УДК 536.423

ФЛИККЕР-ШУМ И САМООРГАНИЗОВАННАЯ КРИТИЧНОСТЬ В КРИЗИСНЫХ РЕЖИМАХ КИПЕНИЯ

А. В. Решетников, В. Н. Скоков, В. П. Коверда, В. П. Скрипов, Н. А. Мажейко, А. В. Виноградов

Институт теплофизики УрО РАН, 620016 Екатеринбург

Экспериментально исследованы термические флуктуации при переходе от пузырькового к пленочному кипению воды на проволочном нагревателе и флуктуации формы струи при истечении перегретой жидкости из сосуда высокого давления. Обнаружено, что при кризисе теплоотдачи на проволочном нагревателе и при интенсивном объемном вскипании в струе перегретой жидкости спектр мощности флуктуаций имеет расходящуюся по закону 1/f низкочастотную составляющую (фликкер-шум). Данный эффект обусловлен протеканием в системе неравновесных фазовых переходов: кризиса теплоотдачи при переходе от пузырькового к пленочному кипению и кризиса потока при вскипании струи перегретой жидкости.

Введение. В различных системах часто наблюдаются стохастические процессы, в которых значительная доля энергии приходится на низкочастотные крупномасштабные флуктуации. Математически это выражается степенной частотной зависимостью спектральной плотности флуктуаций $S \sim 1/f^{\alpha}$ (S — спектральная плотность; f — частота). Флуктуационные процессы называются 1/f-шумом (или фликкер-шумом), если показатель степени α близок к единице. В отличие от традиционных гауссовых случайных процессов для фликкер-шума характерны степенные законы распределения, что означает возможность крупных катастрофических выбросов. Следует отметить, что 1/f-шум наблюдается в различных системах [1, 2]. Авторами настоящей работы фликкер-шум обнаружен при смене режимов кипения азота на поверхности токонесущих тонкопленочных мостиков высокотемпературных сверхпроводников [3, 4], при пленочном кипении воды [5, 6], в колебательных режимах горения [7, 8], при дуговом электрическом разряде [9].

В последнее время интерес к 1/f-шуму значительно возрос в связи с открытием явления самоорганизованной критичности [10]. При самоорганизованной критичности система в результате эволюции может оказаться в критическом состоянии, которое не требует тонкой подстройки управляющих параметров, а является одним из основных состояний системы. Теория самоорганизованной критичности, описывающая динамику лавин, в настоящее время активно развивается и еще далека от завершения.

Самоорганизованная критичность и 1/f-шум при взаимодействии неравновесных фазовых переходов. В работах [4, 7–9] предложена феноменологическая теория возникновения 1/f-шума и самоорганизованной критичности. Согласно этой теории 1/f-шум и критическое поведение возникают в результате одновременного протекания и взаимодействия различных неравновесных фазовых переходов. В случае двух фазовых

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 00-02-16288, 00-15-96719).

Рис. 1. Кривая кипения воды (*a*) и расходная характеристика при вскипании струи перегретой воды (*б*)

переходов простейшая система уравнений, предсказывающая фликкер-шум, имеет вид

$$\frac{d\varphi}{dt} = -\varphi\psi^2 + \psi + \Gamma_1(t), \qquad \frac{d\psi}{dt} = -\varphi^2\psi + \lambda\varphi + \Gamma_2(t), \tag{1}$$

где φ , ψ — динамические переменные (параметры порядка); Γ_1 , Γ_2 — гауссовы δ -коррелированные шумы (белый шум); параметр $\lambda > 1$ связан с наличием в системе макропотоков (непотенциальность системы). Система (1) допускает обобщение на случай пространственно-распределенных систем [7–9]

$$\frac{d\varphi}{dt} = D \frac{\partial^2 \varphi}{\partial x^2} - 2\varphi \psi^2 + \psi + \Gamma_1(t), \qquad \frac{d\psi}{dt} = -2\varphi^2 \psi + \varphi + \Gamma_2(t), \tag{2}$$

где *D* — коэффициент диффузии. Система (2) описывает случайные блуждания в системе с потенциалом

$$\Phi = \Phi_0 + \int \left(\varphi^2 \psi^2 - \varphi \psi + \frac{1}{2} \left(\nabla \varphi\right)^2\right) dx.$$
(3)

Физический смысл потенциала (3) легко раскрыть, если перейти к новым переменным $u = \varphi + \psi, v = \psi - \varphi$. В этих переменных выражение для потенциала имеет вид

$$\Phi(u,v) = \int \left(u^4 - u^2 + v^4 + v^2 - 2u^2v^2 + (\nabla u)^2 + (\nabla v)^2 - 2\nabla u\nabla v\right) dx.$$
(4)

Представление потенциала в виде (4) справедливо в рамках теории среднего поля для взаимодействующих докритического фазового перехода (первого рода) с параметром порядка *и* и закритического фазового перехода с параметром порядка *v*. Заметим, что закритичность перехода означает пространственную локализацию соответствующего параметра порядка.

Типичным неравновесным фазовым переходом (смена стационарных состояний системы вдали от термодинамического равновесия) является переход от пузырькового кипения жидкости к пленочному. Кроме того, к неравновесным фазовым переходам в кипящих системах можно отнести процесс вскипания струй перегретой жидкости. На рис. 1, *a* приведена кривая кипения воды в большом объеме [11], на рис. 1, δ — расходная характеристика при стационарном истечении струи перегретой воды через короткий насадок для начальных параметров, соответствующих линии насыщения [12] (q_h — тепловой поток; q_m — массовый расход жидкости). На рис. 1 видно, что расходную характеристику струи вскипающей перегретой жидкости можно рассматривать как некоторый аналог кривой кипения, а вскипание в струе — как неравновесный фазовый переход.

Рис. 2. Спектры мощности флуктуаций при переходе к пленочному режиму кипения воды на вертикальном проволочном нагревателе:

 $1 - S \sim 1/f; \ 2 - S \sim 1/f^2$

В настоящей работе экспериментально исследованы флуктуации в кризисных режимах кипения на проволочном нагревателе и при истечении струи перегретой жидкости.

Эксперимент. Переход к пленочному кипению на проволочном нагревателе. Эксперименты проводились с дистиллированной водой, в которую погружался платиновый проволочный нагреватель диаметром 100 мкм и длиной около 2 см. В экспериментах регистрировались колебания напряжения и транспортного тока в цепи, связанные с кипением.

При возникновении очага пленочного кипения на горизонтально расположенном нагревателе паровая пленка распространялась вдоль нагревателя на расстояние около 1,5 см. Зависимости вольт-амперных характеристик имели гистерезисный вид. По измеренным временным характеристикам процесса методом быстрого фурье-преобразования определены спектры мощности флуктуаций. При переходе к пленочному режиму кипения на горизонтальном нагревателе спектры мощности имели лоренцевский вид $S \sim 1/(f_0^2 + f^2)$ с характерной полкой в области низких частот ($f < f_0$). Иная картина наблюдалась при вертикальном расположении нагревателя. Возникнув на слабом месте проволочки, очаг пленочного кипения распространялся на расстояние около 1 см. Из нижней части горячей зоны вдоль проволочки поднималась конусообразная паровая струя. Длина горячей зоны заметно флуктуировала. Визуальная картина напоминала перевернутую кучу песка [10]. С увеличением вводимой тепловой мощности очаг пленочного кипения увеличивался. Спектры мощности флуктуаций в широком диапазоне тепловых нагрузок имели вид $1/f^{\alpha}$ с показателем α , близким к 1 (кривая 1 на рис. 2). Непосредственно перед потерей устойчивости пленочного режима наряду с флуктуациями границ горячей зоны наблюдалось нерегулярное движение очага пленочного кипения как целого. В этом случае показатель α близок к 2 (кривая 2 на рис. 2).

Таким образом, при переходе к пленочному режиму кипения на вертикальном проволочном нагревателе наблюдаются интенсивные тепловые пульсации со спектром мощности типа $1/f^{\alpha}$.

Вскипание струи перегретой жидкости. Эксперименты проводились на лабораторной установке, обеспечивающей стационарное истечение перегретой жидкости в атмосферу в течение нескольких десятков секунд. Поскольку вода имеет высокие критические

параметры, для упрощения экспериментов в качестве модельной рабочей жидкости использовался фреон-11 с низкой температурой кипения (23 °C). Рабочая камера представляла собой цилиндрический стальной стакан (объемом 600 см³) с намотанным на него электрическим нагревателем. В опытах использовался короткий цилиндрический канал диаметром 0,5 мм и длиной 0,7 мм. Начальные температура и давление в камере изменялись в интервалах 50 °C $\leq T_0 \leq 165$ °C и 0,24 МПа $\leq P_0 \leq 2,78$ МПа. Значительные перегревы в потоке обеспечивались применением коротких каналов, в которых реализуются высокие скорости уменьшения давления (порядка 10⁶ МПа/с).

При невысоких начальных температуре и давлении вскипания не наблюдалось, а форма струи была близка к цилиндрической. При увеличении начальных температуры и давления в струе наблюдались отдельные акты вскипания. Начиная с $T_0 \ge 90$ °C (соответственно $P_0 \ge 0,66$ МПа) основным фактором, влияющим на форму струи, является интенсивное объемное вскипание. Вскипание происходило за выходом из канала. В этом случае струя имела форму полого конуса. При температуре $T_0 \ge 150$ °C изменялся механизм вскипания: вскипание отличалось большой интенсивностью и внезапностью (взрывное вскипание). Взрывное вскипание с преобладанием гомогенного механизма зародышеобразования приводит к тому, что сечение интенсивного парообразования смещается внутрь канала. Форма струи в этом случае близка к параболической.

Форма вскипающих струй сильно флуктуировала. Флуктуации исследовались методом фотометрии прошедшего лазерного излучения. Лазерный луч диаметром примерно 1 мм (длина волны излучения 0,65 мкм) пропускался через струю истекающей жидкости. Интенсивность лазерного луча измерялась фотодиодом с чувствительностью 0,5 A/BT. Сигнал оцифровывался 12-разрядным аналого-цифровым преобразователем и записывался в память компьютера. Флуктуации фототока измерялись при прохождении луча через различные участки струи на расстояниях от 0 до 10 мм от места вскипания.

По полученным данным методом быстрого фурье-преобразования найдены спектры мощности флуктуаций (рис. 3). При истечении "холодной" струи ($T_0 \leq 90$ °C) спектр мощности флуктуаций имел вид спектра белого шума с равномерным распределением интенсивности флуктуаций по частотам (кривая 1 на рис. 3). С ростом начальной тем-

пературы и началом объемного вскипания в струе наблюдалось увеличение низкочастотной составляющей спектра (кривая 2 на рис. 3). В области низких частот зависимость спектральной плотности мощности флуктуаций от частоты близка к 1/f. С ростом температуры T_0 в камере область интенсивного вскипания (вершина конуса) приближалась к выходу из канала. При этом граница перехода от белого шума к 1/f-шуму сдвигалась в сторону более высоких частот, т. е. частотный интервал фликкер-шума расширялся. При температурах $T_0 \ge 150$ °C в условиях взрывного вскипания перегретой жидкости в канале фликкер-шум наблюдался на интервале изменения частоты более четырех порядков (кривая 3 на рис. 3). Нижней временной границей фликкер-шума является время стационарного истечения жидкости.

Заключение. Таким образом, экспериментально исследованы флуктуации при переходе от пузырькового к пленочному кипению на проволочном нагревателе и при вскипании струи перегретой жидкости. Оба перехода (кризис теплоотдачи и кризис потока) можно рассматривать как неравновесные фазовые переходы в открытой системе.

Для кризисных режимов кипения обнаружены флуктуации с 1/f-спектром (фликкершум), свидетельствующие о самоорганизации критического состояния в системе. Самоорганизация критического состояния и фликкер-шум обусловлены протеканием в системе неравновесных фазовых переходов в присутствии белого шума. Роль белого шума играют случайные акты зарождения паровых пузырьков. Можно сделать вывод, что здесь имеет место самоорганизованная критичность, индуцированная белым шумом.

Случайные процессы с 1/f-спектром флуктуаций характеризуются перекачкой энергии от высокочастотных флуктуаций к низкочастотным. Это объясняет появление высокоэнергетических низкочастотных пульсаций в системе, которые следует учитывать при конструировании струйных устройств с использованием двухфазных потоков в элементах энергетических установок, при анализе возможных последствий аварийных разгерметизаций аппаратов и трубопроводов с горячей жидкостью.

ЛИТЕРАТУРА

- 1. Коган Ш. М. Низкочастотный токовый шум со спектром типа 1/f в твердых телах // Успехи физ. наук. 1985. Т. 145, № 2. С. 285–328.
- 2. Климонтович Ю. Л. Статистическая теория открытых систем. М.: ТОО "Янус", 1995.
- 3. Коверда В. П., Скоков В. Н., Скрипов В. П. 1/*f*-шум в критическом неравновесном фазовом переходе // Письма в ЖЭТФ. 1996. Т. 63, № 9. С. 739.
- Коверда В. П., Скоков В. Н., Скрипов В. П. 1/*f*-шум при неравновесном фазовом переходе. Эксперимент и математическая модель // Журн. эксперим. и теорет. физики. 1998. Т. 113, № 5. С. 1748–1757.
- Скоков В. Н., Коверда В. П., Решетников А. В. Флуктуации с 1/f^α-спектром при пленочном кипении // Письма в ЖЭТФ. 1999. Т. 69, № 8. С. 590–593.
- Скоков В. Н., Решетников А. В., Коверда В. П. Самоорганизация критических флуктуаций и 1/f-спектры в кризисных режимах кипения // Теплофизика высоких температур. 2000. Т. 38, № 5. С. 786–791.
- Скоков В. Н., Решетников А. В., Коверда В. П., Виноградов А. В. 1/*f*-шум при взаимодействии фазовых переходов // Теплофизика высоких температур. 2001. Т. 39, № 2. С. 316–321.
- Skokov V. N., Reshetnikov A. V., Koverda V. P., Vinogradov A. V. Self-organized criticality and 1/f-noise at interacting nonequilibrium phase transitions // Physica A. 2001. V. 293. P. 1–12.

- 9. Скоков В. Н., Коверда В. П., Решетников А. В. Самоорганизованная критичность и 1/*f*-флуктуации при неравновесных фазовых переходах // Журн. эксперим. и теорет. физики. 2001. Т. 119, № 3. С. 613–620.
- Bak P., Tang C., Wiesenfeld K. Self-organized criticality // Phys. Rev. A. 1988. V. 38, N 1. P. 364–374.
- 11. **Кутателадзе С. С., Накоряков В. Е.** Теплообмен и волны в газожидкостных системах. Новосибирск: Наука. Сиб. отд-ние, 1984.
- 12. Решетников А. В., Исаев О. А., Скрипов В. П. Расход вскипающей жидкости при истечении в атмосферу. Переход от модельного вещества к воде // Теплофизика высоких температур. 1988. Т. 26, № 3. С. 544–548.

Поступила в редакцию 1/VIII 2001 г.