УДК 66.08:669.872:661.183 DOI: 10.15372/KhUR20170410

Сорбция индия на модифицированном монтмориллоните в динамическом режиме

К. Л. ТИМОФЕЕВ, Г. И. МАЛЬЦЕВ, А. В. СВИРИДОВ, А. В. УСОЛЬЦЕВ

АО "Уралэлектромедь", Верхняя Пышма, Россия

E-mail: mgi@elem.ru

(Поступила 25.05.16; после доработки 06.07.17)

Аннотация

Предложен альтернативный экстракции способ селективного извлечения индия из растворов кислотного выщелачивания вельц-оксидов цинка (0.02-0.1 г/дм³ In). Сорбция на модифицированном монтмориллоните – реагенте Metosol – в динамическом режиме позволяет максимально реализовать обменную емкость реагента при оптимальном цикле операций "сорбция/десорбция". Выявлена адсорбция ионов железа (II) и цинка в статическом режиме, которая обусловлена образованием межмолекулярных связей с развитой поверхностью модифицированного алюмосиликата. В динамическом режиме установлено формирование стационарного фронта сорбции ионов индия из поликомпонентного раствора на минеральном сорбенте Metosol, вследствие преимущественного поглощения \ln^{3+} по сравнению с Fe^{2+} и Zn^{2+} . Последние вытесняются ионами индия, образующего хелатные соединения с ионогенными группами ди(2этилгексил)фосфорной кислоты. Выходные кривые сорбции ионов индия при удельной нагрузке V_{p-p}/ $V_{\text{pear}} = 1 - 2.7 \text{ u}^{-1}$ и температурах 298-328 К имеют преимущественно S-образную форму. Точка перегиба смещена в область низких значений удельного объема пропущенного раствора $(V_{\rm p-p}/V_{\rm pear})$ при малой продолжительности процесса, что свидетельствует о замедлении скорости диффузии ионов в сорбенте. С ростом линейной скорости ($\omega_{0,5}$) пропускания элюента через колонку в интервале 4.78–12.74 см/ч "проскок" ионов индия в фильтрат наступает значительно раньше (V_{p-p (1)}/V_{p-p} = 3.33-0.66), увеличивается ширина хроматографического фронта ($\Delta V_{p-p}/V_{pear} = 12.1-12.35$), снижается полная динамическая обменная емкость (ПДОЕ = 0.572-0.237 ммоль-экв/г) и степень использования слоя ионита ($\eta = 0.226-0.123$). C ростом температуры (298–328 К) снижается ширина хроматографического фронта ($\Delta V_{\rm p-p}$ / $V_{\rm pear}$ = 12.1– 10.24), возрастает полная динамическая обменная емкость (ПДОЕ = 0.572-1.293 ммоль-экв/г) и степень использования слоя ионита (η = 0.226-0.256), что свидетельствует о контролировании процесса сорбции индия смешанной диффузией. Реагент Metosol позволяет селективно извлекать индий из производственных растворов в динамическом режиме.

Ключевые слова: сорбция, индий, диффузия, динамический режим, монтмориллонит

введение

Минералы индия (джалиндит, йиксунит) не имеют промышленных запасов, поэтому основным сырьевым источником металла служат отходы и промежуточные продукты производства цинка (в меньшей степени свинца и олова), содержащие 0.001-0.1 % индия. При кислотном выщелачивании, например вельц-оксида цинка, концентрация индия в растворах составляет 0.02-0.1 г/дм³. При его дальнейшей экстракции из этих растворов [1-3] органические вещества попадают в цинковые растворы, что мешает последующему электролизу цинка. Альтернативным способом селективного извлечения индия представляется сорбция на модифицированном монтмориллоните Metosol (название предложено авторами статьи, осуществившими модификацию природного сорбента в колонках в динамическом режиме), который позволяет максимально реализовать

[©] Тимофеев К. Л., Мальцев Г. И., Свиридов А. В., Усольцев А. В., 2017

обменную емкость реагента и цикл операций "сорбция/десорбция".

Цель проведенных исследований – выявление условий и параметров процесса селективного выделения индия из многокомпонентных модельных растворов на модифицированном алюмосиликате и оценка возможности его использования при переработке технологических растворов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сорбщию индия из раствора (p-p) состава, г/ дм³: H_2SO_4 19.6, Fe^{2+} 6.2, Zn^{2+} 67.0, In^{3+} 0.084, – осуществляли в колонках (диаметр 2 см, высота 40 см) на pearentre Metosol (pear.), полученном модификацией природного слоистого монтмориллонита состава (Na,Ca)_{0.3}(Al,Mg)₂Si₄O₁₀(OH)₂(H₂O)_n алкилфосфатами из состава промышленного реагента Д2ЭГФК (TУ 2435-259-05763458–98), содержащего смесь ди-(2-этилгексил)фосфорной и 2-этилгексилфосфорной кислот, в количестве 20 % относительно массы алюмосиликата, в соответствии с запатентованными методиками [4, 5] и с наиболее вероятной структурной формулой, приведенной на сх. 1.

Реагент Metosol в каждой колонке предварительно иммобилизовали в межзерновое пространство инертного носителя — кварцевый песок (радиус 0.75-1.0 мм; высота слоя 11.8 см; объем 37 см^3 ; порозность слоя [6] $\varepsilon = (V - V_s)/V = (37-22)/37 \approx 0.4$), с помощью неионогенного флокулянта Praestol-2500 (концентрация 1%; объем $0.25-0.3 \text{ см}^3$). Порция сорбента, определяемая показателем ε , составила 15 см^3 (масса 0.75 г; радиус поперечного сечения слоя ~25 нм; площадь поверхности $~50 \text{ м}^2$). Иммо-

билизованный монтмориллонит в межзерновом пространстве инертного носителя не образует плотные слои алюмосиликата и находится в виде хлопьев, не изменяя радиус поперечного сечения слоя, который далее используется при оценке модели сорбционного массопереноса. Удельная объемная скорость пропускания исходного раствора (элюента) при сорбции равнялась $V_{p-p}/V_{pear} = 1-2.7$ ч⁻¹, или 4.8-12.7 см³/(см² · ч) при температуре 298-328 К. Постоянство подачи раствора обеспечивали с помощью перистальтического насоса. Порции раствора после сорбции объемом 10, 25 и 50 см³ анализировали на остаточную концентрацию и
онов $\mathrm{In}^{3+},~\mathrm{Fe}^{2+},~\mathrm{Zn}^{2+}$ атомно-адсорбционным методом на спектрофотометре с пламенной атомизацией AAC-6650 (Shimadzu).

Динамику поглощения ионов \ln^{3^+} , Fe^{2^+} и Zn^{2^+} реагентом Metosol изучали методом фронтальной хроматографии [7] путем построения выходных кривых сорбции при разных удельных скоростях элюента (удельной нагрузке) и температурах (рис. 1). Выходные кривые представляли в координатах $C/C_0 = f(V_{p-p}/V_{pear})$, где V_{p-p} и $V_{pear} -$ объемы элюента, прошедшего через колонку, и реагента Metosol соответственно; C/C_0 – отношение концентраций ионов в порции фильтрата и исходном растворе; α – степень извлечения ионов металлов из раствора, %:

$$\alpha = [(C_0 - C)/C_0] \cdot 100 \tag{1}$$

По объему до "проскока" и объему насыщения рассчитывали рабочую (ДОЕ) и полную (ПДОЕ) динамическую обменную емкость сорбента:

$$IOE = C_0 V_{p-p(1)} / m$$
 (2)

ПДОЕ =
$$(V_{p-p(2)}C_0 - \Sigma V_{p-p(3)}C)/m$$
 (3)

где $V_{\rm p-p~(1)}$ – объем раствора, пропущенный через ионит до появления ионов в фильтра-

Рис. 1. Зависимость отношения C/C_0 от удельного объема пропущенного раствора V_{p-p}/V_{pear} при удельной скорости раствора 1.0 (1, 4–6), 2.0 (2) и 2.7 ч⁻¹ (3) и температуре 298 (1–4), 313 (5), 328 К (6).

те, т. е. до "проскока", см³; m — масса воздушно-сухого сорбента, г; $V_{p-p(2)}$ — объем раствора, пропущенный через ионит до уравнивания концентраций ионов в фильтрате и в исходном растворе, см³; $\Sigma V_{p-p(3)}$ — суммарный объем порций фильтрата после появления ионов (после "проскока"), см³.

Относительную объемную ширину сорбционного фронта $\Delta V_{p-p}/V_{pear(0.15-0.85)}$ измеряли между точками $C/C_0 = 0.15$ и $C/C_0 = 0.85$. Степень использования слоя ионита (η) определяли как отношение ДОЕ/ПДОЕ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Установлено, что в динамическом режиме ионы железа (II) и цинка не сорбируются на реагенте Metosol. Вероятно, выявленная в статическом режиме адсорбция указанных макем межмолекулярных связей с развитой поверхностью модифицированного алюмосиликата. В условиях динамического режима происходит вытеснение адсорбированных ионов железа (II) и цинка ионами индия, образующего хелатные соединения с ионогенными группами ди(2-этилгексил)фосфорной кислоты [10, 11]. Выходные кривые сорбции ионов индия в исследованных интервалах удельной нагрузки и температуры имеют преимущественно S-образную форму; точка перегиба смещена в область низких значений удельного объема пропущенного раствора ($V_{\rm p-p}/V_{\rm pear}$) или малой продолжительности процесса, что свидетельствует о замедлении скорости диффузии ионов в сорбенте (рис. 1).

рокомпонентов [8, 9] обусловлена образовани-

Оценки ширины хроматографического фронта (ΔV_{p-p}) и скорости движения средней точки фронта ($\omega_{0.5}$, см/ч) приведены в табл. 1.

ТАБЛИЦА 1	L
-----------	---

Параметры выходных кривых сорбции ионов индия

Параметры	$\Delta V_{\mathrm{p-p}}/V_{\mathrm{pear}}$	$V_{\rm p-p~(1)}/V_{\rm p-p}$	$V_{\rm p-p~(2)}/V_{\rm p-p}$	ω _{0.5} , см/ч	ДОЕ,	ПДОЕ,	η
					ммоль-экв/г	ммоль-экв/г	
$\overline{V_{\text{p-p}}/V_{\text{pear}}}, \ \texttt{u}^{-1}$:			Температура	298 К			
1.0	12.1	3.33	28.3	4.78	0.146	0.572	0.226
2.0	12.2	1.99	26.6	9.55	0.087	0.397	0.221
2.7	12.4	0.66	24.9	12.7	0.029	0.237	0.123
Т, К:			$V_{\rm p-p}/V_{\rm pear} = 1$.0ч ⁻¹			
313	11.6	4.99	38.3	4.78	0.219	0.912	0.240
328	10.2	6.66	41.6	4.78	0.292	1.290	0.256

С ростом линейной скорости пропускания элюента через колонку ($\omega_{0.5}$) в интервале 4.78-12.74 см/ч "проскок" ионов индия в фильтрат наступает значительно раньше (V_{р-р (1)}/ V_{р-р} = 3.33-0.66), увеличивается ширина хроматографического фронта ($V_{p-p}/V_{pear} = 12.1-12.35$), снижается полная динамическая обменная емкость (ПДОЕ = 0.572-0.237 ммоль-экв/г) и степень использования слоя ионита (η = 0.226-0.123). По мере увеличения температуры (298-328 К) снижается ширина хроматографического фронта ($_{\Pi}V_{p-p}/V_{pear} = 12.1-10.24$), возрастает полная динамическая обменная емкость (ПДОЕ = 0.572-1.293 ммоль-экв/г) и степень использования слоя ионита ($\eta = 0.226 - 0.256$). Такая зависимость параметров выходных кривых от скорости пропускания и температуры элюента свидетельствует о том, что процесс сорбции ионов индия контролируется смешанной диффузией.

Скорость поглощения ионов определяется их коэффициентами диффузии. На основании результатов эксперимента рассчитаны эффективные коэффициенты внутренней диффузии ионов индия D_r (в см²/с) с использованием уравнения Туницкого [12]:

$$b = 3600\tau = (r^2/D_r)(1/\pi^2)[\ln (C_0/C_{\min}) - \ln (\pi^2/6)]$$
(4)

 $\Delta V_{p-p} = a + bV_{p-p}$ (5) $\tau = (\Delta V_{p-p} / V_{p-p}) = (a / V_{p-p}) + b$ (6)

где r – радиус сечения слоя, см; C_0 – начальная концентрация раствора, моль/дм³; C_{\min} – минимальная "проскоковая" концентрация поглощаемого иона, моль/дм³; b – коэффициент, численно равный тангенсу угла наклона в системе " ΔV_{p-p} – V_{p-p} ", ч; a – константа, см³;

ТАБЛИЦА 2 Параметры процесса сорбции ионов индия

Рис. 2. Зависимость ширины хроматографического фронта ионов индия от объемной скорости фильтрации раствора при температуре, К: 298 (1), 313 (2), 328 (3).

 $\Delta V_{\rm p-p}$ – абсолютная объемная ширина сорбционного фронта, см³; $V_{\rm p-p}$ – скорость фильтрования раствора, см³/ч; τ – продолжительность размытия сорбционного фронта, ч.

Применимость уравнения (4) обоснована наличием стационарного фронта и выпуклостью изотермы сорбции. Ширина хроматографического фронта ионов индия, в соответствии с данными табл. 1, линейно увеличивается с ростом скорости потока элюента (рис. 2).

По условиям опыта ($r = 25 \cdot 10^{-7}$ см; $C_0 = 73.16 \cdot 10^{-5}$ моль/дм³; $C_{\min} = 0.03C_0$) и с учетом найденных значений коэффициента b (см. рис. 2) по уравнению (4) рассчитаны коэффициенты внутренней диффузии ионов индия в реагенте Metosol (табл. 2). Показано, что в интервале температур 298–328 К коэффициент внутренней диффузии растет в пределах $D_r = (36.6-51.4) \cdot 10^{-16}$ см²/с. Продолжительность размытия сорбционного фронта снижается в интервале $\tau = 12.10-4.63$ ч, по мере

Т, К	<i>а</i> , см ³	b, ч	$V_{ m p-p}$, см $^3/$ ч	τ, ч	R^2	$D_{ m r}\cdot 10^{16}$, см $^2/{ m c}$
298	179	0.148	15	12.00		
			30	6.12	0.996	35.6
			40	4.63		
313	172	0.127	15	11.6		
			30	5.88	0.998	41.6
			40	4.45		
328	152	0.103	15	10.2		
			30	5.17	0.995	51.4
			40	3.91		

увеличения скорости фильтрации элю
ента ($V_{\rm p-p})$ от 15 до 40 см $^3/$ ч.

Соотношение коэффициента массоотдачи и скорости массопроводности в твердой пористой фазе (критерий подобия Био (Bi) [13]) определяет скорость перемещения вещества от границы раздела фаз "жидкое – твердое" в омывающую фазу. Применительно к сорбционным процессам критерий Био характеризует продолжительность стадий внешне-:

$$T_1 = K_d / \beta t \tag{7}$$

и внутридиффузионного массопереноса при поглощении ионов индия реагентом Metosol [14, 15]: $T_2 = r^2/D_r t$ (8) где $K_d = C_{\rm In(pear)}/C_{\rm In(p-p)}$ – коэффициент распределения; β – коэффициент массопереноса сорбата во внешнедиффузионной модели, c⁻¹; D_r – коэффициент диффузии сорбата внутри гранул сорбента, см²/с; r – средний радиус поперечного сечения слоя, см; t – продолжительность, с.

Коэффициент массопереноса $H = T_2/T_1$ может быть рассчитан с учетом уравнений (7) и (8): $H = \beta r^2/(D_r K_d)$ (9)

Согласно (9), коэффициент H связан с равновесными и кинетическими параметрами сорбции и определяет механизм кинетики процесса: при смешаннодиффузионном механизме массопереноса скорости внешней и внутренней диффузии сопоставимы ($H \approx 1$); если H >> 1, то кинетика лимитируется внутренней диффузией; при H << 1 скорость ионного обмена контролируется внешней диффузией [14, 15].

Величина внешнедиффузионного кинетического коэффициента β отражает совместное действие факторов, определяющих внешне-

ТАБЛИЦА 3 Значения кинетического коэффициента β и критерия Био (H)

Т, К	<i>v</i> , см/с	$\beta, \ c^{-1}$	$D_r \cdot 10^{16}, \ { m cm}^2/{ m c}$	K _d	Н
298	4.78	153		544	495
	9.55	212	35.6	284	948
	12.7	244		138	1950
313	4.78	153		909	254
	9.55	212	41.6	475	485
	12.7	244		231	998
328	4.78	153		2540	73
	9.55	212	51.4	1320	141
	12.7	244		644	290

диффузионный механизм сорбции и связанных со свойствами раствора (концентрация, вязкость, природа ионов и др.) и гидродинамическими характеристиками системы (скорость пропускания раствора, размер и форма зерен, порозность слоя є и др.). В частности, значение β в разбавленных растворах для ионов индия ($\lambda_{\rm In} = 63.8 \ {\rm cm}^2/({\rm OM} \cdot {\rm r}{\rm -9}{\rm KB})$) и реагента Metosol ($\epsilon = (V-V_{\rm s})/V \cdot 0.3$; $d_0 \sim 50$ нм; $L_s = 30$ см; $\lambda_{\rm H+} = 349.8 \ {\rm cm}^2/({\rm OM} \cdot {\rm r}{\rm -9}{\rm KB})$) можно рассчитать по уравнению

$$\beta = 4.86 \cdot 10^{-4} [(1 - \varepsilon)/\varepsilon]^{1.53} \{1/[(Z_1/\lambda_1) + (Z_2/\lambda_2)]^{2/3}(v)^{0.47}/d_0^{1.53}\}$$

где Z_1 и Z_2 – заряды обменивающихся ионов; λ_1 и λ_2 – эквивалентная электропроводность исследуемых ионов; v – линейная скорость фильтрации раствора, см/с; V – объем слоя; V_s – объем твердой фазы слоя [16].

В табл. 3 приведены полученные значения кинетического коэффициента β и критерия Био (*H*) для ионов индия и реагента Metosol.

Для оценки критерия Био по уравнению (9) использовали коэффициенты распределения $K_{\rm d}$ ионов, найденные по результатам динамических опытов в области линейной зависимости C/C_0 от объема пропущенного раствора $(C_0 = 73.16 \cdot 10^{-5}$ моль/дм³). Значение $K_{\rm d}$ определяли как отношение концентрации ионов в сорбенте и в фильтрате. Концентрацию поглощенных ионов в сорбенте рассчитывали по разности концентраций в элюенте и в фильтрате (с учетом объема порции фильтрата), отнесенной к массе сорбента в колонке (в пересчете на сухую массу).

Показано, что с увеличением линейной скорости пропускания раствора (v = 4.78-12.74 см/ч) значения внешнедиффузионного кинетического коэффициента возрастают (β = 153.4-244.7 с⁻¹), а коэффициента распределения ионов – снижаются ($K_{\rm d} = 544 - 138 \ {\rm cm}^3/{\rm r}$). Значения K_d возрастают (544-2540 см³/г) с повышением температуры в интервале 298-328 К. Рассчитанные для ионов индия значения $H \ge 100$, что соответствует критерию внутридиффузионного механизма кинетики сорбции. Согласно уравнению $H = T_2/T_1$, критерий Био равен отношению масштабов времени внутри- и внешнедиффузионной стадий массопереноса. Времена T_2 и T_1 можно представить в виде обратных величин скорости внутренней ($T_2 = 1/v_2$) и внешней диффузии

(10)

Рис. 3. Логарифмическая зависимость коэффициента массопереноса сорбата во внешнедиффузионной модели (β) от линейной скорости фильтрации раствора (v).

 $(T_1 = 1/v_1)$ соответственно, $H = v_1/v_2$. В этом случае получаем, что при сопоставимых скоростях внешней диффузии \ln^{3+} скорость внутренней диффузии ионов индия увеличивается с ростом температуры.

Учитывая высокую удельную поверхность реагента Metosol (~70 м²/г), количественные показатели сорбции ионов индия в динамическом режиме во многом определяются процессами внешней диффузии через пограничный вязкий слой жидкости к поверхности зерна и последующего химического взаимодействия с ионогенными группами поверхностного слоя сорбента, а это подтверждает наличие прямолинейной зависимости в координатах $\ln \beta - \ln v$ (рис. 3): $\ln \beta = 0.4749 \ln v + 7.635; R^2 = 0.99.$

При десорбции индия солянокислым раствором (1 : 1) с удельной скоростью пропускания $V_{p-p}/V_{pear} = 1.0 \text{ u}^{-1}$ получены две фракции: 1) объем 7.0 см³; состав, г/дм³: In 0.63, Zn 0, Fe(II) 0; 2) объем 8.3 см³; состав, г/дм³: In 0.29, Zn 0, Fe(II) 0.

Степень регенерации сорбента Metosol превысила 95 %.

выводы

1. В динамическом режиме ионы железа (II) и цинка не сорбируются на реагенте Metosol по ионообменному механизму вследствие их вытеснения ионами индия, образующего хелатные соединения с ионогенными группами интеркалята – ди(2-этилгексил)фосфорной кислоты, что подтверждается отсутствием Fe^{2+} и Zn^{2+} в составе элюатов. 2. Выходные кривые сорбции ионов индия в исследованных интервалах удельной нагрузки ($V_{\rm p-p}/V_{\rm pear} = 1-2.7~{\rm y}^{-1}$) и температуры ($T = 298-328~{\rm K}$) имеют преимущественно *S*-образную форму; точка перегиба смещена в область низких значений удельного объема пропущенного раствора или малой продолжительности процесса, что свидетельствует о замедлении скорости диффузии ионов в сорбенте. В целом, процесс сорбции ионов индия контролируется смешанной диффузией.

 Pearent Metosol может быть рекомендован для проведения испытаний по селективной сорбции индия в динамическом режиме из промышленных растворов цинкового производства.

СПИСОК ЛИТЕРАТУРЫ

- Ритчи Г. М., Эшбрук А. В. Экстракция. Принципы и применение в металлургии. М. : Металлургия, 1983. 407 с.
- 2 Бусыгина Н. С., Травкин В. Ф., Глубоков Ю. М. Закономерности экстракции индия и галлия из кислых сульфатных растворов фосфорорганическими кислотами // Современные наукоемкие технологии. 2005. № 3. С. 34-35.
- 3 Затонский А. В., Беляков О. В., Козлов П. А., Недоспасов А. В. Совершенствование процессов экстракции индия из сульфатных растворов цинкового производства с использованием экстракционного оборудования смесительно-отстойного типа // Цв. металлы. 2015. № 5. С. 41-45.
- 4 Пат. РФ № 2118296, 1998.
- 5 Пат. РФ № 2215695, 2003.
- 6 Аэров М. Э., Тодес О. М., Наринский Д. А. Аппараты со стационарным зернистым слоем. Л.: Химия, 1979. 176 с.
- 7 Зыков Д. Д., Деревицкая В. А., Тростянская Е. Б., Чекалин М. А., Юкельсон И. И., Яшунская Ф. О. Общая химическая технология органических веществ / М.: Химия, 1966. 608 с.
- 8 Ганебных Е. В., Свиридов А. В., Мальцев Г. И. // Химия уст. разв. 2015. Т. 23, № 1. С. 89–95.
- 9 Свиридов А. В., Ганебных Е. В., Мальцев Г. И., Тимофеев К. Л. // Цв. металлы. 2015. № 12. С. 42–46.
- 10 Борис Радионов, Геннадий Мальцев. Индий в водных растворах. Saarbrücken: LAP LAMBERT Acad. Publ. Gmbx & Co. KG, 2014. 352 с.
- 11 Тимофеев К. Л., Усольцев А. В., Мальцев Г. И., Тутубалина И. Л. // Химия уст. разв. 2015. Т. 23, № 3. С. 273–278.
- 12 Туницкий Н. Н., Андреев В. И. // Журн. физ. химии. 1954. Т. 28, Вып. 11. С. 2007–2020.
- 13 Прохоров А. М. Большая физическая энциклопедия: В 5 т. М.: Сов. энциклопедия, 1988. Т. 1. 704 с.
- 14 Сенявин М. М., Рубинштейн Р. Н., Комарова В. Н., Смагин В. Г., Галкина Н. К. Теоретические основы деминерализации пресных вод. М.: Наука, 1975. 327 с.
- 15 Венецианов Е. В., Рубинштейн Р. Н. Динамика сорбции из жидких сред. М.: Наука, 1983. 237 с.
- 16 Справочник химика / под ред. Б. П. Никольского. М.; Л.: Хим. лит., 1964. Т. 3. 1002 с.