO₃ при нагревании на водяной бане (50—60 °С), затем медленно концентрировали полученный раствор на воздухе при комнатной температуре до образования кристаллического осадка. Для проведения рентгеноструктурного исследования из этого продукта отобрали монокристалл размером $0,26\times0,21\times$ ×0,09 мм.

Исследование кристаллической структуры проведено на автоматическом дифрактометре Bruker X8 APEX (MoK_{α} -излучение, графитовый монохроматор, CCD-детектор) в области углов θ от 2,63 до 31,29° при 100(2) К. Измерено 5435 рефлексов. Кристаллографические данные приведены в табл. 1. Расшифровка проведена стандартным прямым методом. Установлено, что фаза изоструктурна Na₂[Pd(NO₃)₄] и Rb₂[Pd(NO₃)₄]. Окончательное уточнение проведено в полноматричном приближении по 1593 независимым отражениям, R1 = 0,0173 (wR2 = 0,0437). Для 1496 отражений с $I > 2\sigma(I)$: R1 = 0,0189 (wR2 = 0,0443). S-фактор по F^2 составляет 1,083. Все вычисления были выполнены по комплексу программ SHELXTL [7]. Координаты атомов и эквивалентные тепловые параметры приведены в табл. 2, длины связей и валентные углы — в табл. 3.

Рентгенографическое исследование поликристаллических образцов, проведенное на дифрактометре ДРОН-3М (Си K_{α} -излучение, Ni-фильтр, область углов 20 5—60°, комнатная температура), показало, что продукты, синтезированные по обеим описанным методикам, являются однофазными. Индицирование дифрактограмм проведено по результатам исследования монокристалла.

Таблица 1

Кристаллографические характеристики комплексов К₂[Pd(NO₃)₄]

Данные	α -K ₂ [Pd(NO ₃) ₄]	β -K ₂ [Pd(NO ₃) ₄]	
Т, К	295	100	
<i>a</i> , <i>b</i> , <i>c</i> , Å	7,940(2), 15,469(4), 9,453(2)	7,8640(2), 7,5323(2), 9,4401(2)	
β, град.	91,10(3)	99,494(1)	
V, Å ³	1160,8	551,52	
Пространственная группа	$P2_{1}/c$	$P2_{1}/c$	
Ζ	4	2	
V/Z, Å ³	290,2	275,8	
$d_{\rm выч}$, г/см ³	2,47	2,61	
Pd—O _{cp} , Å	2,000	2,001	
N—O _{cp} , Å	1,308	1,308	
	1,221	1,230	
Выход атома Pd из плоскости	0,14	0	
$h_1k_1l_1, h_2k_2l_2, h_3k_3l_3$	1 1 0, 0 2 1, 0 2 -1	100, 01-1, 0-1-1	
$\boldsymbol{a}_{\mathrm{T}}, \; \boldsymbol{b}_{\mathrm{T}}, \; \boldsymbol{c}_{\mathrm{T}}$	a, -a/4+b/4+c/2, -a/4+b/4-c/2	a , b /2– c /2, – b /4– c /2	
$a_{\mathrm{T}}, \ b_{\mathrm{T}}, \ c_{\mathrm{T}},$ Å	7,94, 6,45, 6,39	7,80, 6,09, 6,09	
α_T , β_T , γ_T , град.	94,8, 107,2, 108,8	78,0, 83,3, 83,3	

Таблица 2

Координаты атомов и эквивалентные тепловые параметры в кристаллической структуре β -K₂[Pd(NO₃)₄]

Атом	x/a	y/b	z/c	$U_{ m _{3KB}}$, Å 2	Атом	x/a	y/b	z/c	$U_{ m экв}$, Å ²
Pd(1)	0,0000	0,0000	0,0000	0,00802(6)	O(2)	0,91620(18)	-0,0649(2)	0,68729(14)	0,0214(3)
K(1)	0,65206(5)	0,06651(5)	0,32995(4)	0,01703(9)	O(3)	0,69708(19)	0,1119(2)	0,62922(14)	0,0232(3)
N(1)	0,81945(19)	0,0521(2)	0,71528(16)	0,0142(3)	O(4)	0,20308(15)	0,04574(17)	0,90217(13)	0,0120(2)
N(2)	0,32510(18)	0,14711(19)	0,96888(15)	0,0127(3)	O(5)	0,45001(16)	0,16967(18)	0,90685(14)	0,0180(3)
O(1)	0,84082(15)	0,12354(16)	0,84373(12)	0,0118(2)	O(6)	0,31136(18)	0,21263(18)	0,08573(13)	0,0187(3)

Таблица З

Основные межатомные расстояния d, Å и валентные углы ω, град. для β-K₂[Pd(NO₃)₄]

Связь	d	Связь	d	Связь	d
Pd(1)—O(1)	2,0000(12)	N(1)—O(1)	1,3120(18)	N(2)—O(4)	1,3042(18)
Pd(1)—O(4)	2,0021(12)	N(1)—O(2)	1,221(2)	N(2)—O(5)	1,2355(18)
		N(1)—O(2)	1,237(2)	N(2)—O(6)	1,2294(19)
Угол оо		Угол	ω	Угол	ω
O(1)—Pd(1)—O(4) O(2)—N(1)—O(3) O(2) N(1)—O(1)	91,69(5) 124,44(15) 120,44(14)	O(3)—N(1)—O(1) O(6)—N(2)—O(5) O(6) N(2) O(4)	115,12(15) 124,37(15) 120,11(14)	O(5)— $N(2)$ — $O(4)N(1)$ — $O(1)$ — $Pd(1)N(2)$ — $O(4)$ — $Pd(1)$	115,52(14) 117,39(10)
O(2) - N(1) - O(1)	120,44(14)	O(6) - N(2) - O(4)	120,11(14)	N(2) - O(4) - Pd(1)	117,22(10)

Описание кристаллической структуры. Кристаллическая фаза β -K₂[Pd(NO₃)₄] построена из комплексных анионов [Pd(NO₃)₄]²⁻ и катионов K⁺. Строение комплексного аниона с нумерацией атомов и эллипсоидами тепловых колебаний показано на рис. 1, δ . В отличие от α -моди-

фикации, где нитрато-группы образовывали "корзинку", в β-K₂[Pd(NO₃)₄] эти лиганды попарно развернуты в разные стороны относительно координационной плоскости.

Атом Pd расположен в центре симметрии и окружен по квадрату четырьмя атомами кислорода, принадлежащими четырем монодентатно координированным нитрато-группам, средняя длина связей Pd—O 2,001 Å, отклонение валентного угла O—Pd—O от 90° составляет 1,69°. Нитрато-группы практически плоские, углы разворота их плоскостей относительно плоскости координационного квадрата составляют 59,3 и 64,4°. Связи N—O_{cp} до координированных атомов кислорода заметно больше, чем до концевых — 1,308 и 1,230 Å соответственно. Значения валентных углов O—N—O лежат в пределах 115,1—124,4°.

Каждый комплексный анион в структуре окружен восемью катионами K^+ на расстоянии Pd...К 4,39—5,55 Å и шестью подобными анионами на расстоянии 6,04—7,53 Å. Координационное окружение катионов K^+ образовано десятью атомами кислорода, принадлежащими нитрато-группам. Расстояния К...О лежат в интервале 2,717—3,426 Å, кратчайшие расстояния К...К 4,42—4,58 Å.

Проекция структуры β -K₂[Pd(NO₃)₄] вдоль оси *Z* приведена на рис. 2, *б*. Общий мотив упаковки комплексных анионов установлен по методике выделения трансляционных подрешеток [8], результаты сравнительного анализа двух модификаций даны в табл. 1. На теоретических дифрактограммах были выбраны наиболее интенсивные дифракционные отражения, затем среди них с учетом симметрии были выделены тройки отражений, у которых детерминант матриц 3×3, образованных из индексов $h_i k_i l_i$, равнялся числу формульных единиц *Z*. В таблице даны варианты с наиболее изометричными подрешетками. По условию узлам этих подрешеток должны следовать наиболее тяжелые атомы структуры, т.е. атомы Pd. Действительно, в обеих структурах значения линейных параметров трансляционных подрешеток хорошо коррелируют с расстояниями между атомами Pd. Основное отличие подрешеток связано со значениями угловых параметров — в структуре α -K₂[Pd(NO₃)₄] углы α_T , β_T , γ_T тупые, а в β -K₂[Pd(NO₃)₄] — острые.

В заключение авторы выражают благодарность старшему лаборанту-исследователю Л.И. Полетаевой за проведение рентгенографических исследований поликристаллов и аспиранту А.И. Смоленцеву за проведение съемки монокристалла на дифрактометре Bruker X8 APEX.

СПИСОК ЛИТЕРАТУРЫ

- 1. Храненко С.П., Байдина И.А., Громилов С.А., Беляев А.В. // Журн. структур. химии. 2000. **41**, № 4. С. 861 866.
- 2. Elding L.J., Noren B., Oscarsson A. // Inorg. Chem. Acta. 1986. 114. P. 71 74.
- 3. *Храненко С.П., Байдина И.А., Громилов С.А., Беляев А.В.* // Журн. структур. химии. 2005. **46**, № 6. С. 1103 1108.
- 4. Байдина И.А., Храненко С.П., Громилов С.А., Беляев А.В. / Тез. докл. XXI Междунар. Чугаевская конф. координац. химии. Киев, 2003. С. 200.
- 5. *Синтез* комплексных соединений металлов платиновой группы. Справ. / Под ред. И.И. Черняева. М.: Наука, 1964.
- 6. *Храненко С.П., Байдина И.А., Громилов С.А.* // Журн. структур. химии. 2007. **48**, № 6. С. 1218 1221.
- Bruker (2004). APEX (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Release 97-1. – University of Göttingen, 1997.
- 8. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.