УДК 533.6.011.32

Численное исследование влияния степени загромождения потока на аэродинамические коэффициенты моделей в аэродинамических трубах малых скоростей

В.Т. Буй, В.Т. Калугин, В.И. Лапыгин, А.И. Хлупнов

МГТУ им. Н.Э. Баумана, Москва

E-mail: vantien06@gmail.com, vil1940@mail.ru, kaluginvt@mail.ru

С использованием пакета ANSYS Fluent и модуля построения расчетных сеток ANSYS ICEM CFD проведены расчеты обтекания профиля крыла, бесконечного цилиндра, затупленных пространственных тел в открытой и в закрытой рабочей части дозвуковых аэродинамических труб малых скоростей. Примененная математическая модель течения включала уравнения Рейнольдса и SST-модель турбулентности. Установлено, что отношения значений аэродинамических коэффициентов в рабочей части и в свободном (безграничном) потоке могут быть аппроксимированы кусочно-линейной функцией от параметра загромождения, значение которой слабо зависит от угла атаки. Результаты расчетов и анализа опубликованных экспериментальных исследований находятся в хорошем соответствии. Рассмотрено влияние удлинения закрытой рабочей части на подъемную силу профиля крыла.

Ключевые слова: аэродинамическая труба, коэффициент загромождения потока, аэродинамические коэффициенты.

Введение

Обтекание модели летательного аппарата дозвуковым безграничным (свободным) потоком и в ограниченном пространстве рабочей части аэродинамической трубы (AT) различно и степень этого различия принято определять отношением характерных размеров модели (S) и рабочей части трубы (F): $\xi = S/F$. Обычно в качестве F принимается площадь поперечного сечения рабочей части трубы на выходе из сопла. Очевидно, что с уменьшением ξ различие параметров течения около модели в свободном потоке и в рабочей части уменьшается. Опыт экспериментальных исследований продемонстрировал, что можно указать такое значение ξ^* , при котором влиянием границ рабочей части, сопла, диффузора и др. на значения аэродинамических коэффициентов при $\xi < \xi^*$ можно пренебречь. Приведенные в литературе рекомендации о выборе значении ξ^* отличны друг от друга, что связано с различием формы моделей и экспериментального оборудования: $\xi^* = 0,02 \div 0,03$ [1], $\xi^* = 0,05 \div 0,06$ [2, стр. 36], $\xi^* = 0,075$ [3, р. 371]. Анализ приближенных зависимостей аэродинамических коэффициентов от параметра ξ [4, 5], экспериментальные ные данные [1, 4, 6–8], а также моделирование обтекания затупленных моделей в закрытой рабочей части AT малых дозвуковых скоростей [9] свидетельствуют о линейности

© Буй В.Т., Калугин В.Т., Лапыгин В.И., Хлупнов А.И., 2017

зависимостей $C_{xa}(\xi)$, $C_{ya}(\xi)$, $m_z(\xi)$, где C_{xa} — коэффициент лобового сопротивления, C_{ya} — коэффициент подъемной силы, а m_z — коэффициент момента тангажа. Таким образом, экспериментальные данные и теоретические оценки показывают, что зависимости $C_{xa}(\xi)$, $C_{ya}(\xi)$, $m_z(\xi)$ могут быть описаны кусочно-линейной функцией, значение которой на отрезке $[0, \xi^*]$ постоянно. Рассмотрим справедливость этого предположения путем моделирования обтекания моделей в открытой (T-500) [10] и в закрытой (T-324) [11] рабочих частях АТ с использованием CFD методов.

Выбор аэродинамических труб определился доступностью материалов об их конструктивных особенностях и результатах измерений полей потока в рабочей части.

Постановка задачи

Принятая в расчетах математическая модель пространственного течения в АТ и в свободном потоке основывается на уравнениях Рейнольдса и SST-модели турбулентности, выбор которой, применительно к обтеканию модели в аэродинамической трубе, обоснован в работах [12–14]. Модель располагалась в центре рабочей части, ось которой совпадала с осью симметрии модели. Ввиду того, что возмущение от рассматриваемой модели распространялось как вверх, так и вниз по потоку, наряду с течением в рабочей части рассчитывалось течение в сопле и в диффузоре.

В настоящем исследовании используется правая декартова система координат, ось Ох которой совпадает с осью симметрии рабочей части и направлена по потоку, ось Оу направлена вверх. Начало координат совпадает с центром модели, расположенным на оси рабочей части в ее середине. Взаимное расположение сопла, рабочей части и диффузора, а также их размеры для АТ Т-500 приведены на рис. 1, где l = 500 мм — высота выходного квадратного сечения сопла. Контур верхней и нижней панелей сопла соответствуют профилю Витошинского [15]. Боковые панели сопла являются плоскими. Высота входного квадратного сечения диффузора равна 600 мм, его угол раскрытия — 4°.

Контур меридианального сечения АТ Т-324 и взаимное расположение форкамеры, сопла, рабочей части и диффузора, а также их размеры приведены на рис. 2, где l = 1 м. Поперечные сечения форкамеры, сопла и диффузора имеют форму восьмиугольника, а рабочей части — форму квадрата со срезанными углами.

Рис. 1. Схема АТ Т-500. Расчетная область и расчетные сетки.

Теплофизика и аэромеханика, 2017, том 24, № 6

Рис. 2. Взаимное расположение сопла, рабочей части и диффузора и расчетная сетка.

При расчете обтекания модели в рабочей части AT на границах расчетной области (рис. 1, 2) задаются следующие условия:

 на входе в форкамеру — равномерный профиль скорости, значение которой определяется путем итеративного процесса вычислений в пустой рабочей части для установления заданной скорости потока на выходе из сопла;

 – на правой границе расчетной области в месте выхода из диффузора — условие постоянного массового расхода;

- на поверхностях сопла, диффузора и модели — условие прилипания;

 на остальных границах расчетной области в случае открытой рабочей части задается атмосферное давление.

Задача включает расчет обтекания модели как в рабочей части, так и в свободном потоке. Расчет проводился с использованием пакета ANSYS Fluent. Построение структурированной расчетной сетки выполнено с помощью модуля ANSYS ICEM CFD.

Расчетные сетки

В пустой рабочей части АТ Т-500 толщина первой пристеночной ячейки составляла 1 мм. Размеры следующих ячеек увеличивались в 1,2 раза по сравнению с предыдущей. Количество ячеек равнялось 41204. Количество ячеек в пустой рабочей части АТ Т-324 составляло 37000, высота первой пристеночной ячейки — 3.10⁻⁴ м. Проведенные расчеты течения в пустой рабочей части показали удовлетворительное совпадение расчетных и экспериментальных профилей скорости [12, 13].

При расчете обтекания модели в рабочей части и свободным потоком использовалась структурированная расчетная сетка. Размер расчетных ячеек выбирался так, чтобы поперек пограничного слоя на середине модели их было не менее десяти. Высота первой пристеночной ячейки составляла 10^{-6} м. Размеры следующих ячеек увеличивались в 1,1 раза по сравнению с предыдущей. Количество расчетных ячеек в АТ Т-500 в присутствии профиля составляло около 110000, а в присутствии цилиндра — 130000. Количество расчетных ячеек в АТ Т-324 в присутствии модели составляло около 140000. Наряду с количеством ячеек качество расчетной сетки характеризуется значением безразмерного коэффициента высоты первой пристеночной ячейки Y^+ :

$$Y^+ = \frac{\operatorname{Re}_x \Delta y}{x} \sqrt{\frac{C_f}{2}},$$

где Δy — высота первой пристеночной ячейки, C_f — коэффициент трения. В проведенных расчетах значения $Y^+ \leq 2$ и находятся в допустимых пределах для SST-модели турбулентности [16].

При расчете обтекания профиля NASA0012 свободным потоком расчетная область представляла собой сочетание прямоугольника и полуокружности, в центре которой располагалась модель профиля крыла. Линейные размеры расчетной области составляли в продольном направлении 22,5*b*, а в поперечном — 15*b*, где *b* — длина хорды профиля. Количество расчетных ячеек составляло 89000 [11].

При расчете обтекания цилиндра свободным потоком расчетная область представляла собой окружность радиуса R = 60D, в центре которой располагался цилиндр с диаметром D. На левой полуокружности расчетной области задавались значения скорости, равные скорости на выходе из сопла, а на правой полуокружности задавалось атмосферное давление. Высота первой пристеночной ячейки составляла 10^{-6} м. Размеры следующих ячеек увеличивались в 1,1 раза по сравнению с предыдущей ячейкой. На основании проведенных методических расчетов было определено количество ячеек — 79000.

При расчете пространственного обтекания модели свободным потоком расчетная область представляла собой круговой цилиндр, в центре которого располагается модель. Диаметр цилиндра равнялся 15D, а его длина составляла 25D, где D — максимальный диаметр модели. На левой границе задавалось значение скорости, равное скорости на выходе из сопла аэродинамической трубы, на остальных поверхностях расчетной области задавалось атмосферное давление, а на поверхности модели — условие прилипания. Количество расчетных ячеек структурированной расчетной сетки составляло около 800000. Значения $Y^+ \leq 2$ по образующей линии модели.

При расчете пространственного обтекания моделей в АТ Т-500 расчетная область представляла собой параллелепипед, внутри которого располагались часть форкамеры, сопло, рабочая часть с моделью и диффузор, а в АТ Т-324 расчетная область ограничивалась трактом аэродинамической трубы (рис. 2). Граничные условия, задаваемые при расчете, описаны в предыдущем разделе. Количество расчетных ячеек неструктурированной сетки составляло около 1400000.

Аэродинамические коэффициенты профиля

Значения аэродинамических коэффициентов C_{xa} и C_{ya} профиля NASA0012 в AT T-500 и в AT T-324 при $\text{Re}_{h} = 6,3\cdot 10^{5}, 0,2 \le \xi \le 0,6, \alpha = 5^{\circ}, 10^{\circ}$ приведены в табл. 1 ($\xi = b/l$).

Значения относительного приращения аэродинамических коэффициентов профиля $\Delta x = (C_{xa}/C_{xaf} - 1)$ и $\Delta y = (C_{ya}/C_{yaf} - 1)$ в АТ Т-500 и в АТ Т-324, где индексом «f» обозначены значения аэродинамических коэффициентов в свободном потоке, приведены на рис. 3, 4. Расчеты показали, что при $\xi < 0,2$ значения C_{xa} и C_{ya} в свободном потоке и в рабо-

							Т	аблица 1	
AT	T-500				T-324				
<i>b,</i> м	0,1	0,15	0,2	0,3	0,2	0,25	0,3	0,4	
ξ	0,2	0,3	0,4	0,6	0,20	0,25	0,30	0,40	
$\alpha = 5^{\circ}$									
C _{xa}	0,012	0,015	0,018	0,023	0,0122	0,0129	0,0138	0,0155	
Cya	0,432	0,396	0,361	0,302	0,431	0,423	0,414	0,396	
$\alpha = 10^{\circ}$									
C _{xa}	0,018	0,0223	0,0263	0,0349	0,0182	0,0193	0,0206	0,0230	
C _{ya}	0,840	0,778	0,697	0,579	0,846	0,830	0,811	0,777	
C _{xo}	0,0084	0,0104	0,0122	0,0160	0,0084	0,0088	0,0094	0,0106	

Рис. 3. Зависимость относительного приращения значений Δx (ξ) профиля в AT T-500 (*a*) и в AT T-324 (*b*) при Re_b = 6,3·10⁵. α = 5° (*1*), 10° (*2*), 20° (*3*).

чей части АТ одинаковы [13,14]. Представленные графики показывают, что зависимости $C_{xa}(\zeta)/C_{xaf}, C_{va}(\zeta)/C_{vaf}$ могут быть аппроксимированы кусочно-линейной функцией вида

$$F(\xi) = 1$$
 при $0 \le \xi \le \xi^*$, $F(\xi) = 1 + A(\xi - \xi^*)$ при $\xi > \xi^*$ (1)

Зависимость от ξ отношения моментов тангажа m_z/m_{zf} , которая здесь не приводится, также аппроксимируется функцией вида (1). Сравнение значений Δx и Δy при ξ = const показывает, что влияние жестких стенок закрытой рабочей части на значения C_{xa} и C_{ya} существенно меньше по сравнению с открытой рабочей частью.

Отношения аэродинамических коэффициентов C_{xa}/C_{xaf} , C_{ya}/C_{yaf} не только линейны по ξ , но и практически не зависят от угла атаки, что иллюстрируется графиками рис. 5. Изменение значений $C_{xa}(\xi)/C_{xaf}$, $C_{ya}(\xi)/C_{yaf}$ при $0 \le \alpha \le \alpha_{max}$ не превышает 1,5 %, где $\alpha_{max} = 15^{\circ}$ соответствует максимальному значению C_{ya} [13, 14]. Изменение режима обтекания профиля при $\alpha > \alpha_{max}$ приводит к незначительному уменьшению значений $\Delta x(\alpha)$, $\Delta y(\alpha)$, которые остаются близкими к постоянной величине.

Представленные на рис. 4b данные о приращении подъемной силы профиля в закрытой рабочей части AT-324 противоречат представлениям об увеличении подъемной силы несущей модели в присутствии жестких стенок по сравнению с условиями безграничного потока. Для объяснения этого противоречия были проведены расчеты обтекания профиля с использованием трех конфигураций расчетной области: первая — форкамера, сопло, рабочая часть длиной 4 м, диффузор; вторая — форкамера, сопло, укороченная

Рис. 4. Зависимость относительного приращения значений $\Delta y(\xi)$ профиля в AT T-500 (*a*) и в AT T-324 (*b*) при Re_b = 6,3·10⁵. $\alpha = 5^{\circ}(1), 10^{\circ}(2), 20^{\circ}(3).$

885

Буй В.Т., Калугин В.Т., Лапыгин В.И., Хлупнов А.И.

Рис. 5. Зависимости значений Δx и Δy от угла атаки при $\xi = 0,4$, $\operatorname{Re}_b = 6,3 \cdot 10^5$. Открытая (*a*) и закрытая (*b*) рабочие части.

				Гаолица 2
Коэффициенты	Вариант 1	Вариант 2	Вариант 3	В свободном потоке
C _{xa}	0,0230	0,0194	0,0206	0,0182
C _{ya}	0,777	1,05	1,086	0,846

рабочая часть длиной 2 м, диффузор; третья — рабочая часть длиной 4 м в отсутствие сопла и диффузора. Значения коэффициентов лобового сопротивления и подъемной силы профиля при $\xi = 0,4$, $\text{Re}_b = 6,3 \cdot 10^5$, $\alpha = 10^\circ$ приведены в табл. 2, которая иллюстрирует влияние расчетной области на результаты моделирования. При моделировании обтекания профиля в короткой рабочей части при наличии сопла и диффузора (вариант 2), а также в канале (вариант 3) жесткие стенки приводят к увеличению подъемной силы профиля по сравнению с условиями безграничного потока, что не противоречит экспериментальным данным и классической теории [2, 8]. Однако увеличение длины рабочей части (вариант 1) приводит к уменьшению подъемной силы профиля.

Коэффициент лобового сопротивления цилиндра

Проведенные расчеты обтекания гладкого кругового цилиндра свободным потоком показали удовлетворительное согласование результатов расчетных и экспериментальных исследований, что свидетельствует о возможности использования SST-модели турбулентности при расчете обтекания кругового цилиндра [13].

Значения коэффициента лобового сопротивления цилиндров различного диаметра (*D*) в рабочих частях АТ Т-500 и Т-324 при числе $\text{Re}_D = 10^5$ приведены в табл. 3. Снижение значений C_{xa} при увеличении коэффициента загромождения ξ связано с влиянием диффузора на донное давление, которое растет с увеличением *D*.

Относительные приращения коэффициента лобового сопротивления $\Delta x(\xi)$ представлены на рис. 6, графики которого демонстрируют отсутствие влияния границ открытой рабочей части при $\xi = D/l \le \xi^* = 0,05$ и при $\xi < \xi^* = 0,06$ — закрытой. При $\xi > \xi^*$

AT		T-324						
<i>D</i> , мм	25	34	68	100	50	75	100	150
ξ	0,05	0,068	0,136	0,200	0,05	0,075	0,1	0,15
C_{xaf}	1,071	1,071	1,071	1,071	1,071	1,071	1,071	1,071
C_{xa}	1,069	1,010	0,840	0,702	1,070	1,046	1,012	0,935

Таблица З

Рис. 6. Приращения коэффициента лобового сопротивления цилиндра $\Delta x(\xi)$ при $\operatorname{Re}_D = 10^{\circ}$. Открытая (1) и закрытая (2) рабочая часть.

приращения Δx изменяются пропорционально величине ξ и отношение $C_{xa}(\xi)/C_{xaf}$ может быть аппроксимировано линейной зависимостью вида (1). Так же, как и при обтекании профиля, влияние жестких стенок закрытой рабочей части на значения С_{ха} существенно

меньше по сравнению с открытой рабочей частью.

Влияние размера модели на значения ее аэродинамических коэффициентов в пространственном потоке

Рассмотрим три модели, обладающие большим лобовым сопротивлением (рис. 7). Общей особенностью обтекания этих моделей является формирование развитого отрывного донного следа за счет отрыва потока с кромок лобового экрана (модели на рис. 7а и 7b, где R — радиус сферы) и кормового конуса (модель на рис. 7c). Первые две модели имеют сегментально-коническую форму с различным углом раствора кормового конуса и радиусом лобового экрана. При расчете аэродинамических коэффициентов в качестве характерной длины принимался диаметр лобового экрана или кормового конуса, в качестве характерной площади — площадь миделя $S_{\rm M} = \pi D^2/4$, в качестве моментной точки — передняя точка торможения на модели при угле атаки $\alpha = 0$. Для задания углов атаки модель вращалась относительно ее центральной точки.

Сравнение экспериментальных и расчетных значений аэродинамических коэффициентов модели, изображенной на рис. 7с [17], представленное на рис. 8, а также модели рис. 7а, представленное в работе [9], демонстрирует их удовлетворительное согласование и свидетельствует о справедливости принятой математической модели течения. Заметим,

Рис. 8. Зависимости C_{xa} и C_{ya} модели, изображенной на рис. 7*с*, от угла атаки при $\text{Re}_D = 3 \cdot 10^5$.

Рис. 9. Зависимости Δx , Δy , Δm для модели, изображенной на рис. 7*a*, от ξ в AT T-500. Re_D=4·10⁵; $a - \alpha = 0^{\circ}(I)$, 10° (2), 20° (3), *b*, $c - \alpha = 10^{\circ}(I)$, 20° (2).

что результаты экспериментов соответствуют коэффициенту загромождения $\xi = 0,026$. Влияние размера модели, изображенной на рис. 7*a*, на значения ее аэродинамических коэффициентов в АТ Т-500 иллюстрируется графиками рис. 9 в виде зависимостей приращений Δx , Δy , Δm от коэффициента ξ . На графиках также отражена линейная зависимость аэродинамических коэффициентов от коэффициента загромождения ξ при $\xi > 0,05$ (при $\xi < 0,05$ размер модели не влияет на ее аэродинамические коэффициенты). В рассмотренном диапазоне изменения углов атаки его влияние на отношения $C_{xa}(\xi)/C_{xaf}$, $C_{ya}(\xi)/R_{zf}$ весьма мало́ (см. рис. 10).

Линейность зависимостей $\Delta x(\xi)$, $\Delta y(\xi)$, $\Delta m(\xi)$ имеет место и при обтекании моделей, представленных на рис. 7b, 7c. Причем значения Δx , Δy , Δm при ξ = const у всех трех моделей близки друг к другу, что хорошо видно из табл. 4, где приведены результаты расчетов при ξ = 0,2 и α = 20°. Графики рис. 9 и данные табл. 4 показывают, что в открытой рабочей части значения $C_{xa}(\xi)/C_{xaf}$, $C_{ya}(\xi)/C_{yaf}$, $m_z(\xi)/m_{zf}$ уменьшаются при увеличении размера модели. Нетрудно видеть, что вследствие линейности зависимостей $\Delta x(\xi)$, $\Delta y(\xi)$, $\Delta m(\xi)$ близость или равенство их значений при ξ = const означает независимость положения центра давления модели от ее размера в открытой рабочей части,

Рис. 10. Изменение Δx , Δy , Δm для модели, изображенной на рис. 7*a*, от угла атаки при ξ = const. ξ = 0,1 (*a*), 0,2 (*b*); $1 - \Delta x$, $2 - \Delta y$, $3 - \Delta m$.

Таблица 4

AT		T-500		T-324			
Модель	7 <i>a</i>	7 <i>b</i>	7 <i>c</i>	7 <i>a</i>	7 <i>b</i>	7 <i>c</i>	
Δx	-0,272	-0,282	-0,296	0,462	0,433	0,421	
Δy	-0,272	-0,281	-0,314	0,371	0,380	0,341	
Δm	-0,272	-0,283	-0,314	0,132	0,121	0,124	

Значения Δx , Δy , Δm моделей при $\xi = 0,2$ и $\alpha = 20^{\circ}$

по крайней мере для $\xi \le 0,2$. В закрытой рабочей части значения Δx , Δy , Δm положительны [9], что приводит к росту значений $C_{xa}(\xi)/C_{xaf}$, $C_{ya}(\xi)/C_{yaf}$, $m_z(\xi)/m_{zf}$ рассмотренных моделей при увеличении ξ .

Результаты экспериментов

Зависимости вида (1) имеют место и при физическом моделировании в АТ. Результаты обработки данных аэродинамических исследований по определению коэффициента сопротивления моделей парашютов различной проницаемости (7, 15 и 30 %) в шести дозвуковых АТ [6] представлены на рис. 11, где в скобках указана точность определения коэффициента C_{xa} . Нетрудно заметить, что экспериментальные данные хорошо описываются кусочно-линейной зависимостью (1). При проницаемости парашюта $\Pi = 7 \% - \xi^* = 0,072$, при $\Pi = 15 \% - \xi^* = 0,066$, при $\Pi = 30 \% - \xi^* = 0,054$.

Анализ результатов аэродинамических испытаний модели прямоугольного крыла с удлинением $\lambda = 6$ и отклоненным на 60° закрылком при $\xi = 0,16$ и $\xi = 0,016$ [18] показывает, что значения $C_{xa}(\alpha)/C_{xaf}$, $C_{ya}(\alpha)/C_{yaf}$, $m_z(\alpha)/m_{zf}$ слабо зависят от угла атаки, что иллюстрируется графиками рис. 12. В этом случае коэффициент загромождения ξ определяется как отношение площади крыла к площади поперечного сечения рабочей части. Заметим, что C_{yamax} соответствует углу $\alpha = 8^{\circ}$ при $\xi = 0,16$ и $\alpha = 11,5^{\circ}$ — при $\xi = 0,016$. Отклонение $C_{xa}(\alpha)/C_{xaf}$ от их среднего значения не превышает 2 %, а значения $C_{ya}(\alpha)/C_{yaf}$, $m_z(\alpha)/m_{zf}$ практически постоянны и не зависят от α .

Заключение

Проведенное исследование позволило установить функциональную зависимость аэродинамических коэффициентов модели от ее коэффициента загромождения в рабочих частях дозвуковых аэродинамических труб малых скоростей. Отношение аэродинамических коэффициентов модели в рабочей части и в свободном потоке могут быть

Рис. 12. Зависимость значений $C_{xa}(\alpha)/C_{xaf}$, $C_{ya}(\alpha)/C_{yaf}, m_z(\alpha)/m_{zf}$ от угла атаки по экспериментальным данным [18]. $1 - C_x/C_{xf}, 2 - C_y/C_{yf}, 3 - m_z/m_{zf}$. аппроксимированы кусочно-линейной функцией от коэффициента загромождения, которая равна единице при малых величинах этого коэффициента. Значения этой функции практически не зависят от угла атаки в исследованном диапазоне его изменения и могут быть больше или меньше единицы в зависимости от типа рабочей части трубы и ее длины. Подъемная сила профиля в закрытой рабочей части зависит от ее удлинения, увеличение которого уменьшает подъемную силу профиля по сравнению с условиями свободного потока.

Список литературы

- Евграфов А.Н., Кутяев А.В. Методика учета влияния загромождения рабочей части трубы на аэродинамическое сопротивление автомобиля // Известия МГИУ. Машиностроение. 2006. № 1. С. 70–73.
- 2. Горлин С.М., Слезингер И.И. Аэродинамические измерения. Методы и приборы. М.: Наука. 1964. 720 с.
- 3. Rae W.H. Jr., Pope A. Low-speed wind tunnel testing // John Wiley and Sons. 2nd ed. 1984. 534 p.
- **4. Maskell E.C.** A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel // ARC R and M. 1965. № 3400. 22 p.
- 5. Юрьев Б.Н. Экспериментальная аэродинамика. Ч. 2 М.: Оборонгиз, 1939. 276 с.
- 6. Евграфов А.Н. Метод переноса результатов модельных испытаний на натурный автомобиль // Известия МГИУ. Машиностроение. 2007. № 2. С. 21–24.
- Macha J.M., Buffington R.J. An experimental investigation of wall-interference effects for parachutes in closed wind tunnels // Sandia Report SAND89-1485, Sandia National Laboratories, Albuquerque, NM, USA, Dec. 1985. 25 p.
- 8. Ewald B.F.R. Wind tunnel wall corrections // AGARDograph. 1998. № 336. 552 p.
- 9. Буй В.Т., Калугин В.Т., Хлупнов А.И. Коррекция результатов весовых испытаний модели применительно к условиям свободного потока при малых дозвуковых скоростях // Космонавтика и ракетостроение. 2016. № 1. С. 86–93.
- 10. Голубев А.Г., Калугин В.Т., Луценко А.Ю., Хлупнов А.И. и др. Аэродинамика: уч. пособие для вузов / под ред. В.Т. Калугина. М.: Изд-во МГТУ им. Н. Э. Баумана, 2010. 687 с.
- Поляков Н.Ф. Методика исследований характеристик потока в малотурбулентной аэродинамической трубе и явления перехода в несжимаемом пограничном слое: дис.... канд. техн. наук. Новосибирск, 1973. 262 с.
- 12. Буй В.Т. Анализ обтекания профиля в рабочей части аэродинамической трубы малых скоростей // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2013. № 4. С. 109–119.
- 13. Буй В.Т, Лапыгин В.И. Моделирование обтекания модели в закрытой рабочей части аэродинамической трубы малых скоростей и в свободном потоке // Теплофизика и аэромеханика. 2015. Т. 22, № 3. С. 365–372.
- 14. Буй В.Т., Лапыгин В.И. О влиянии размера модели на ее аэродинамические характеристики в аэродинамической трубе малых скоростей // Математическое моделирование. 2015. Т. 27, № 5. С. 28–38.
- 15. Харитонов А.М. Техника и методы аэрофизического эксперимента. Ч.1. Аэродинамические трубы и газодинамические установки. Новосибирск: НГТУ, 2005. 220 с.
- **16. Белов И.А., Исаев С.А.** Моделирование турбулентных течений: учеб. пособие. СПб.: Изд-во БГТУ. 2001. 108 с.
- Соболев В.Ю. Методика определения аэродинамических характеристик летательных аппаратов со стабилизирующими устройствами при дозвуковом отрывном обтекании: дис.... канд. техн. наук: защищена 08.06.2007: утв. 26.10.2007. Москва, 2007. 280 с.

Статья поступила в редакцию 18 июля 2016 г., после доработки — 30 марта 2017 г.