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Проведено исследование нелинейных колебаний, выпучивания и аэроупругости тон-
кой композитной пластины. Рассмотрены способы симметричной и антисимметричной
укладки различного количества слоев под различными углами в диапазоне от 0 до 90◦.
Изучено поведение пластины при постоянных и переменных тепловых нагрузках с уче-
том зависимости коэффициента удельной теплоемкости и модуля упругости от темпера-
туры. Исследовано влияние на поведение пластины наличия в ней дефектов геометрии.
С использованием метода Галеркина система дифференциальных уравнений в частных
производных сведена к системе обыкновенных дифференциальных уравнений, которая
решена методом Рунге — Кутты.
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Введение. При сжимающих напряжениях вследствие наличия в пластине дефектов
геометрии и градиента температуры возможна потеря ее устойчивости или возникновение

колебаний с неограниченно возрастающей амплитудой (флаттер пластины).
Результаты теоретического исследования флаттера изогнутых пластин [1–3] каче-

ственно согласуются с экспериментальными данными [4]. Количественное различие этих
данных обусловлено тем, что реальное трехмерное тело заменяется двумерной моделью
при соответствующих краевых условиях.

В работе [5] с использованием метода Галеркина исследован линейный флаттер слои-
стой композитной пластины. В [6] с использованием модели Кармана деформирования пла-
стины при больших деформациях и метода Галеркина для сведения задачи к обыкновен-
ным дифференциальным уравнениям изучен нелинейный флаттер композитной пластины

при обтекании ее сверхзвуковым потоком. Установлено, что угол армирования материа-
ла волокнами и модуль упругости материала существенно влияют на значение скорости

потока, при котором возникает флаттер. В работах [7, 8] с использованием метода ко-
нечных элементов выполнен анализ нелинейного флаттера тонкой слоистой пластины под

действием однородного теплового потока.
Авторы работы [9] с помощью метода конечных элементов, модели Кармана дефор-

мирования пластины при больших деформациях, поршневой теории первого порядка и
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уравнений квазиустановившейся термоупругости исследовали нелинейный флаттер ком-
позитной пластины при высокой температуре. В работе [10] приведены результаты иссле-
дования методом конечных элементов колебаний и динамической устойчивости (диверген-
ции и флаттера) слоистых композитных пластин из вязкоупругого материала, изогнутых
в двух направлениях и находящихся под действием боковых нагрузок. Авторы исполь-
зовали уравнения, учитывающие поперечный сдвиг и инерцию поворота. В работах [11,
12] методом конечных элементов выполнен анализ устойчивости с учетом демпфирования
композитных оболочек и исследовано их закритическое поведение при аэротермоупругом

воздействии. Изучены также колебания и флаттер оболочек при их обтекании сверхзвуко-
вым потоком.

В работе [13] с помощью метода конечных элементов исследовано влияние направления
армирования волокнами, отношения толщины композитной пластины к ее длине, а также
направления обтекающего пластину сверхзвукового потока на критическую скорость, при
которой появляется флаттер. При этом учитывались деформации сдвига в пластине и
использовалась поршневая теория первого порядка. Вывод уравнений задачи основан на
принципе виртуальной работы. Также в работе [13] вычислены собственные числа задачи.
В [14] c использованием принципа Гамильтона, метода конечных элементов и поршневой
теории исследована устойчивость неоднородной косоугольной пластины в сверхзвуковом

потоке. Установлено, что зависимость критической скорости от физических параметров
задачи может быть немонотонной и негладкой.

В работе [15] с использованием метода конечных элементов, уравнений Кармана де-
формирования пластин при больших деформациях и уравнений квазистатической аэро-
динамики исследован флаттер композитной пластины в частотной и временной областях.
Изучено влияние градиента температуры, отношения длины пластины к ее ширине, по-
рядка расположения слоев и направления армирования волокнами при воздействии на пла-
стину аэродинамических и температурных нагрузок. Установлено, что наличие градиента
температуры приводит к увеличению жесткости пластины и критической скорости пото-
ка. В работе [16] определяется критическое аэродинамическое давление на композитную
пластину, обтекаемую сверхзвуковым потоком, с учетом влияния температуры. Вычис-
лены собственные формы колебаний пластины при различных краевых условиях и уста-
новлено, что при некоторых условиях до момента появления флаттера может произойти
потеря устойчивости пластины. Определен оптимальный способ армирования материала
волокнами, обеспечивающий максимальное критическое давление. В работе [17] исследо-
вано поведение многослойной пластины в сверхзвуковом потоке при воздействии на нее

ударной нагрузки и аэродинамического нагрева. Для определения аэродинамического дав-
ления на пластину использовалась поршневая теория первого и третьего порядков.Модель
аэроупругости построена с использованием принципа Гамильтона. Для определения теп-
лового потока в аэродинамической модели применялся метод эталонной температуры. Для
решения задачи о нестационарной теплопередаче в пластине использовался метод конеч-
ных элементов. Установлено, что с увеличением температуры аэроупругая устойчивость
уменьшается, также отмечается, что при описании сверхзвуковых течений необходимо
учитывать влияние ударной волны.

В работе [18] исследованы флаттер и закритическое поведение пластины в сверхзвуко-
вом потоке с учетом дефектов геометрии пластины. Для определения аэродинамического
давления использовались геометрически нелинейная модель деформирования пластины и

поршневая теория. В [19, 20] с учетом больших упругих деформаций, деформаций сдвига и
инерции поворота теоретически и экспериментально изучены свободные колебания тонкой

пластины с начальным дефектом и нелинейные колебания квадратной пластины при нали-
чии начального смещения торцов. В работе [21] исследовано влияние дефектов геометрии
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на линейные колебания, а также на колебания с большой амплитудой антисимметричной
многослойной квадратной тонкой пластины. Установлено, что при высоте дефекта, при-
ближенно равной половине толщины пластины, процесс упрочнения пластины меняется на
процесс разупрочнения. В [22] с использованием метода конечных элементов исследовано
влияние формы дефектов на поведение плоских пластин при сжимающих и сдвиговых на-
грузках в закритической области. Исследование закритического поведения слоистых ком-
позитов при наличии дефектов геометрии и равномерного распределения температуры по

толщине пластины выполнено в работе [23] с использованием нелинейных соотношений
Кармана.

Неустановившиеся колебания пластины из функционально-градиентного материала
под действием температурных нагрузок и при наличии дефектов геометрии исследовано в

работе [24]. В [25] изучено влияние различных параметров на флаттер изогнутой панели в
сверхзвуковом потоке. Для определения аэродинамического давления применялась порш-
невая теория третьего порядка, для моделирования поведения пластины использовались
определяющие соотношения Кармана. Установлено, что уменьшение собственной частоты
и критической скорости потока происходит в том случае, если в результате воздействия
температурного поля модуль упругости становится малым. В работе [26] с использова-
нием рационального B-сплайна и теории пластин Рейсснера — Миндлина исследована

устойчивость и вычислены собственные частоты колебаний пластины из функционально-
градиентного материала. Установлено, что градиентальное распределение свойств мате-
риала пластины, форма дефектов и граничные условия существенно влияют на величину
критического давления и на собственные частоты колебаний пластины.

В работе [27] методом конечных полос исследовано влияние угла армирования во-
локнами прямоугольной композитной пластины при наличии расслоения на флаттер в

сверхзвуковом потоке. Выявлена зависимость матриц жесткости и массы от направления
армирования волокнами. В [27] были учтены деформации сдвига, для определения аэро-
динамического давления использовалась поршневая теория первого порядка. Исследовано
влияние способа укладки слоев материала и геометрии на критическую скорость потока,
а также влияние геометрических размеров дефектов и краевых условий на критическое

аэродинамическое давление. В работе [28] изучены явление флаттера и автоколебания

составных конструкций. С использованием специальной методики численного динамиче-
ского расчета и метода прямого интегрирования получено стационарное решение задачи.
Установлено, что колебания, вызывающие потерю устойчивости конструкции, обусловле-
ны способом крепления руля к опорной поверхности. Такие колебания сопровождаются
катастрофическим изменением формы композитной конструкции.

Авторы работ [29, 30] исследовали нелинейные колебания, потерю устойчивости, флат-
тер и закритическое поведение изогнутой панели при механических и тепловых нагрузках

с использованием поршневой теории третьего порядка. Установлено, что кривизна пласти-
ны оказывает существенное влияние на ее устойчивость в сверхзвуковом потоке. В рабо-
те [31] изучен флаттер оболочки из функционально-градиентного материала, армирован-
ной углеродными нанотрубками и имеющей начальные несовершенства, в сверхзвуковом
потоке. Использовались модули упругости Хилла, поршневая теория третьего порядка и
геометрически нелинейные уравнения Кармана. Установлено, что армирование оболочки
углеродными нанотрубками в среднем слое позволяет значительно увеличить критиче-
скую скорость потока. Более того, влияние дефекта геометрии на критическую скорость
более существенно, чем армирование оболочки углеродными нанотрубками.

В данной работе проводится анализ нелинейных колебаний, потери устойчивости и
аэротермоупругости тонкой нелинейной ортотропной композитной пластины. Исследуется
влияние на поведение пластины глобальных и локальных дефектов геометрии, симмет-
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ричного и антисимметричного способов укладки листов, количества слоев, угла наклона
волокон, зависимости характеристик материала от температуры, а также тепловых и ме-
ханических внешних нагрузок.

1. Основные уравнения. Ниже формулируется рассматриваемая задача и приво-
дятся основные уравнения.

1.1. Уравнения движения. Принцип виртуальной работы для динамических процессов
записывается в следующем виде:

0 =

T∫
0

(δU + δV − δK) dt. (1)

Здесь δU — вариация работы напряжений при деформации:

δU =

∫
Ω0

{ h/2∫
−h/2

[σxx δεxx + σyy δεyy + 2σxy δεxy] dz
}
dx dy =

=

∫
Ω0

{ h/2∫
−h/2

[σxx(δε0xx + z δε1xx) + σyy(δε
0
yy + z δε1yy) + σxy(δγ

0
xy + z δγ1

xy)] dz
}
dx dy, (2)

δV — вариация работы внешних сил:

δV = −
∫
Ω0

[
qb(x, y) δw

(
x, y,

h

2

)
+ qt(x, y) δw

(
x, y,−h

2

)]
dx dy −

−
∫
Γ

h/2∫
−h/2

[σ̂nn δun + σ̂ns δus + σ̂nz δw] dz ds =

= −
∫
Ω0

{[qb(x, y) + qt(x, y)] δw0(x, y)} dx dy −

−
∫
Γ

h/2∫
−h/2

[
σ̂nn

(
δu0n − z

∂δw0

∂n

)
+ σ̂ns

(
δu0s − z

∂δw0

∂s

)
+ σ̂nz δw0

]
dz ds, (3)

δK — вариация кинетической энергии:

δK =

∫
Ω0

h/2∫
−h/2

ρ0

[(
u̇0 − z

∂ẇ0

∂x

)(
δu̇0 − z

∂δẇ0

∂x

)
+

(
v̇0 − z

∂ẇ0

∂y

)(
δv̇0 − z

∂δẇ0

∂y

)
+

+ ẇ0 δẇ0

]
dz dx dy, (4)

qb, qt — интенсивность внешних сил, приложенных на нижней (z = h/2) и верхней
(z = −h/2) лицевых поверхностях слоя; σ̂nn, σ̂ns, σ̂nz — компоненты тензора напряжений
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на участке Γσ границы Γ; δu0n, δu0s — нормальная и касательная компоненты вектора вир-
туальных перемещений на границе Γ; ρ0 — плотность материала пластины; u̇0 = ∂u0/∂t.
Подставляя выражения (2)–(4) в уравнение (1) и интегрируя по толщине слоя, получаем

0 =

t∫
0

{∫
Ω

[
Nxx δε

0
xx +Mxx δε

1
xx +Nyy δε

0
yy +Myy δε

1
yy +Nxy δγ

0
xy +Mxy δγ

1
xy − q δw0 −

− I0(u̇0 δu̇0 + v̇0 δv̇0 + ẇ0 δẇ0) + I1

(∂δẇ0

∂x
u̇0 +

∂ẇ0

∂x
δu̇0 +

∂δẇ0

∂y
v̇0 +

∂ẇ0

∂y
δv̇0

)
−

− I2

(∂ẇ0

∂x

∂δẇ0

∂x
+
∂ẇ0

∂y

∂δẇ0

∂y

)]
dx dy −

−
∫
Γσ

(
N̂nn δu0n + N̂ns δu0s − M̂nn

∂δw0

∂n
− M̂ns

∂δw0

∂s
+ Q̂n δw0

)
ds

}
dt, (5)

где Nxx, Nyy, Nxy — усилия на срединной поверхности пластины;Mxx,Myy,Mxy — изгиба-
ющие моменты; Qn — перерезывающая сила; I0, I1, I2 — моменты инерции. Виртуальные
деформации выражаются через виртуальные перемещения по формулам

δε0xx =
∂ δu0

∂x
+
∂w0

∂x

∂ δw0

∂x
+
∂ δw0

∂x

∂ŵ

∂x
,

δε0yy =
∂ δv0
∂y

+
∂w0

∂y

∂ δw0

∂y
+
∂ δw0

∂y

∂ŵ

∂y
,

δγ0
xy =

∂ δv0
∂x

+
∂ δu0

∂y
+
∂ δw0

∂x

∂w0

∂y
+
∂w0

∂x

∂ δw0

∂y
+
∂ŵ

∂x

∂ δw0

∂y
+
∂ δw0

∂x

∂ŵ

∂y
,

(6)

δε1xx = −∂
2 δw0

∂x2
, δε1yy = −∂

2 δw0

∂y2
, δγ1

xy = −2
∂2 δw0

∂x ∂y
.

Подставляя (6) в (5), интегрируя по частям и объединяя коэффициенты при вариациях
виртуальных перемещений δu0, δv0, δw0, получаем

0 =

t∫
0

{∫
Ω

[
−

(
Nxx,x +Nxy,y− I0ü0− I1

∂ẅ0

∂x

)
δu0−

(
Nxy,x +Nyy,y− I0v̈0− I1

∂ẅ0

∂y

)
δv0−

−
(
Mxx,xx + 2Mxy,xy +Myy,yy +N(w0 + ŵ) + q − I0ẅ0 − I1

∂ü0

∂x
− I1

∂v̈0
∂y

+

+ I2
∂2ẅ0

∂x2
+ I2

∂2ẅ0

∂y2

)
δw0

]
dx dy +

+

∫
Γσ

[
(Nxxnx +Nxyny) δu0 + (Nxynx +Nyyny) δv0 +

(
Mxx,xnx +Mxy,ynx +Myy,yny +

+Mxy,xny + P (w0 + ŵ)− I1ü0nx − I1v̈0ny + I2
∂ẅ0

∂x
nx + I2

∂ẅ0

∂y
ny

)
δw0 −

− (Mxxnx +Mxyny)
∂ δw0

∂x
− (Mxynx +Myyny)

∂ δw0

∂y

]
ds−
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−
∫
Γσ

(
N̂nn δu0n + N̂ns δu0s − M̂nn

∂ δw0

∂n
− M̂ns

∂ δw0

∂s
+ Q̂n δw0

)
ds

}
dt,

где

N(w0 + ŵ) =
∂

∂x

(
Nxx

∂ (w0 + ŵ)

∂x
+Nxy

∂ (w0 + ŵ)

∂y

)
+

+
∂

∂y

(
Nxy

∂ (w0 + ŵ)

∂x
+Nyy

∂ (w0 + ŵ)

∂y

)
,

P (w0 + ŵ) =
(
Nxx

∂ (w0 + ŵ)

∂x
+Nxy

∂ (w0 + ŵ)

∂y

)
nx +

+
(
Nxy

∂ (w0 + ŵ)

∂x
+Nyy

∂ (w0 + ŵ)

∂y

)
ny.

Приравнивая к нулю коэффициенты при δu0, δv0 и δw0, получаем уравнения Эйлера —
Лагранжа

δu0:
∂Nxx

∂x
+
∂Nxy

∂y
= I0ü− I1

∂ẅ0

∂x
,

δv0:
∂Nxy

∂x
+
∂Nyy

∂y
= I0v̈ − I1

∂ẅ0

∂y
,

(7)

δw0:
∂2Mxx

∂x2
+ 2

∂2Mxy

∂y ∂x
+
∂2Myy

∂y2
+N(w0 + ŵ) + q =

= I0ẅ0 − I2

(∂2ẅ0

∂x2
+
∂2ẅ0

∂y2

)
+ I1

(∂ü0

∂x
+
∂v̈0
∂y

)
.

На границе пластины должны быть заданы величины un, us, w0, ∂w0/∂n, Nnn, Nns,
Vn, Mnn. В качестве начальных условий при t = 0 задаются смещения и производные
от них по времени.

1.2. Определяющие уравнения для слоистой пластины. Определяющие уравнения свя-
зывают силы и моменты с деформациями слоистых пластин. Материал каждого слоя по-
лагается ортотропным относительно осей симметрии свойств слоя, и его поведение подчи-
няется закону Гука. Используя определение обобщенных сил и моментов, закон распреде-
ления деформаций по толщине пластины и определяющие соотношения термоупругости,
получаем

Nxx

Nyy

Nxy

 =
N∑

k=1

zk+1∫
zk


σxx

σyy

σxy

 dz =
N∑

k=1

zk+1∫
zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k 

ε0xx + zε1xx

ε0yy + zε1yy

γ0
xy + zγ1

xy

 dz,


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66




ε0xx

ε0yy

γ0
xy

 +

 B11 B12 B16

B12 B22 B26

B16 B26 B66




ε1xx

ε1yy

γ1
xy

 ,


Mxx

Myy

Mxy

 =
N∑

k=1

zk+1∫
zk


σxx

σyy

σxy

 z dz =
N∑

k=1

zk+1∫
zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k 

ε0xx + zε1xx

ε0yy + zε1yy

γ0
xy + zγ1

xy

 z dz,
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
Mxx

Myy

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66




ε0xx

ε0yy

γ0
xy

 +

 D11 D12 D16

D12 D22 D26

D16 D26 D66




ε1xx

ε1yy

γ1
xy

 ,


Nxx

Nyy

Nxy


т

=
N∑

k=1

zk+1∫
zk


σxx

σyy

σxy


т

dz =
N∑

k=1

zk+1∫
zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k 

ᾱx

ᾱy

ᾱxy


k

∆T dz,


Nxx

Nyy

Nxy


т

=

 A11 A12 A16

A21 A22 A26

A61 A62 A66


т

T0

T0

T0

 +

 B11 B12 B16

B21 B22 B26

B61 B62 B66


т

T1

T1

T1

 ,


Mxx

Myy

Mxy


т

=
N∑

k=1

zk+1∫
zk


σxx

σyy

σxy


т

z dz =
N∑

k=1

zk+1∫
zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k 

ᾱx

ᾱy

ᾱxy


k

∆T z dz,


Mxx

Myy

Mxy


т

=

 B11 B12 B16

B21 B22 B26

B61 B62 B66


т

T0

T0

T0

 +

 D11 D12 D16

D21 D22 D26

D61 D62 D66


т

T1

T1

T1

 ,

где Aij — элементы матрицы жесткости на растяжение; Dij — элементы матрицы жест-
кости на изгиб; Bij — элементы матрицы комбинированной жесткости на растяжение и

изгиб. Элементы всех этих матриц выражаются через элементы матрицы жесткости Q̄
(k)
ij :

(Aij , Bij , Dij) =

h/2∫
−h/2

Q̄ij(1, z, z
2) dz =

N∑
k=1

zk+1∫
zk

Q̄k
ij(1, z, z

2) dz,

(Aij , Bij , Dij)
т =

h/2∫
−h/2

Q̄ijᾱj(1, z, z
2) dz =

N∑
k=1

zk+1∫
zk

Q̄k
ijᾱ

k
j (1, z, z2) dz.

Выражения для усилий и моментов можно записать в виде{ {N}
{M}

}
=

[
[A] [B]

[B] [D]

]{ {ε0}
{ε1}

}
−

{ {Nт}
{Mт}

}
+

{ {Nm}
{Mm}

}
,

где Nm, Mm — обобщенные силы и моменты, соответствующие механическим внешним
нагрузкам.

1.3. Уравнения движения в смещениях. Усилия N и моменты M выражаются через

смещения, температуру и внешние силы по формулам


Nxx

Nyy

Nxy

 =

 A11A12A16

A12A22A26

A16A26A66




∂u0

∂x
+

1

2

(∂w0

∂x

)2
+
∂w0

∂x

∂ŵ

∂x

∂v0
∂y

+
1

2

(∂w0

∂y

)2
+
∂w0

∂y

∂ŵ

∂y

∂v0
∂x

+
∂u0

∂y
+
∂w0

∂x

∂w0

∂y
+
∂ŵ

∂x

∂w0

∂y
+
∂w0

∂x

∂ŵ

∂y
+
∂ŵ

∂x

∂ŵ

∂y


−
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−

 B11 B12 B16

B12 B22 B26

B16 B26 B66




−∂
2w0

∂x2
− ∂2ŵ

∂x2

−∂
2w0

∂y2
− ∂2ŵ

∂y2

−2
∂2w0

∂x ∂y
− 2

∂2ŵ

∂x ∂y


−

 A11 A12 A16

A12 A22 A26

A16 A26 A66


т

T0(x, y)

T0(x, y)

T0(x, y)

−

−

 B11 B12 B16

B12 B22 B26

B16 B26 B66


т

T1(x, y)

T1(x, y)

T1(x, y)

 +


Nm

xx

Nm
yy

Nm
xy

 ,

(8)
Mxx

Myy

Mxy

 =

 B11B12B16

B12B22B26

B16B26B66




∂u0

∂x
+

1

2

(∂w0

∂x

)2
+
∂w0

∂x

∂ŵ

∂x

∂v0
∂y

+
1

2

(∂w0

∂y

)2
+
∂w0

∂y

∂ŵ

∂y

∂v0
∂x

+
∂u0

∂y
+
∂w0

∂x

∂w0

∂y
+
∂ŵ

∂x

∂w0

∂y
+
∂w0

∂x

∂ŵ

∂y
+
∂ŵ

∂x

∂ŵ

∂y


+

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66




−∂
2w0

∂x2
− ∂2ŵ

∂x2

−∂
2w0

∂y2
− ∂2ŵ

∂y2

−2
∂2w0

∂x ∂y
− 2

∂2ŵ

∂x ∂y


−

 B11 B12 B16

B12 B22 B26

B16 B26 B66


т

T0(x, y)

T0(x, y)

T0(x, y)

−

−

 D11 D12 D16

D12 D22 D26

D16 D26 D66


т

T1(x, y)

T1(x, y)

T1(x, y)

 +


Mm

xx

Mm
yy

Mm
xy

 .

Уравнения движения в смещениях получаются после подстановки выражений (8) в урав-
нения движения (7).

1.4. Соотношения аэродинамики. Взаимодействие потока и конструкции моделируется
с использованием нелинейной поршневой теории первого и третьего порядков. Внешняя
нагрузка q в уравнениях (7) заменяется на ∆Pa — давление, действующее на пластину
при ее обтекании аэродинамическим потоком:

∆Pa = P d(x, t) + P s(x)

(P d(x, t), P s(x) — нестационарная и стационарная аэродинамические силы соответствен-
но). Выражение для давления на пластину в случае изоэнтропического течения, получен-
ное с использованием поршневой теории, имеет вид [32]

P d(x, t) = P∞
(
1 +

γ − 1

2

Vz

c∞

)2γ/(γ−1)
. (9)

Путем разложения выражения (9) получаются поршневые теории первого и третьего
порядков

P d(x, t) = P∞
(
1 + γ

M

β1

(
η
Vz

c∞

))
,

P d(x, t) = P∞
(
1 + γ

M

β1

(
η
Vz

c∞

)
+
γ(γ + 1)

4

M

β1

(
η
Vz

c∞

)2
+
γ(γ + 1)

12

M

β1

(
η
Vz

c∞

)3)
,

(10)
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где η = M /
√

M2−1; c2∞ = γP∞/ρ∞ — скорость звука; P∞, ρ∞ — атмосферное давление и

плотность воздуха; γ — константа изоэнтропического газа. При определении нестационар-
ного аэродинамического давления используется скорость обтекающего пластину потока [2]

Vz = β2w0,t + U∞(w0,x + ŵ0,x).

Здесь w0 — текущий прогиб пластины; ŵ0,x — начальный прогиб пластины; U∞ — ско-
рость потока на бесконечности. Поток обтекает только верхнюю лицевую поверхность

пластины, на нижней лицевой поверхности скорость потока равна нулю и давление на

нее, не превышающее атмосферного давления, полагается постоянным. Число Маха M,
динамическое давление q∞, коэффициенты β1, β2 определены следующим образом:

M =
U∞
c∞

, q∞ =
ρ∞U

2
∞

2
, β1 =

√
M2−1 , β2 =

M2−2

M2−1
.

Для больших чисел Маха полагается β1 = M, β2 = 1.
Приведенная выше система уравнений решается в следующих безразмерных перемен-

ных:

W =
w

h
, Ŵ =

ŵ

h
, ξ =

x

a
, η =

y

b
, AR =

b

a
, t̄ = tΩ0, Ω0 =

(π
a

)2
√

D0

ρmh
,

Ω̄ = Ω0
a

c∞
, K =

ω

Ω0
, h̄1 =

h

a
, h̄2 =

h

b
, P̄ s(x) = P s(x)

a4

D11h
, ρ̄ =

ρm

ρ∞
,

β =
√

M2−1 , λ =
2q∞a

3

βD0
, Rx =

Nm
xxa

2

D11
, Ry =

Nm
yya

2

D11
,

Āij = Aij
h2

D11
, B̄ij = Bij

h

D11
, D̄ij = Dij

1

D11
, Ī0 =

I0
ρmh

, Ī1 =
I1

ρmh2
, Ī2 =

I2
ρmh3

,

D11 =
E1h

3

12(1− ν2
12)

, M =
U∞
c∞

, q∞ =
1

2
ρ∞U

2
∞.

1.5. Геометрия начальных дефектов. Геометрия глобальных и локальных началь-
ных дефектов композитной пластины показана на рис. 1. Для моделирования глобальных
и локальных начальных дефектов используются разложение Тейлора и гиперболические

функции:

Ŵ =
N∑

n=1

M∑
m=1

H

h
Anm sin (nπξ) sin (mπη1); (11)

Ŵ = (H/h) sech [δ1(ξ − ψ1)] cos [µ1π(ξ − ψ1)] sech [δ2(η1 − ψ2)] cos [µ2π(η1 − ψ2)]. (12)

Соотношением (12) моделируются дефекты следующих типов:
1) синусоидальные: δ1 = δ2 = 0, µ1 = µ2 = 1, ψ1 = ψ2 = 0,5;
2) локальные: δ1 6= 0, δ2 6= 0, µ1 = 1, . . . , n, µ2 = 1, . . . , n, ψ1 = 0, . . . , 1, ψ2 = 0, . . . , 1;
3) глобальные: δ1 = δ2 = 0, µ1 6= 1, µ2 6= 1, ψ1 = 0, . . . , 1, ψ2 = 0, . . . , 1.
Здесь η1 — безразмерная область начального дефекта; δ1, δ2 — фиксированные зна-

чения, характеризующие протяженность локального дефекта; µ1, µ2 — число полуволн

в направлениях осей x и y соответственно. Следует отметить, что дефекты геометрии

возникают вследствие воздействия окружающей среды и внешних тепловых нагрузок.
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Рис. 1. Форма начальных глобальных (а) и локальных (б, в) дефектов пластины:
а — Ds = 0,9, б — Ds = 0,5, η = ξ = 0,5, в — Ds = 0,65, η = ξ = 0,7

1.6.Метод Галеркина. Решение нелинейных уравнений в частных производных будем
искать в виде

U(ξ, t̄) =
m∑

j=1

n∑
i=1

aij(t̄)ϕui(ξ)ψuj(η), V (ξ, t̄) =
m∑

j=1

n∑
i=1

bij(t̄)ϕvi(ξ)ψvj(η),

W (ξ, t̄) =
m∑

j=1

n∑
i=1

cij(t̄)ϕwi(ξ)ψwj(η),

где

ϕui(ξ) = cos (λiξ), ψuj(ξ) = sin (λjη), λi = iπ, λj = jπ,

ϕvi(ξ) = sin (λiξ), ψvj(ξ) = cos (λjη), λi = iπ, λj = jπ,

ϕwi(ξ) = sin (λiξ), ψwj(ξ) = sin (λjη), λi = iπ, λj = jπ.
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Рис. 2. Зависимости основной частоты колебаний K1 от безразмерной коорди-
наты η1 при h̄ = 0,01, Ds = 0,9 ([45/−45]2S) и различных значениях высоты
синусоидального дефекта:
а — 1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8, 4 — H/h = 1,2; б — 5 — H/h = 1,6,
6 — H/h = 2,0

Используются краевые условия для шарнирно опертой пластины:

W = W,ξξ = 0, ξ = 0, 1, W = W,ηη = 0, η = 0, 1.

С помощью метода Галеркина задача сводится к системе обыкновенных нелинейных диф-
ференциальных уравнений, которые решаются методом Рунге — Кутты.

2. Результаты исследования. Ниже приводятся результаты исследования колеба-
ний пластины с начальными дефектами при различных значениях параметров пластины

и окружающей среды.
2.1. Свойства материала конструкции и окружающей среды.Материал конструкции

(углепластик марки T300/5208) и обтекающий поток имели следующие характеристики:
G13 = 7,17(1 − 1,09 · 10−3 ∆T ) ГПа, ρ∞ = 1,225 кг/м3, ν12 = 0,28, G23 = 6,21(1 − 1,09 ×
10−3 ∆T ) ГПа, a = b = 1 м, E1 = 181(1− 6,35 · 10−4 ∆T ) ГПа, αT1 = −0,07 · 10−6(1− 0,69×
10−3 ∆T ) 1/◦C, h = 0,01, E2 = 10,3(1 − 7,69 · 10−4 ∆T ) ГПа, αT2 = 30,1 · 10−6(1 + 0,28 ×
10−4 ∆T ) 1/◦C, C∞ = 340 м/с, G12 = 7,17(1−1,09 ·10−3 ∆T ) ГПа, ρm = 1600 кг/м3, γ = 1,4.

2.2. Результаты нелинейного анализа колебаний, потери устойчивости и закрити-
ческого поведения тонкой пластины с учетом дефектов геометрии. На рис. 2 для вось-
мислойной тонкой пластины (h̄ = 0,01) с симметричной укладкой слоев под углом 45◦

приведены зависимости основной частоты колебаний от безразмерной координаты η1 при

различных значениях высоты синусоидального дефекта шириной 0,9. При увеличении вы-
соты дефекта в диапазоне 0 6 H/h 6 1,2 увеличивается основная частота колебаний пла-
стины (см. рис. 2,а). При 1,6 6 H/h 6 2,0 сначала частота колебаний уменьшается (про-
исходит разупрочнение), а затем увеличивается (происходит упрочнение). С увеличением
высоты дефекта диапазон значений η1, в котором происходит разупрочнение пластины,
увеличивается.

На рис. 3 для восьмислойной тонкой пластины (h̄ = 0,01) с симметричной уклад-
кой слоев под углом 60◦ приведены зависимости амплитуды смещения и основной частоты
колебаний от безразмерной координаты η1 при различных значениях высоты синусоидаль-
ного дефекта шириной 0,9.
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Рис. 3. Зависимости амплитуды смещенияWh (а, в) и первой частоты K1 (б, г)
от безразмерной координаты η1 при h̄ = 0,01, Ds = 0,9 ([60/−60]2S) и различных
значениях высоты дефекта:
а, б — 0 6 H/h 6 0,8 (1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8), в, г —
1,2 6 H/h 6 2,0 (4 — H/h = 1,2, 5 — H/h = 1,6, 6 — H/h = 2,0)

При значениях высоты дефекта H/h = 0; 0,4; 0,8 смещение пластины монотонно

увеличивается с увеличением переменной η1 (см. рис. 3,а). Чем больше высота дефек-
та, тем больше величина смещения пластины. В диапазоне значений высоты дефекта

0 6 H/h 6 0,8 при малых значениях переменной η1 основная частота колебаний пластины

K1 уменьшается с увеличением высоты дефекта, а затем, с увеличением переменной η1,
увеличивается (см. рис. 3,б). При η1 < 0,5 с увеличением высоты дефекта амплитуда

смещений пластины уменьшается, а при η1 > 0,5 — увеличивается (см. рис. 3,в).
При значениях высоты дефекта H/h = 1,2; 1,6; 2,0 основная частота колебаний пла-

стины уменьшается в диапазонах значений переменной 0 6 η1 6 0,2, 0 6 η1 6 0,4 и
0 6 η1 6 0,6 соответственно (происходит разупрочнение), при дальнейшем увеличении
переменной η1 основная частота колебаний пластины увеличивается (происходит упроч-
нение) (см. рис. 3,г). С увеличением высоты дефекта диапазон значений переменной η1,
в котором происходит разупрочнение, увеличивается.

На рис. 4 для восьмислойной тонкой пластины (h̄ = 0,01) с симметричной укладкой
слоев под углом 45◦ приведены зависимости основной частоты колебаний от безразмерной
координаты η1 при различных значениях высоты и ширины локального дефекта. Из при-



162 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 1

n1

K1

0,40,2 0,6 1,00,8 1,20

4

1
2

5

3

1
2
3

à

n1

K1

0,2 0,4 0,6 0,8

1

2

3

0

1

2

3
á

Рис. 4. Зависимости основной частоты колебаний от безразмерной координа-
ты η1 при h̄ = 0,01 ([45/−45]2S) и различных значениях высоты и ширины

локального дефекта:
а — Ds = 0,7 (1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8, 4 — H/h = 1,1, 5 —
H/h = 1,4), б — H/h = 0,4 (1 — Ds = 0,35, 2 — Ds = 0,5, 3 — Ds = 0,7)

веденных на рис. 4,а зависимостей следует, что при любой высоте локального дефекта,
в отличие от глобального синусоидального дефекта, основная частота колебаний пластины
монотонно увеличивается с увеличением безразмерной координаты η1. Из рис. 4,б следу-
ет, что ширина локального дефекта не оказывает существенного влияния на зависимость
основной частоты колебаний пластины от безразмерной координаты η1.

На рис. 5 для восьмислойной тонкой пластины (h̄ = 0,01) с симметричной и анти-
симметричной укладкой слоев под углом 45◦ приведены зависимости основной частоты

колебаний от температуры, равномерно распределенной по поверхности пластины. (По
толщине пластины температура изменяется с градиентом, равным 10.) При увеличении
безразмерной температуры в диапазоне T/Tcr = 0÷1 частота колебаний пластины умень-
шается и при H/h = 0 практически равна нулю (потеря устойчивости пластины), при
дальнейшем увеличении температуры в закритической области частота колебаний пла-
стины увеличивается. С увеличением высоты дефекта частота колебаний пластины также
увеличивается. С увеличением температуры в закритической области колебания пласти-
ны становятся более устойчивыми. В докритической области частота колебаний пластины
практически не зависит от ширины дефекта, а в закритической области при ширине де-
фекта Ds = 0,7 она больше, чем при Ds = 0,5 (см. рис. 5,б).

2.3. Результаты анализа нелинейной задачи аэроупругости пластины при наличии
в ней начального дефекта геометрии. На рис. 6 для восьмислойной тонкой пластины
(h̄ = 0,01) с симметричной укладкой слоев под углами 45 и 60◦ приведены зависимости
безразмерного динамического давления, при котором появляется флаттер пластины, от
высоты синусоидального дефекта шириной Ds = 0,9. Для пластины с укладкой слоев под
углом 45◦ критическая скорость обтекающего потока практически при всех значениях вы-
соты дефекта больше критической скорости потока, обтекающего пластину с укладкой
слоев под углом 60◦. Однако для значений высоты дефекта в окрестности H/h = 1,2 кри-
тическая скорость потока, обтекающего пластину с укладкой слоев под углом 60◦, больше
критической скорости потока, обтекающего пластину с укладкой слоев под углом 45◦.
Следовательно, критическая скорость потока существенно зависит от высоты дефекта

и способа укладки слоев.
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Рис. 5. Зависимости основной частоты колебаний от температуры, равномерно
распределенной по поверхности пластины, при h̄ = 0,01 ([45/−45]2S) и различ-
ных значениях высоты и ширины дефекта:
а — Ds = 0,7 (1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8), б — H/h = 0,4 (1 —
Ds = 0,5, 2 — Ds = 0,7)
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Рис. 6. Зависимость безразмерного динамического давления λf от высоты де-
фекта синусоидальной формы при h̄ = 0,01, Ds = 0,9:
1 — [45/−45]2S , 2 — [60/−60]2S

На рис. 7 представлены зависимости максимальных положительных и отрицательных
значений прогибов пластины от критической скорости потока для пластины с симметрич-
ной укладкой слоев под углами 45 и 60◦.

На рис. 8 показаны фазовые диаграммы для тонкой пластины с симметричной уклад-
кой слоев под углом 45◦ при λf = 247, 275.

На рис. 9 для пластины с симметричной укладкой слоев под углом 45◦ приведены
зависимости критического динамического давления от высоты дефекта шириной Ds = 0,7.
В отличие от случая пластины с нелокальным синусоидальным дефектом при наличии

локального дефекта критическое давление увеличивается с увеличением высоты дефекта.
Следовательно, при наличии локального дефекта аэроупругая устойчивость пластины из
композитного материала может увеличиться.
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Рис. 7. Зависимости максимальных (1, 3, 5) и минимальных (2, 4, 6) смещений
от безразмерного динамического давления при наличии в пластине синусои-
дального дефекта (h̄ = 0,01, Ds = 0,9):
а — [45/−45]2S , б — [60/−60]2S ; 1, 2 — H/h = 0, 3, 4 — H/h = 0,4, 5, 6 — H/h = 0,8
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Рис. 8. Фазовые диаграммы для тонкой пластины с симметричной укладкой

слоев под углом 45◦ при h̄ = 0,01, Ds = 0,9 ([45/−45]2S):
а — λf = 247, б — λf = 275; 1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8, 4 —
H/h = 1,2

На рис. 10 для пластины с симметричной укладкой слоев под углом 45◦ представ-
лены зависимости критического динамического давления от ширины локального дефек-
та. Сплошная горизонтальная линия соответствует значению критического давления для
пластины без дефекта. Из приведенных зависимостей следует, что от ширины локального
дефекта существенно зависят демпфирующие свойства пластины и ее аэродинамическая

жесткость.
На рис. 11 показана зависимость частоты флаттера от динамического давления при

различных значениях высоты дефекта, на рис. 12 — зависимость амплитуды смещения от

частоты флаттера при различных значениях высоты дефекта.
На рис. 13 приведены зависимости максимального и минимального смещений пла-

стины от критического динамического давления, на рис. 14 — фазовые диаграммы для

пластины с симметричной укладкой слоев при наличии в ней локального дефекта.
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Рис. 9. Зависимость критического динамического давления от высоты локаль-
ного дефекта при Ds = 0,7, h̄ = 0,01 ([45/−45]2S)

Рис. 10. Зависимость критического динамического давления от ширины ло-
кального дефекта для пластины с симметричной укладкой слоев под углом 45◦

при h̄ = 0,01 ([45/−45]2S):
1 — H/h = 0, 2 — H/h = 0,4
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Рис. 11. Зависимость частоты флаттера от динамического давления при h̄ =
0,01, Ds = 0,7 ([45/−45]2S) и различных значениях высоты дефекта:
1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8

Рис. 12. Зависимость амплитуды смещения от частоты флаттера при h̄ = 0,01,
Ds = 0,7 ([45/−45]2S) и различных значениях высоты дефекта:
1 — H/h = 0, 2 — H/h = 0,4, 3 — H/h = 0,8
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Рис. 13. Зависимости максимального (1, 3, 5, 7) и минимального (2, 4, 6, 8)
смещений пластины от критического динамического давления при h̄ = 0,01,
H/h = 0,4 ([45/−45]2S) и различных значениях ширины дефекта:
1, 2 — Ds = 0,9, 3, 4 — Ds = 0,7, 5, 6 — Ds = 0,5, 7, 8 — Ds = 0,35

Рис. 14. Фазовые диаграммы для пластины с симметричной укладкой слоев

([45/−45]2S) при наличии в ней локального дефекта (h̄ = 0,01, H/h = 0,4):
1 — Ds = 0,9, 2 — Ds = 0,7, 3 — Ds = 0,5, 4 — Ds = 0,35

3. Сопоставление результатов, полученных с использованием предложен-
ного метода, с полученными ранее результатами. На рис. 15 приведены зависи-
мости смещения пластины при наличии в ней глобального дефекта геометрии от без-
размерной температуры, построенные с использованием предложенного метода и полу-
ченные ранее в работе [23]. Рассматривалась тонкая графитоэпоксидная композитная
пластина (0/90/90/0)S с постоянной температурой. Характеристики материала пласти-
ны имели следующие значения: G12 = 4,55 ГПа, αT2 = 30,1 · 10−6 1/◦C, ν12 = 0,22,
G13 = 7,17 ГПа, ρm = 1586 кг/м3, E1 = 155 ГПа, G23 = 3,25 ГПа, a/h = 250, E2 = 8,07 ГПа,
αT1 = −0,07 · 10−6 1/◦C.

Из зависимостей, приведенных на рис. 15, следует хорошее соответствие результатов.
На рис. 16 приведены зависимости частоты колебаний пластины от безразмерной

координаты η1, полученные в данной работе с использованием предложенного метода и
в работе [33]. Рассматривалась пластина с шарниро опертыми торцами и симметричной
укладкой слоев при наличии в ней глобального дефекта синусоидальной формы. Харак-
теристики материала пластины имели следующие значения: H/h = 0,2, G12 = 26 ГПа,
ρm = 2700 кг/м3, ν12 = 0,3, E1 = 70 ГПа, a/h = 20 [33].

Заключение. В работе выполнен анализ нелинейных колебаний, потери устойчиво-
сти и аэроупругости тонкой ортотропной композитной пластины. Исследовано влияние
структуры композитной пластины, числа ее слоев, тепловых и механических нагрузок на
колебания пластины и на ее деформирование при наличии дефектов геометрии. Учиты-
валась зависимость свойств материала (удельной теплоемкости и модуля упругости) от
температуры. Получены следующие результаты.

При симметричной укладке слоев под углом 45◦ и высоте локального дефекта в диа-
пазоне 0 6 H/h 6 1,2 частота колебаний пластины непрерывно увеличивается с увеличе-
нием безразмерной координаты η1, а сама пластина упрочняется. При высоте глобального
дефекта в диапазоне 1,6 6 H/h 6 2,0 с увеличением безразмерной координаты η1 часто-
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Рис. 15. Зависимость смещения пластины от безразмерной температуры при AR = 1:
a — H/h = 0, б — H/h = 0,1; 1 — данные [23], 2 — данные настоящей работы

n1

Tnl

0,40,2 0,6 0,8 1,00

4

1
2
3

10

5

15

25

20

30

Рис. 16. Зависимости частоты колебаний пластины от безразмерной координа-
ты η1 при H/h = 0,2, AR = 1, a/h = 20:
1 — данные [33], 2 — данные [34], 3 — данные [35], 4 — данные настоящей работы

та колебаний сначала уменьшается (происходит разупрочнение), а затем увеличивается
(происходит упрочнение).

При наличии локального дефекта с увеличением безразмерной координаты η1 частота

нелинейных колебаний пластины непрерывно возрастает при любой высоте дефекта.
С увеличением высоты дефекта частота колебаний пластины увеличивается, а с уве-

личением температуры колебания пластины в закритической области становятся более

устойчивыми. При температурной нагрузке с уменьшением ширины дефекта частота ко-
лебаний уменьшается.

Тип локального дефекта оказывает существенное влияние на частоту колебаний пла-
стины.

С yвеличением высоты глобального дефекта давление, при котором появляется флат-
тер, уменьшается.

С увеличением жесткости пластины влияние дефекта геометрии на значение давления,
при котором наступает флаттер, увеличивается.
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