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Рассматриваются линейные модельные уравнения в частных производных с двумя неза-
висимыми переменными. Найдены высшие операторные симметрии и общие решения
для ряда гиперболических уравнений. Для некоторых уравнений построены преобразо-
вания эквивалентности.
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Введение. В работе Л. В. Овсянникова [1], посвященной исследованию свойств урав-
нения Чаплыгина, проведена групповая классификация линейных гиперболических урав-
нений в частных производных второго порядка с двумя независимыми переменными. В ра-
боте [2] классификация была распространена на эллиптические и параболические уравне-
ния. Проблема групповой классификации уравнений с произвольным числом переменных
остается нерешенной.

Интерес к исследованию симметрий линейных уравнений математической физики обу-
словлен тем, что они позволяют найти системы координат, в которых уравнение допускает
разделение переменных. Различные примеры решений и их приложения в квантовой ме-
ханике приведены в [3, 4]. Особенность этого подхода заключается в использовании опера-
торных симметрий первого и второго порядков. Следует отметить, что поиск операторных
симметрий высших порядков является сложной задачей.

Линейные уравнения с переменными коэффициентами используются при моделиро-
вании различных физических явлений. Известны модели, описывающие звуковые и элек-
тромагнитные волны в неоднородной среде [5, 6], распространение волн над неровным
дном [7], продольные колебания стержней [8], квантово-механические явления [9]. Некото-
рые нелинейные уравнения сводятся к линейным с переменными коэффициентами.

В данной работе рассматриваются модельные уравнения c переменными коэффициен-
тами

uyy = f(x)uxx + g(x)ux + h(x)u. (1)

Вводятся высшие операторные симметрии линейных уравнений, уравнение (1) приводится
к канонической форме

uyy = ±uxx + V (x)u.

Работа выполнена при финансовой поддержке Красноярского математического центра, финансируе-
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c© Капцов О. В., 2024



96 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

С помощью коммутативных дифференциальных операторов, возникающих при интегриро-
вании уравнения Кортевега — де Фриза [10], получаются высшие симметрии для некото-
рых канонических уравнений. Методом преобразований Эйлера — Дарбу строятся общие

решения выделенных гиперболических уравнений [11–13]. Приводятся примеры эквива-
лентных уравнений.

1. Операторные симметрии. Введем понятие операторных симметрий, используя
способ, отличающийся от принятого в [3, 4]. Пусть имеется дифференциальный оператор
порядка m:

L =
∑

|α|6m

aα(x)
∂|α|

∂x
α1
1 · · · ∂xαn

n
.

Здесь α = (α1, . . . , αn) — мультииндекс; |α| = α1 + . . . + αn; aα(x) — гладкие функции

в Rn. Будем полагать, что дифференциальный оператор S порядка k является оператором
симметрии для уравнения

Lu = 0, (2)

если существует дифференциальный оператор P , такой что

LS = PL.

Порядок оператора S называется порядком симметрии. Предполагается, что S не является
многочленом от L.

Оператор симметрии S действует на решениях уравнения (2), т. е. переводит реше-
ния в решения. Множество операторов симметрии для данного уравнения образует ас-
социативную алгебру относительно стандартного умножения операторов. В то же время
коммутаторное умножение порождает алгебру Ли операторов симметрии.

Рассмотрим линейное уравнение второго порядка (1), где f , g, h — гладкие функции

на некотором интервале, причем f не обращается в нуль. Приведем это уравнение к ка-
ноническому виду. Сначала введем новые переменные z = p(x), v(y, z) = u(x, y). Тогда
уравнение (1) принимает вид

vyy = (p′)2fvzz + (p′′ + gp′)vz + hv.

Если f > 0, то полагаем p(x) =

∫
f−1/2 dx, иначе полагаем p(x) =

∫
(−f)−1/2 dx. В ре-

зультате получаем уравнение вида

vyy = ±vzz + G(z)vz + H(z)v.

Введем новую функцию w = v/s(z). Тогда

swyy = ±swzz + (±2s′ + sG)wz + (±s′′ + Gs′ + Hs)w.

Полагая s = exp
(
± 1

2

∫
G(z) dz

)
, получаем уравнение в канонической форме

wyy = ±wzz + V (z)w.

Заметим, что уравнение

uy = f(x)uxx + g(x)ux + h(x)u

подобными преобразованиями приводится к канонической форме

wy = wzz + K(z)w.
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Рассмотрим линейное гиперболическое уравнение в каноническом виде

uyy − uxx + V (x)u = 0 (3)

и соответствующий оператор

L = ∂2
y − ∂2

x + V (x).

Функцию V будем называть потенциалом. Существуют потенциалы V , при которых опе-
раторы

A2n+1 =
2n+1∑
k=0

ak(x) ∂k
x (4)

коммутируют с L. Значит, операторы A2n+1 являются симметриями уравнения (3). Опе-
ратор ∂2

y коммутирует с любым A2n+1. Следовательно, необходимо, чтобы оператор Штур-

ма— ЛиувилляM = −∂2
x+V (x) коммутировал с A2n+1.Фундаментальные работы [14, 15],

в которых исследовались коммутирующие обыкновенные дифференциальные операторы,
были опубликованы в первой половине XX в. Позднее коммутирующие операторы исполь-
зовались при исследовании теории солитонов [16, 17].

Как известно, для любого n > 0 существует оператор A2n+1 вида (4), коммутирующий
с оператором Штурма — Лиувилля M при условии, что потенциал V (x) удовлетворяет
обыкновенному дифференциальному уравнению порядка 2n + 1 [10]. Приведем примеры
таких операторов и соответствующих уравнений. При n = 1 оператор

A3 = −4 ∂3
x + 6V ∂x + 3V ′

коммутирует с оператором L, если потенциал удовлетворяет уравнению третьего порядка

V ′′′ − 6V V ′ = 0.

При n = 2 имеется оператор пятого порядка

A5 = 16 ∂5
x − 20(V ∂3

x + ∂3
xV ) + 30V ∂xV + 5(V ′′ ∂x + ∂xV

′′).

Потенциал V должен удовлетворять обыкновенному уравнению

∂x

( δS

δV

)
= 0, (5)

где δ/δV — вариационная производная; S = ((V ′′)2− 5V 2V ′′ +5V 4)/2. При n = 0 оператор
A1 равен ∂x, а V ′ = 0. Кроме того, можно использовать линейные комбинации операторов
A2n+1 для получения дифференциальных уравнений для потенциалов. Например, таким
образом получается уравнение

V ′′′ = 6V V ′ + aV ′, a ∈ R. (6)

Следует отметить, что уравнениям для потенциалов соответствуют высшие симметрии
уравнения Кортевега — де Фриза. Точнее, приравнивая к нулю высшие симметрии урав-
нения Кортевега — де Фриза, получаем уравнения для потенциалов.

Найдем решение обыкновенного уравнения для потенциалов. Для этого проинтегри-
руем уравнение (6) два раза. В результате получаем уравнение первого порядка для по-
тенциала

(V ′)2 = 2V 3 + aV 2 + c1V + c2, (7)

где c1, c2 — произвольные константы. При произвольных константах a, c1, c2 решение V
уравнения (7) выражается через эллиптическую функцию Вейерштрасса ℘(x) по формуле
V = a/6 + 2℘. Если константы a, c1, c2 равны нулю, то ненулевой потенциал равен

V =
2

(x + b)2
, b ∈ R.
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Если a = −4k2, c1 = c2 = 0, то потенциал задается одной из формул

V =
−2k2

ch2(kx + b)
, V =

2k2

sh2(kx + b)
, b ∈ R.

При a = 4k2, c1 = c2 = 0 потенциал равен

V =
2k2

cos2(kx + b)
, b ∈ R.

В общем случае решения уравнения (5) выражаются через двумерные функции θ [10].
2. Построение решений. Найдем решения уравнения (3) с потенциалами, получен-

ными из условий коммутативности. При построении решений с разными потенциалами
эффективным является метод, предложенный Л. Эйлером [11] и развитый Ж. Г. Дар-
бу [12]. В настоящее время он называется методом Дарбу или Эйлера — Дарбу [13]. Ниже
приводится предложение, которое следует из утверждения, доказанного в [12]. Более общий
результат приведен в [13].

Предложение 1. Пусть u(x, y) — решение уравнения

uyy = uxx + V (x)u, (8)

а функция h(x) удовлетворяет обыкновенному дифференциальному уравнению

h′′ + (λ + V (x))h = 0, λ ∈ R. (9)

Тогда функция

w = ux − (ln h)′u (10)

является решением уравнения

wyy = wxx + V1w, V1 = V + 2(ln h)′′. (11)

Следует отметить, что существует преобразование, переводящее решения уравне-
ния (11) в решения уравнения (8).

Предложение 2. Пусть выполнены условия предложения 1. Если w — решение урав-
нения (11), то функция u, заданная формулой

u = wx + (ln h)′w, (12)

является решением уравнения (8).

Доказательство осуществляется прямой проверкой. В монографии [13] преобразование
типа (12) называется противоположным (10).

Приведем примеры построения решений с использованием предложения 1. Пусть по-
тенциал V равен нулю. Тогда решение уравнения (8) имеет вид

u = F (x + y) + G(x− y),

где F , G — произвольные гладкие функции. При этом решение уравнения (9) имеет один
из следующих видов:

1) h = c1x + c2, если λ = 0;
2) h = c1 exp (

√
−λ x) + c2 exp (−

√
−λ x), если λ < 0;

3) h = c1 sin (
√

λ x) + c2 cos (
√

λ x), если λ > 0.
Здесь c1, c2 — произвольные константы.
Таким образом, получаем соответствующие потенциалы и решения (3):

1) V1 = − 2

x2
, u1 = ux −

u

x
, c1 = 1, c2 = 0, λ = 0;



О. В. Капцов 99

2) V1 =
2k2

ch2(kx)
, u1 = ux − ku th (kx), c1 = c2 = 0,5, λ = −k2;

V1 = − 2k2

sh2(kx)
, u1 = ux − ku ch (kx), c1 = −c2 = 0,5, λ = −k2;

3) V1 = − 2k2

sin2(kx)
, u1 = ux − ku ctg (kx), c1 = 1, c2 = 0, λ = k2.

Данный процесс можно продолжать. Выберем потенциал V1 = −2/x2 и λ = 0. Тогда
решение уравнения (9) имеет вид

h2 = b1x
2 +

b2

x
, b1, b2 ∈ R.

Значит, новый потенциал V2 равен

V2 = V1 + 2(ln h2)
′′ = −6b1x(b1x

3 − 2b2)

(b1x3 + b2)2
.

Решая уравнение (9) с потенциалом V2 и λ = 0, находим функцию

h3 =
b4(b

2
1x

6 + 5b1b2x
3 − 5b2

2) + b3x

b1x3 + b2
, b1, b2 ∈ R.

Построить решение другим способом позволяет следующее утверждение [13].

Лемма. Пусть u(x, y) — решение уравнения (8), h1, . . . , hn — решения уравнения (9)
при попарно различных λ1, . . . , λn. Тогда функция

w =
W (h1, . . . , hn, u)

W (h1, . . . , hn)
(13)

удовлетворяет уравнению

wyy = wxx + (V (x) + 2(ln W (h1, . . . , hn))′′)w, (14)

где W (h1, . . . , hn, u), W (h1, . . . , hn) — вронскианы соответствующих функций.

Таким образом, для построения решений уравнения (14) можно использовать, напри-
мер, функции

hi = c1 exp (
√
−λi x) + c2 exp (−

√
−λi x), i = 1, . . . , n

c различными λi < 0 и функции

u = F (x + y) + G(x− y)

c произвольными гладкими функциями F , G и получить решение по формуле (13).
3. Преобразования эквивалентности. Представляет интерес исследование задачи

нахождения точечных преобразований

x1 = A(x, y), y1 = B(x, y), v(x1, y1) = u(x, y), (15)

сохраняющих класс уравнений

uyy = uxx + V (x, y)u, (16)

т. е. преобразований, переводящих решения уравнения (16) в решения уравнения вида

vy1y1 = vx1x1 + Ṽ (x1, y1)v
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c некоторой функцией Ṽ (x, y). Подставляя u(x, y) = v(A, B) в (16), получаем уравнение

(A2
y − A2

x)vx1x1 − (B2
x −B2

y)vy1y1 + 2(AyBy − AxBx)vx1y1 +

+ (Axx − Ayy)vx1 + (Byy −Bxx)vy1 + V v = 0.

Следовательно, функции A, B должны удовлетворять системе уравнений

Ayy = Axx, Byy = Bxx; (17)

AyBy = AxBx, A2
y − A2

x = B2
x −B2

y . (18)

Согласно уравнениям (17) имеем

A = f(x + y) + g(y − x), B = h(x + y) + k(y − x),

где f , g, h, k — произвольные функции. Подставляя эти выражения в уравнения (18),
находим

f = h, g = −k.

Таким образом, преобразование эквивалентности имеет вид

x1 = f(x + y) + g(y − x), y1 = f(x + y)− g(y − x), v(x1, y1) = u(x, y), (19)

а преобразованное уравнение — вид

vy1y1 − vx1x1 =
V (x, y)v

4f ′(y + x)g′(y − x)
. (20)

Остается выразить x, y через x1, y1 и подставить в правую часть последнего уравнения.
Приведем пример нахождения эквивалентных уравнений. Рассмотрим уравнение,

впервые предложенное Л. Эйлером:

uyy − uxx =
k

x2
u. (21)

Введем новые переменные

a = x + y, b = y − x.

Тогда правая часть уравнения (20) принимает вид

V1 =
kv

(a− b)2f ′(a)g′(b)
.

Пусть функции f , g задаются формулами

f(a) = th−1(a), g(b) = th−1(b).

В этом случае

f ′(a) =
1

1− a2
, g′(b) =

1

1− b2
.

Далее нужно выразить a и b через x1, y1. Согласно (20) получаем

f(a) =
x1 + y1

2
, g(b) =

x1 − y1

2
.

Значит,

a = th
(x1 + y1

2

)
, b = th

(x1 − y1

2

)
.
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Подставляя найденные выражения для a и b в функцию V1, находим

V1 =
kv

sh2(y1)
.

Если положить

f(a) = ch−1(a), g(b) = − th−1(b),

то функция V1 принимает вид

V1 =
kv

ch2(x1)
.

Вместо обратных гиперболических функций f , g можно использовать обратные тригоно-
метрические. Тогда функция V1 будет выражаться через sin (y1) или cos (x1).

Замечание. В работе [13] введено обобщение понятия эквивалентности уравнений
с частными производными. При этом отображение типа (19) может зависеть от произ-
водных. Согласно предложениям 1, 2 уравнения (8) и (11) эквивалентны в обобщенном

смысле. Следовательно, все уравнения, полученные путем последовательного применения
преобразований Эйлера — Дарбу, образуют класс эквивалентности.

Заключение. В работе рассматривались, главным образом, линейные гиперболиче-
ские уравнения второго порядка. Получены общие решения некоторых уравнений с раци-
ональными коэффициентами. Найден явный вид преобразований эквивалентности, связы-
вающий уравнение Эйлера (21) с другими уравнениями вида (20).

Следует отметить, что преобразования Эйлера— Дарбу применимы к эллиптическим

и параболическим уравнениям вида

uxx + uyy = V (x)u, ut = uxx + V (x)u.

Если применять преобразование Эйлера — Дарбу к уравнениям Лапласа или теплопро-
водности, то получим новые уравнения с такими же функциями V (x), как в случае гипер-
болического уравнения. Представляет интерес использование преобразований Эйлера —
Дарбу при решении начально-краевых задач, как это сделано в работе [18] для уравнения
Фоккера — Планка.
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