УДК 546.682:536.22

Коэффициенты переноса тепла жидкого индия в интервале температур 470–1275 K*

И.В. Савченко¹, С.В. Станкус¹, А.Ш. Агажанов²

E-mail: stankus@itp.nsc.ru

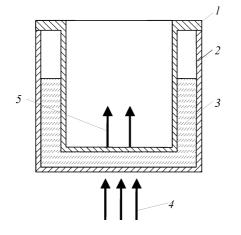
Методом лазерной вспышки исследованы коэффициенты теплопроводности и температуропроводности жидкого индия в интервале температур от 470 до 1275 К. Погрешности измерения коэффициентов переноса тепла составили $\pm(3,5-5)$ %. Получены аппроксимирующие уравнения и таблицы справочных данных для температурной зависимости свойств. Проведено сопоставление результатов измерений с известными литературными данными. Рассчитана температурная зависимость числа Лоренца до 1000 К.

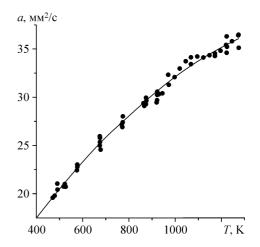
Ключевые слова: теплопроводность, температуропроводность, индий, расплав, метод лазерной вспышки, высокие температуры.

Металлический индий находит широкое применение в самых различных областях науки и техники. Однако несмотря на его низкую температуру плавления и давление паров индия, а также неагрессивность расплава, существующие данные по теплопроводности (λ) в жидком состоянии плохо согласуются между собой. Отличие в абсолютных значениях λ при 900 К достигает 30 %, а для температурного коэффициента — в несколько раз. Это еще раз подчеркивает недостаток достоверных экспериментальных данных для коэффициентов переноса тепла жидких металлов.

Целью настоящей работы являлись получение новых данных по коэффициентам теплопроводности и температуропроводности индия в интервале 470–1275 K, а также апробация разработанной авторами статьи методики измерения коэффициентов переноса тепла металлических расплавов методом лазерной вспышки [1] в области высоких температур.

Измерения выполнялись на автоматизированной установке LFA-427. Использовался твердотельный лазер на иттрий-алюминиевом гранате, легированном неодимом, с длиной волны 1,064 мкм. Длительность импульса составляла 0,8 мс, а его энергия варьировалась от 5 до 10 Дж. Изменение температуры образца измерялось ИК-детектором (InSb), охлаждаемым жидким азотом, а начальная


_


¹Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

²Новосибирский государственный университет

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 07-08-00071) и Российского Федерального агенства по образованию (регистр. № 2.2.1.1/1269).

[©] Савченко И.В., Станкус С.В., Агажанов А.Ш., 2010

Puc. 1. Схема ячейки для измерения температуропроводности и теплопроводности жидких металлов.

1 — вставка, 2 — тигель, 3 — расплав, 4 — лазерное излучение, 5 — излучение на ИК-детектор.

Рис. 2. Результаты измерений температуропроводности жидкого индия. Точки — экспериментальные данные, линия — аппроксимация (1).

температура ячейки — термопарой типа S. В качестве защитной атмосферы использовался доочищенный аргон начальной чистоты 99,998 об. %. Измерения проводились при изотермической выдержке образцов, после того как скорость изменения их температуры становилась меньше, чем 0,1 К/с. Методика проведения экспериментов и обработки результатов подробно изложена в [1].

Исходный металлический индий чистотой 99,996 % и детали измерительных ячеек предварительно дегазировались в вакууме 1 мПа при температуре 1200 К в течение 1-2 часов. Использовались 3 разных ячейки, изготовленные из нержавеющей стали 12X18H10T (рис. 1). Толщина стенок тигля и вставки 0,3–0,5 мм, диаметр тигля 12,6 мм. Толщина зондируемого слоя расплава изменялась от 1,5 до 2,0 мм. Температуропроводность стали была измерена в дополнительных экспериментах на образцах из того же материала, из которого изготовлены ячейки [2]. Значения плотности и теплоемкости стали 12X18H10T и индия взяты из работ [3, 4] и [5, 6] соответственно. При обработке учитывалось изменение толщины слоя расплава за счет теплового расширения нержавеющей стали [7].

На рис. 2 приведены результаты измерений температуропроводности (a) индия в широком интервале температур. Аппроксимация этих данных методом наименьших квадратов дала соотношение

$$a(T) = 3.533 + 0.0394 \cdot T - 1.091 \cdot 10^{-5} \cdot T^{2}, \tag{1}$$

где a измеряется в мм 2 /с, T — температура, К. Среднеквадратичное отклонение первичных данных от (1) составляет 1,8 %. Инструментальная погрешность установки LFA-427, определенная в экспериментах со стандартными твердыми образцами инконеля и пирокерама, составляет 0,5–2,0 %.

Погрешность измеренных значений температуропроводности индия за счет погрешности свойств нержавеющей стали, а также теплоемкости (C_p) и плотности индия (ρ) , может быть оценена с помощью выражения

$$\delta a^2 = B_{a12X}^2 \delta a_{12X}^2 + B_{\rho 12X}^2 \delta \rho_{12X}^2 + B_{Cp12X}^2 \delta C_{P12X}^2 + B_{\rho}^2 \delta \rho^2 + B_{Cp}^2 \delta C_P^2, \tag{2}$$

где

$$B_{a12X} = \frac{a_{12X}}{a} \left(\frac{da}{da_{12X}} \right), \quad B_{\rho 12X} = \frac{\rho_{12X}}{a} \left(\frac{da}{d\rho_{12X}} \right), \quad B_{Cp12X} = \frac{C_{P12X}}{a} \left(\frac{da}{dC_{P12X}} \right),$$

$$B_{\rho} = \frac{\rho}{a} \left(\frac{da}{d\rho} \right), \quad B_{Cp} = \frac{C_{P}}{a} \left(\frac{da}{dC_{P}} \right),$$
(3)

 a_{12X} , ho_{12X} , C_{P12X} — температуропроводность, плотность и теплоемкость нержавеющей стали, δa , δC_P , $\delta \rho$, δa_{12X} , δC_{P12X} , $\delta \rho_{12}$ — относительные погрешности температуропроводности, теплоемкости и плотности индия и 12X18H10T соответственно. Функции влияния (3) определялись численно (табл. 1). Подставляя данные таблицы в формулу (2), получаем, что ошибка в температуропроводности индия за счет погрешностей свойств равна 2 % при температуре плавления и 3,5 % при 1300 К, причем основной вклад вносит ошибка определения температуропроводности материала измерительной ячейки. Погрешность за счет неплоскостности и непараллельности торцевых поверхностей тиглей и вставок не превышает 2 %. Поэтому общую систематическую погрешность определения температуропроводности индия за счет всех источников (аналогично (2)) можно оценить в 3,5-5 %, в зависимости от перегрева над точкой плавления. Значение числа Рэлея при 1300 К составило 23 для двухмиллиметрового слоя. Это существенно меньше критического числа Рэлея (≈1700), поэтому можно предполагать, что в наших экспериментах не возникают свободно-конвективные течения [8]. На это указывает также независимость результатов измерений от толщины слоя расплава.

Используя связь между коэффициентами переноса тепла (4) по данным о температуропроводности, можно рассчитать коэффициент теплопроводности (рис. 3)

$$\lambda = a \rho C_{\rm p}. \tag{4}$$

Аппроксимация результатов расчета методом наименьших квадратов дала выражение

$$\lambda(T) = 13,06 + 0,05368 \cdot T - 1,66 \cdot 10^{-5} \cdot T^{2},\tag{5}$$

где λ измеряется в Вт/(м·К). Легко показать, что погрешность значений теплопроводности по (5) практически совпадает с погрешностью температуропроводности. При определении a уже использовались данные по плотности и теплоемкости расплава индия, поэтому в (4) температуропроводность, теплоемкость и плотность уже нельзя считать независимыми свойствами. Изменение значений теплопроводности $\Delta\lambda$ при вариации плотности $\Delta\rho$ и теплоемкости ΔC_P определяется выражением

$$\frac{\Delta \lambda}{\lambda} = \frac{\Delta \rho}{\rho} \left[1 + B_{\rho} \right] + \frac{\Delta C_{P}}{C_{P}} \left[1 + B_{C_{P}} \right]. \tag{6}$$

Таблица 1 Функции влияния и погрешности теплофизических

x	B_x	$\delta_{_{\!\scriptscriptstyle X}}$, %
C_P	-0,60	0,5
ρ	-0,60	0,3
a_{12X}	-0,85	2,0/4,0
C_{P12X}	0,60	1,5
$ ho_{12X}$	0,60	0,5

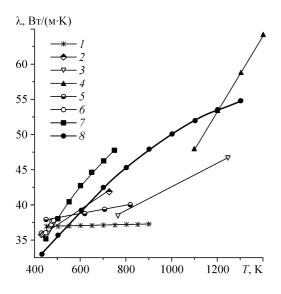


Рис. 3. Сопоставление данных по коэффициенту теплопроводности жидкого инлия

I — [9], 2 — [10], 3 — данные Хусаиновой Б.Н. и Павловой В.И., 1976, [10], 4 — [11], 5 — [12], 6 — [13], 7 — [14], 8 — данная работа.

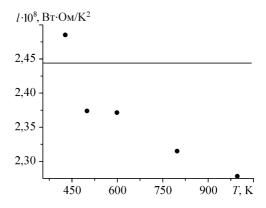
Из уравнения (6) и табл. 1 видно, что если мы берем завышенные на 1 % значения ρ и C_P , то увеличение теплопроводности будет не 2 %, а только 0,8 %. По этой причине дополнительный вклад в погрешность теплопроводности за счет плотности и теплоемкости не будет превышать 0,5 %, что при стандартном подходе (2) пренебрежимо мало увеличивает $\delta\lambda$.

Коэффициент теплопроводности жидкого индия при температуре плавления, определенный по уравнению (5), составляет

$$\lambda(429,75 \text{ K}) = (33,1\pm1,2) \text{ BT/(M·K)}.$$
 (7)

В табл. 2 приведены сглаженные значения коэффициентов теплопроводности и температуропроводности жидкого индия вместе с оценкой их погрешностей.

Сопоставление наших и известных литературных данных представлено на рис. 3. Видно, что наши измерения проведены в наиболее широком интервале температур. Следует заметить, что за исключением [11] и [14] во всех работах не приводится ни первичных экспериментальных данных, ни аппроксимационных уравнений, а лишь графики малых размеров. Погрешность данных по теплопроводности индия в работе [9] не указана, в [12] составляет 5 %, в [14] — 2 %, а в [13] — 1 %. Последнее значение представляется несколько заниженным. Как видно из рис. 3, вблизи от точки плавления наблюдается достаточно хорошее согласование результатов. В пределах оцениваемых суммарных погрешностей измерений наши данные согласуются с работами [10, 13, 14]. С ростом температуры расхождения существенно возрастают, тем не менее наши данные достаточно близки к [10, 14], а при 1200 К пересекаются с [11]. Это свидетельствует о достоверности полученных авторами настоящей статьи результатов и о возможности использования разработанной методики для исследований коэффициентов переноса


Таблица 2 Коэффициенты теплопроводности и температуропроводности жидкого индия

T, K	λ , Bt/(M·K)	a , mm^2/c	δλ, δa, %
429,75	33,07	18,46	3,5
500	35,76	20,51	3,5
600	39,30	23,25	3,6
700	42,51	25,78	3,8
800	45,39	28,08	4,0
900	47,94	30,17	4,2
1000	50,16	32,04	4,4
1100	52,05	33,69	4,6
1200	53,60	35,12	4,8
1300	54,82	36,33	5,0

Рис. 4. Температурная зависимость числа
 Лоренца жидкого индия. Точки — расчет,
 прямая — теоретическое значение.

тепла жидких металлов при высоких температурах.

На рис. 4 приведена температурная зависимость числа Лоренца (*L*) жидкого индия, рассчитанная по данным табл. 2 и справочным значениям электросопротивления [15]. Видно, что в точке плавления число Лоренца на 1,7 % превосходит теорети-

ческое значение $L_0 = 2,445 \cdot 10^{-8} \text{ Bt-Om/K}^2$, а при 1000 K становится меньше L_0 на 7%. Уменьшение L с температурой является типичным для жидких металлов, однако в случае с индием это изменение практически не превосходит суммарной погрешности измерений электросопротивления и теплопроводности.

ЗАКЛЮЧЕНИЕ

Получены новые экспериментальные данные по теплопроводности и температуропроводности жидкого индия в интервале температур от 470 до 1275 К и оценены их погрешности. Показано, что выше 750 К результаты измерений разных авторов плохо согласуются между собой. Величина числа Лоренца жидкого индия, в пределах погрешностей определения, совпадает с теоретическим значением.

СПИСОК ЛИТЕРАТУРЫ

- Станкус С.В., Савченко И.В. Измерение коэффициентов переноса тепла жидких металлов методом лазерной вспышки // Теплофизика и аэромеханика. 2009. Т. 16, № 4. С. 625–632.
- 2. Станкус С.В., Савченко И.В., Багинский А.В., Верба О.И., Прокопьев А.М., Хайрулин Р.А. Коэффициенты переноса тепла нержавеющей стали 12X18H10T в широком интервале температур // Теплофизика высоких температур. 2008. Т. 46, № 5. С. 795−797.
- **3.** Басин А.С., Ревенко М.А., Станкус С.В. Изменение плотности стали X18H10T при плавлении и кристаллизации // Кристаллизация и процессы в кристаллизаторах: Сб. науч. тр. / под ред. В.Е. Накорякова. Новосибирск, Институт теплофизики СО АН СССР, 1979. С. 109–121.
- ГСССД 32–82. Стали 12X18Н9Т и 12X18Н10Т. Удельная энтальпия и удельная теплоемкость в диапазоне температур 400–1380 К при атмосферном давлении. М.: Изд-во стандартов, 1991. 17 с.
- Станкус С.В., Тягельский П.В. Аномалии теплового расширения полуметаллов в жидком состоянии // Расплавы. 1991. № 2. С. 14–19.
- Термодинамические свойства индивидуальных веществ. Справочное издание: В 4-х т. / Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др. 3-е изд., перераб. и расширен. Т. 3, Кн. 2. М.: Наука, 1981. 400 с.
- ГСССД 59-83. Молибден, монокристаллическая окись алюминия, сталь 12X18H10T. Температурный коэффициент линейного расширения. М.: Изд-во стандартов, 1984. 7 с.
- 8. Гетлинг А.В. Конвекция Рэлея-Бенара. Структура и динамика. М.: Эдиториал УРСС, 1999. 248 с.
- 9. Юрчак Р.П., Смирнов Б.П. Теплопроводность и число Лоренца индия в твердом и жидком состояниях // Теплофизика высоких температур. 1969. Т. 7, № 1. С. 176–177.
- Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G. Thermal conductivity of metallic elements and alloys // Thermophys. Prop. Matter.: N.-Y. IFI Plenum, 1970.
- 11. Atalla S.R. Experimental investigation of thermophysical properties of liquid metals at elevated temperatures // High Temp.-High Press. 1972. Vol. 4. P. 447-451.
- 12. Duggin M.J. The thermal conductivities of liquid lead and indium // J. Phys. F: Metal Phys. 1972. Vol. 2. P. 433–440.
- Goldratt E., Greenfield A.J. Experimental test of the Wiedemann-Franz law for indium // J. Phys. F: Metal Phys. 1980. Vol. 10. P. L95–L99.
- **14. Peralta-Martinez M.V., Assael M.J., Dix M.J., Karagiannidis L., WakehamW.A.** A novel instrument for the measurement of the thermal conductivity of molten metals. Part II: Measurements // Inter. J. Thermophysics. 2006. Vol. 27, No. 3. P. 681–698.
- **15.** Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Справ. изд. М.: Металлургия, 1989. 384 с.

Статья поступила в редакцию 25 сентября 2009 г.