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На основе разработанной трехмерной нестационарной модели движения проведены рас-
четы теплообмена в движущейся по дну микроканала жидкой пленке. Жидкость дви-
жется под действием спутного потока газа в канале, на дне которого расположен квад-
ратный нагреватель. При этом учитывалось действие всех основных физических факто-
ров при их взаимодействии: диффузионный и конвективный теплопереносы, зависимость
свойств жидкости от температуры, термокапиллярный эффект, появление и эволюция
поверхностных деформаций, испарение и конденсация жидкости. Установлено, что раз-
мер нагревателя существенно влияет на поля температуры и поверхностные деформа-
ции, а также на значение температурных экстремумов. Выведена формула для расчета
наибольшего достигаемого на подложке превышения среднего значения температуры.
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Введение. Изучение динамики тонких пленок жидкости при локальном нагреве под-
ложки является в настоящее время актуальной и одной из сложнейших задач в тепло-
физике, поскольку непосредственно связано с проблемой охлаждения микроэлектронного
оборудования [1]. Современные микропроцессоры представляют собой поверхность, состо-
ящую из зон с неоднородным тепловыделением [2]. Форма этих зон часто близка к прямо-
угольной [3], а размер может составлять от нескольких микрометров до нескольких сан-
тиметров. Существует ряд подходов к решению задач теплоотвода от точечных горячих
зон. Одним из перспективных методов отвода больших тепловых потоков от электронного
оборудования являются технологии, использующие тонкие слои жидкости, движущиеся по
подложке, содержащей зоны тепловыделения.

В случаях, когда затруднительно обеспечить стекание жидкости по подложке (напри-
мер, в условиях слабой гравитации), применяется движение двухфазных потоков в кана-
лах, в которых поток газа вызывает движение жидкости. Характерная высота рассмат-
риваемых каналов варьируется от 50 до 2000 мкм. При этом движение газа и жидкости,
как правило, имеет ламинарный характер. Основными рабочими жидкостями для таких
систем охлаждения являются вода и диэлектрическая жидкость FC-72.

В работе [1] изложены результаты экспериментальных исследований тепломассообме-
на при течениях в мироканалах. В [4] изучена задача о трехмерном стационарном пол-
зущем течении двух несмешивающихся жидкостей в канале с твердыми параллельными

стенками, на одной из которых поддерживается заданное распределение температуры,
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а другая является теплоизолированной. Динамика тонкой диэлектрической пленки жидко-
сти на поверхности электрода в окружающем газе под действием неоднородного электри-
ческого поля исследована в [5]. Важной особенностью двухфазных течений в микроканале
является наличие процессов испарения и конденсации, которые существенно влияют на пе-
рераспределение тепла в средах. В работе [6] представлены результаты эксперименталь-
ных исследований межфазного движения и конвекции в горизонтальном слое жидкости,
испаряющейся с локализованной поверхности в поток газа. Теоретические и эксперимен-
тальные исследования течений при наличии испарения проведены в работе [7].

Следует отметить обзор [8], в котором представлены теоретические основы матема-
тического моделирования конвективных течений с испарением и актуальные направления

их исследований. Основное внимание уделено моделям, построенным в рамках механики
сплошных сред, сравнению различных постановок соответствующих задач, в том числе
формулировок граничных условий на межфазных границах.

В работе [9] разработаны математическая модель и алгоритм численного расчета

полей скорости и температуры, а также эволюции поверхностных возмущений тонкой
жидкой пленки, движущейся под действием спутного потока газа по плоской наклонной
подложке при наличии на подложке локализованных нагревателей. В модели, описыва-
ющей нестационарные трехмерные течения, учтено действие всех основных физических
факторов при их взаимодействии: диффузионного и конвективного теплопереносов, зави-
симости вязкости жидкости от температуры, термокапиллярного эффекта, деформаций
поверхности. В данной работе на основе этой модели проведено исследование зависимости
теплообмена в движущейся пленке от размера квадратного нагревателя, в случае если
его суммарная мощность фиксированна. Выведена аналитическая формула для расчета
наибольшего достигаемого на подложке превышения среднего значения температуры —
важного параметра для систем охлаждения электронных устройств. Полученная формула
позволяет прогнозировать значение этого параметра для нагревателей разных размеров,
в случае если известно его значение для одного размера нагревателя.

1. Постановка задачи. Процессы переноса в жидкости и газе описываются уравне-
ниями Навье — Стокса

ρ[vt + (v · ∇)v] = −∇p + ρg + div (µW ); (1)

∇ · v = 0; (2)

ρg[vgt + (vg · ∇)vg] = −∇pg + ρgg + 2 div (µgWg); (3)

∇ · vg = 0, (4)

уравнениями энергии

ρcp[Tt + (v · ∇)T ] = κ ∆T ; (5)

ρgcpg[Tgt + (vg · ∇)Tg] = κg ∆Tg (6)

и уравнением диффузии

Ct + (vg · ∇)C = D ∆C. (7)

В начальный момент времени полагаются справедливыми условия

H = H0, v, vg = v0, vg0, T = T0, Tg = Tg0, C = C0. (8)

На верхней стенке канала, которая считается адиабатической и непроницаемой, зада-
ются условия

vg = 0,
∂Tg

∂z
= 0,

∂C

∂z
= 0. (9)
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На дне микроканала выполнены условия прилипания и задан тепловой поток от на-
гревателя:

v = 0, κ
∂T

∂z
= −q(t, x, y). (10)

На границе раздела газ — жидкость считаются справедливыми условие прилипания

для касательной составляющей вектора скорости

v − n(v · n) = vg − n(vg · n), (11)

общий закон сохранения массы

ρ(v · n− Vn) = ρg(vg · n− Vn) (12)

и закон сохранения массы жидкости

(1− C)ρg(vg · n− Vn) = −Dn · ∇(Cρg), (13)

динамическое условие с учетом давления испарившегося вещества на жидкость

(P − Pg) · n = 2σKn +∇Γσ + ρg(vg · n− Vn)2(ρg/ρ− 1)n, (14)

а также условие непрерывности энергетических потоков

κ
∂T

∂n
− κg

∂Tg

∂n
=

ρgλD

1− C

∂C

∂n
(15)

и условие локального термодинамического равновесия

T = Tg, C = C∗(T ). (16)

В (1)–(16) H — толщина пленки; v, vg — скорости жидкости и газа; p, pg — гидродина-
мические давления в жидкости и газе; T , Tg — темпеpатуpа жидкости и газа; κ, κg —
теплопроводность жидкости и газа; cp, cpg — удельная теплоемкость жидкости и газа; µ,
µg — динамическая вязкость жидкости и газа; ρ, ρg — плотность жидкости и газа; C —
массовая доля пара в газовой фазе; g — ускорение свободного падения; D — коэффициент

диффузии; C∗ = C0 + CT (T − T0) + CTT (T − T0)
2/2 — концентрация пара, соответству-

ющая давлению насыщенного пара при температуре T ; C0, CT , CTT — положительные

константы; T0 — постоянная температура жидкости, газа и стенок канала (за исключе-
нием зоны нагревателя); q(t, x, y) — заданная на поверхности нагревателя плотность теп-
лового потока; K — кривизна поверхности раздела; ∇Γ = ∇−n(n · ∇) — поверхностный

градиент; µ = (µ0 + µT (T − T0) + µTT (T − T0)
2/2)−1 — динамическая вязкость жидкости;

σ = σ0 − σT (T − T0) + σTT (T − T0)
2/2 — коэффициент поверхностного натяжения; µ0, µT ,

µTT и σ0, σT , σTT — положительные константы; P = −pI + 2µW , Pg = −pgI + 2µgWg —
тензоры напряжений в жидкости и газе; n — вектор нормали; λ — теплота испарения;
W , Wg — тензоры скоростей деформаций в жидкости и газе.

2. Замена переменных, приближение тонкого слоя. Пусть u, v, w и ug, vg, wg —
проекции векторов скорости v, vg жидкости и газа на оси x, y, z соответственно. При этом
плоскость xy совпадает с дном канала, ось x направлена вдоль потока. Стенки канала
расположены горизонтально, а сила тяжести перпендикулярна им. В задаче выполняется
замена переменных следующего вида:

— в области, занимаемой жидкостью,

ξ = z/H, u1 = uH, v1 = vH, w1 = w − uξHx − vξHy;
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— в области, занимаемой газом,

z =
Hc −H

ω − 1
η +

Hω −Hc

ω − 1
, u1

g =
Hc −H

ω − 1
ug,

v1
g =

Hc −H

ω − 1
vg, w1

g = wg −
Hc − z

Hc −H
Hxug −

Hc − z

Hc −H
Hyvg.

Уравнения с граничными условиями записываются для слоя ξ ∈ (0, 1), η ∈ (1, ω); −∞ <
x, y < ∞. Здесь ω = Hc/H0; Hc — высота канала; H0 — толщина невозмущенной пленки

на большом расстоянии вверх по потоку. При такой замене переменных сохраняется вид
уравнений неразрывности, при этом кинематические условия на свободной поверхности
пленки упрощаются. Каждая из переменных ξ, η используется в своей области, поэтому
их можно обозначить одной буквой ξ.

Масштабы размерных величин: скорости жидкости, характерной длины, перепада
температуры зададим следующим образом:

U =
µ0

ρH0
, l =

(σ0H
2
0

ρU2

)1/3
, [T ] =

Q0H0

κS0
.

Здесь Q0 — суммарный тепловой поток от нагревателя; S0 — площадь нагревателя. Вве-
дем следующие безразмерные переменные:

t = lt̄/U, x = lx̄, y = lȳ, H = hH0, u1 = UH0ū, u1
g = UH0ūg,

v1 = UH0v̄, v1
g = UH0v̄g, w1 = εUw̄, w1

g = εUw̄g,

T = T0 + [T ]θ, Tg = T0 + [T ]θg, T1 = T0 + [T ]θ1, T2 = T0 + [T ]θ2,

p = p0 − flx̄ + σ0H0p̄/l
2 + ρgH0ξ, pg = p0 − flx̄ + σ0H0p̄g/l

2, µ = µ0µ̄, µg = µ0gµ̄g

(f — градиент давления вдоль потока).
Будем считать, что имеет место приближение тонкого слоя, при котором ε =

H0/l � 1. Тогда, используя приведенные выше обозначения и пpенебpегая младшими
по степеням ε членами, задачу (1)–(7) с условиями (8)–(16) можно записать в безразмер-
ном виде с использованием безразмерных критериев подобия и отношений материальных

постоянных k1, k2, k3:

A =
gH2

0

U2l
, Ma =

σT [T ]H2
0

µ0Ul
, L =

λDρg

κ[T ]
,

S =
µ0H0

Dρ
, Sg =

µ0gH0

Dρg
, E =

fH2
0

µ0U
, R =

Dl

H2
0U

, D =
cpµ0H0

lκ
,

Dg =
cpgµ0gH0

κg
, k1 =

µ0g

µ0
, k2 =

κg

κ
, k3 =

ρg

ρ
.

Здесь число A характеризует гидростатическую составляющую градиента давления;
Ma — число Марангони, характеризующее термокапиллярные силы, действующие на по-
верхности неоднородно нагретой пленки; число испарения L характеризует величину по-
тери тепла при испарении, число R — потерю массы при испарении; число E характери-
зует продольный градиент давления. Кроме того, в число безразмерных коэффициентов
задачи входит определенная выше величина ω. В теории тонких пленок параметрами, ха-
рактеризующими интенсивность течений в жидкости и газе, являются числа Рейнольдса
Re = Qρ/µ0, Reg = Qgρg/µ0g (Q, Qg — расходы жидкостного и газового потоков). Зная ре-
шение невозмущенной задачи с прямолинейными линиями тока, можно установить связь
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чисел Рейнольдса с другими параметрами. Из четырех постоянных Re, Reg, E, ω две

должны быть заданы (обычно задаются числа Рейнольдса), а две другие вычисляются с
помощью соотношений

12 Re (ω − 1 + k1) = 3E(ω − 1)2 + 4(E + C)(ω − 1) + k1(E + C),

12k2
1k3 Reg(ω − 1 + k1) = E(ω − 1)2 + 3k1(Eω + C) + k1E(ω − 1).

Начальные данные задачи, такие как начальная толщина пленки, касательное на-
пряжение и скачок давления, находятся из точного решения задачи об изотермическом
совместном течении газа и жидкости с прямолинейными линиями тока в отсутствие воз-
мущений. При этом давление в газе имеет постоянный градиент в продольном направле-
нии, т. е. pg = p0 − fx. После ряда упрощений решение задачи сводится к решению пяти
уравнений для толщины пленки h(t, x, y), давления в газе pg(t, x, y), температуры в жид-
кости и газе θ(t, x, y, ξ), θg(t, x, y, ξ) и концентрации пара в газе C(t, x, y, ξ). Здесь и далее
черта над безразмерными переменными опускается.

Уравнения для вычисления температуры жидкости и газа, а также концентрации пара
принимают вид

hD(hθt − htξθξ + uθx + vθy + wθz) = ε2h2(θxx + θyy) +

+ (1 + ε2ξ2(h2
x + h2

y))θξξ − 2ε2h(hxθxξ + hyθyξ)ξ +

+ 2ε2ξ2(h2
x + h2

y)θξ − ε2ξh(hxx + hyy)θξ, ξ ∈ (0, 1); (17)

ω − h

ω − 1
Dg

(ω − h

ω − 1
θgt − ht

ω − ξ

ω − 1
θgξ + ugθgx + vgθgy + wgθgξ

)
=

= ε2
(ω − h

ω − 1

)2
(θgxx + θgyy) +

(
1 + ε2

(ω − ξ

ω − 1

)2
(h2

x + h2
y)

)
θgξξ −

− 2ε2 ω − ξ

ω − 1
(hxθgxξ + hyθgyξ) +

2ε2

ω − 1

ω − ξ

ω − 1
(h2

x + h2
y)θgξ −

− ε2 ω − ξ

ω − 1
(hxx + hyy)θgξ, ξ ∈ (1, ω); (18)

ω − h

ω − 1
Sg

(ω − h

ω − 1
Ct − ht

ω − ξ

ω − 1
Cξ + ugCx + vgCy + wgCξ

)
=

= ε2
(ω − h

ω − 1

)2
(Cxx + Cyy) +

(
1 + ε2

(ω − ξ

ω − 1

)2
(h2

x + h2
y)

)
Cξξ −

− 2ε2 ω − ξ

ω − 1
(hxCxξ + hyCyξ)−

2ε2

ω − 1

ω − ξ

ω − 1
(h2

x + h2
y)Cξ −

− ε2 ω − ξ

ω − 1
(hxx + hyy)Cξ ξ ∈ (1, ω). (19)

Уравнения для определения функций h(t, x, y) и pg(t, x, y) записываются следующим обра-
зом:

ht + ϕ(∆∆h− A ∆h) + ϕx(∆hx − Ahx) + ϕy(∆hy − Ahy) + Ma (γ ∆θ + γxθx + γyθy) +

+ δ ∆pg + δx ∆pgx + δy ∆pgy =
k3R

1− C

ω − 1

ω − h
Cξ; (20)

δg ∆pg + δgxpgx + δgypgy + ϕg(∆∆h− A ∆h) + ϕgx(∆hx − Ahx) +

+ ϕgy(∆hy − Ahy) + Ma (γg ∆θ + γgxθx + γgyθy) = R
k3 − 1

1− C

ω − 1

ω − h
Cξ. (21)
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Компоненты векторов скоростей u, v, w, ug, vg, wg, а также используемые при записи
уравнений (20), (21) функции ϕ, γ, δ, ϕg, γg, δg вычисляются из решения пяти основных

уравнений [9].
Для уравнений (17)–(21) зададим граничные условия. Будем считать, что по мере

удаления от нагревателя вверх и вниз по потоку все возмущения затухают и поверхность

пленки становится плоской. Однако если выше по потоку толщина пленки известна, то
ниже по потоку она уменьшается вследствие испарения. Поэтому в качестве граничных
условий будем использовать следующие:

lim
x→−∞

θ = lim
x→−∞

θg = lim
y→±∞

θ = lim
y→±∞

θg = 0, lim
x→−∞

h = lim
y→±∞

h = 1,
(22)

lim
x→−∞

C = lim
y→±∞

C = C0, lim
x→+∞

θx = lim
x→+∞

θgx = lim
x→+∞

hx = lim
x→+∞

Cx = 0.

3. Численные решения. Численное решение уравнений (17)–(21) с начальными
условиями (8) и условиями (22) проводилось следующим образом. Считалось, что нача-
ло координат совпадает с центром передней кромки нагревателя. Решение задачи в не
ограниченной по x, y области заменялось решением в ограниченной области. Начальные
условия и условия теплового баланса не меняются, а краевые условия переносятся на новые
границы. Размеры области выбирались таким образом, чтобы все возмущения, как тепло-
вые, так и поверхностные, не достигали границы расчетной области. Необходимо, чтобы
в окрестности этих границ имело место невозмущенное движение слоя жидкости посто-
янной толщины с прямолинейными линиями тока и постоянной температурой. При этом
увеличение расчетной области не приводит к изменению полученного решения. В расче-
тах полагалось, что размеры расчетной области составляют 4,5 × 4,0 см, при этом вы-
бранные размеры соответствуют изложенным выше требованиям. Высота канала равна
Hc = 250 мкм. Алгоритмы и схемы численных расчетов для данной задачи подробно изло-
жены в работе [10]. Там же выполнены проверка сходимости и оценка точности расчетов.
Возможны различные варианты режимов нагрева: мгновенное включение нагревателей
или их постепенный нагрев за некоторое конечное время. В рассматриваемых ниже при-
мерах был реализован второй вариант. Считалось, что температура окружающего газа,
натекающего потока жидкости и верхней стенки канала равна 20 ◦C. Нагреватель имел
форму квадрата и располагался таким образом, что центр его передней кромки совпадал
с началом координат, а стороны были параллельны осям. Суммарная мощность нагрева-
теля была равномерно распределена по его площади и составляла 0,5 Вт. Материальные
постоянные жидкости и функции µ(T ), σ(T ), C∗(T ) соответствовали воде, а характеристи-
ки газа — азоту. Числа Рейнольдса в расчетах выбирались равными Re = 5,0, Reg = 15,0.
При таких значениях Re, Reg невозмущенная толщина пленки составляла 86 мкм. В этих
условиях безразмерные параметры имели следующие значения: A = 0,341, Ma = 1,746,
L = 0,983, S = 0,411, Sg = 0,022, E = 6,243, R = 0,0106, D = 0,378, Dg = 0,0425,
k1 = 0,0175, k2 = 0,0401, k3 = 0,360. Размер стороны квадрата d, занятого нагревателем,
варьировался в пределах 0,1÷1,0 см. Расчеты показали, что распределение поверхностной
температуры существенно зависит от размера нагревателя. В случае нагревателей неболь-
шого размера температура достигает максимального значения вблизи середины нижней

кромки нагревателя. В случае нагревателей большого размера имеется два симметрич-
ных максимума температуры, расположенных в окрестности нижней кромки. Результаты
расчета для первого случая приведены на рис. 1,а, для второго — на рис. 1,б. Вследствие
действия термокапиллярных сил распределения поверхностных деформаций различаются.
В случае нагревателя большого размера формируются характерные структуры, содержа-
щие боковые и центральную струи, а также зоны утончения пленки (рис. 2,а), в то время
как в случае нагревателей небольшого размера деформации поверхности имеют вид бо-
розды (рис. 2,б).
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Рис. 1. Распределения температуры поверхности раздела потоков для нагрева-
телей с длиной стороны d = 0,25 см (а) и d = 0,75 см (б)
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Рис. 2. Деформации поверхности раздела потоков для нагревателей с длиной

стороны d = 0,75 см (а) и d = 0,25 см (б)

Изучение поверхностных возмущений пленки также имеет важное значение вследствие

возможности ее разрыва. Разрыв происходит при критических утончениях пленки, при ко-
торых силы межмолекулярных взаимодействий становятся сравнимыми с поверхностными

силами. На рис. 3 представлены зависимости наименьших и наибольших достигнутых от-
носительных толщин пленки от времени для нагревателей различного размера. При отво-
де тепла от электронных устройств наиболее важным параметром является максимальное

достигаемое на подложке превышение среднего значения температуры, т. е. наибольшее
значение величины Tmax = T − T0. В проведенной серии расчетов изучена зависимость
этого параметра от размера стороны нагревателя. С использованием факторного анализа
для этой зависимости получена формула

Tmax =
JY

(d/l)0,748
, J =

H0Q0

κl2
. (23)

Здесь параметр J имеет размерность температуры; число Y определяется по исходным

данным задачи с учетом свойств жидкости. В проведенной серии расчетов Y ≈ 1168,0.
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Рис. 3. Зависимость экстремальных деформаций поверхности раздела потоков
от времени при различных размерах нагревателя:
1–3 — максимальная толщина пленки, 4–6 — минимальная толщина пленки; 1, 4 —
d = 0,25 см, 2, 5 — d = 0,5 см, 3, 6 — d = 1,0 см

Рис. 4. Зависимость наибольшего превышения среднего значения температуры
от размера нагревателя:
сплошная линия — расчет по формуле (23), точки — расчет по вычислительному ал-
горитму

На рис. 4 приведены значения Tmax, вычисленные по формуле (23) и полученные при
расчете полей скорости и температуры. Видно, что полученные результаты хорошо со-
гласуются, т. е. формула (23) достаточно точно аппроксимирует изучаемую зависимость.
Эта формула позволяет прогнозировать наибольшую температуру нагревателя, в случае
если этот параметр известен для квадратного нагревателя с какой-либо фиксированной
длиной стороны.

Заключение. Проведена серия расчетов полей скорости, температуры и положения
поверхности пленки, движущейся вместе с потоком газа в микроканале, на дне которого
расположен квадратный нагреватель. Изучены зависимости параметров задачи от размера
нагревателя при его фиксированной мощности. Отмечены особенности полей температуры
и эволюции поверхности пленки при варьировании размера нагревателя. Получена форму-
ла для расчета зависимости максимального превышения среднего значения температуры

на подложке от длины стороны нагревателя.
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