УДК 550.93(551.24/.51/.72)

ПОЗДНЕДОКЕМБРИЙСКИЙ «ПРЕДЛЕДНИКОВЫЙ» ЭТАП ОСАДКОНАКОПЛЕНИЯ НА ЮГЕ СИБИРСКОЙ ПЛАТФОРМЫ

(по результатам изучения состава терригенных пород и детритовых цирконов)

З.Л. Мотова¹, Т.В. Донская¹, Д.П. Гладкочуб¹, А.М. Мазукабзов¹, К.-Л. Ван², Х.-Я. Ли²

¹Институт земной коры СО РАН, 664033, Иркутск, ул. Лермонтова, 128, Россия

²Institute of Earth Sciences, Sinica Academy, Taipei, Taiwan

Представлены новые данные о вещественном составе позднедокембрийских пород верхней части балаганахского регионального стратиграфического горизонта: нуганской свиты Байкальского сегмента Саяно-Байкало-Патомского пояса (СБПП) и бугарихтинской свиты балаганахской серии Патомского сегмента СБПП, а также U-Pb (LA-ICP-MS) возраст детритовых цирконов бугарихтинской свиты. Установлено, что породы нуганской и бугарихтинской свит образованы за счет разрушения магматических и метаморфических пород. Содержания и отношения редких и редкоземельных элементов в породах нуганской и бугарихтинской свит указывают на преобладание кислых магматических пород в области питающей провинции при дополнительном присутствии пород основного и среднего составов в источнике для терригенных пород нуганской свиты. U-Pb возраст детритовых цирконов из всех пород верхней части балаганахского регионального стратиграфического горизонта сопоставим с возрастом пород фундамента южной окраины Сибирской платформы и указывает на него как на основной источник обломочного материала в бассейны седиментации. Приведены аргументы, свидетельствующие, что «предледниковые» (предмаринонские) терригенные отложения нуганской и бугарихтинской свит, а также отложения ипситской свиты Саянского сегмента СБПП накапливались в позднем рифее (~720-640 млн лет), вероятно, в пострифтовых бассейнах, которые сформировались непосредственно после отделения Сибири от Лаврентии на ранних стадиях раскрытия Палеоазиатского океана.

Терригенные породы, поздний докембрий, детритовые цирконы, Сибирская платформа

LATE PRECAMBRIAN "PRE-GLACIAL" SEDIMENTATION STAGE IN THE SOUTHERN SIBERIAN PLATFORM

Z.L. Motova, T.V. Donskaya, D.P. Gladkochub, A.M. Mazukabzov, K.-L. Wang, H.-Y. Lee

We present new data on the chemical composition of the late Precambrian rocks in the upper part of the regional Balaganakh stratigraphic horizon (the Nugan Formation at the Baikal segment of the Sayan–Baikal–Patom belt (SBPB) and the Bugarikhta Formation of the Balaganakh Group at the Patom segment of the SBPB) and the U–Pb (LA-ICP-MS) age of detrital zircons from the Bugarikhta Formation. It has been established that the rocks of the Nugan and Bugarikhta formations resulted from the destruction of igneous and metamorphic rocks. The contents and ratios of trace and rare-earth elements in the rocks of the Nugan and Bugarikhta formations rocks in the provenance and the presence of rocks of mafic and intermediate compositions at the source of the terrigenous rocks of the Nugan Formation. The U–Pb age of detrital zircons from all rocks of the upper part of the regional Balaganakh Horizon is close to the age of the rocks in the basement of the southern margin of the Siberian Platform, which suggests that this basement was the main source of clastic material in the sedimentation basins. It is argued that the «pre-glacial» (pre-Marinoan) terrigenous deposits of the Nugan and Bugarikhta formations, as well as the deposits of the Ipsit Formation at the Sayan segment of the SBPB, accumulated in the Late Riphean (ca. 720–640 Ma), probably in postrift basins that formed immediately after the separation of Siberia from Laurentia at the early stages of the opening of the Paleoasian Ocean.

Terrigenous rocks, Late Precambrian, detrital zircons, Siberian Platform

введение

Позднедокембрийские осадочные толщи прослеживаются вдоль южной окраины Сибирской платформы на расстояние около 2000 км и относятся к структуре Саяно-Байкало-Патомского пояса (СБПП) [Решения..., 1983]. В пределах СБПП выделяются три сегмента: западный (Саянский), центральный (Байкальский) и северо-восточный (Патомский) (рис. 1). Мощные позднедокембрийские толщи осадоч-

© Мотова З.Л. , Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Ван К.-Л., Ли Х.-Я., 2023 [©]e-mail: motova@crust.irk.ru

Рис. 1. Схема геологического строения южной окраины Сибирской платформы (по [Станевич и др., 2006] с изменениями).

1 — Центрально-Азиатский складчатый пояс; 2 — фанерозойский чехол; 3 — позднедокембрийские осадочные толщи Саяно-Байкало-Патомского пояса; 4 — выступы раннедокембрийских пород фундамента Сибирской платформы; 5 — граница между Сибирской платформой и Центрально-Азиатским складчатым поясом; 6 — контуры участков работ.

ных пород в пределах этих сегментов отражают разные этапы геодинамической эволюции региона, сменяющие друг друга во времени: от внутриконтинентального растяжения, через режим пассивной континентальной окраины Палеоазиатского океана, формирование которой было обусловлено распадом суперконтинента Родиния в позднем рифее, до обстановки бассейна форланда [Gladkochub et al., 2019]. Согласно унифицированной стратиграфической схемы [Решения..., 1983], позднедокембрийские осадочные разрезы СБПП объединены в региональные стратиграфические горизонты (снизу вверх): пурпольский, медвежевский, балаганахский, дальнетайгинский, жуинский и присаянский (рис. 2). В настоящее время наиболее изученными являются вендские осадочные толщи дальнетайгинского и жуинского региональных стратиграфических горизонтов, накопление которых происходило в обстановках пассивной континентальной окраины и форландового бассейна [Советов, Комлев, 2005; Станевич и др., 2006, 2007; Чумаков и др., 2007; Метелкин и др., 2010; Летникова и др., 2013; Гладкочуб и др., 2007; Powerman et al., 2015; Priyatkina et al., 2018; Gladkochub et al., 2019; Romanov et al., 2021; и др.]. Что касается нижележащих осадочных отложений балаганахского стратиграфического горизонта СБПП, то геодинамическая обстановка их накопления до сих пор остается предметом дискуссий. Большинство исследователей, основываясь на результатах литолого-стратиграфических, палеонтологических, палеомагнитных и изотопно-геохронологических исследований, считают, что породы балаганахского горизонта накапливались в условиях пассивной континентальной окраины [Советов, Комлев, 2005; Станевич и др., 2006, 2007; Чумаков и др., 2007; Метелкин и др., 2010; Powerman et al., 2015; Romanov et al., 2021; и др.]. В то же время существует точка зрения, что породы этого горизонта накапливались в обстановке внутриконтинентального бассейна растяжения, существовавшего еще до распада суперконтинента Родиния и открытия Палеоазиатского океана [Мазукабзов и др., 2018; Gladkochub et al., 2019].

В балаганахский региональный стратиграфический горизонт объединены шангулежская, тагульская и ипситская свиты карагасской серии Саянского сегмента, нуганская свита Байкальского сегмента, а также хорлухтахская, хайвергинская, бугарихтинская и мариинская свиты патомской серии Патомского сегмента (см. рис. 2). На всей территории СБПП осадочные толщи нижней части дальнетайгинского горизонта залегают с несогласием на подстилающих породах балаганахского горизонта и обнаруживают с ними ярко выраженные литолого-фациальные отличия. Кроме этого, в базальных частях дальнетайгинского горизонта СБПП, а именно в основании разрезов марнинской, голоустенской и джемкукан-

Рис. 2. Схема корреляции позднедокембрийских отложений Саяно-Байкало-Патомского пояса (по [Станевич и др., 2006] с изменениями).

1 — конгломераты; 2 — полимиктовые, аркозовые и граувакковые песчаники разнозернистые; 3 — кварцевые песчаники; 4 — алевролиты и аргиллиты; 5 — углеродистые осадки; 6 — известняки, известняки с прослоями аргиллитов и алевролитов; 7 — доломиты; 8 — тиллиты; 9 — магматические породы основного состава; 10 — туфы и туффиты основного среднего состава; 11 — граниты, гнейсы, сланцы; 12 — несогласие; 13 — нижняя граница балаганахского регионального стратиграфического горизонта; 15 — нижняя граница жуинского регионального стратиграфического горизонта.

Обозначения свит и толщ: shn — шангулежская; tg — тагульская; ip — ипситская; mrn — марнинская; ud — удинская; ais — айсинская; ust — усть-тагульская; ng — нуганская; gl — голоустенская; ul — улунтуйская; kc — качергатская; ush — ушаковская; kr — куртунская; ayn — аянканская; pp — пурпольская; md — медвежевская; hr — хорлухтахская; hv — хайвергинская; bg — бугарихтинская; mr — мариинская; dzm — джемкуканская; br — баракунская; kl — каланчевская; vl — валюхтинская; ur — уринская; nk — никольская; cn — ченчинская; zr — жербинская; tn — тинновская.

ской свит, отмечаются тиллиты предположительно маринонского оледенения (~640—635 млн лет) [Советов, Комлев, 2005; Станевич и др., 2007; Чумаков и др., 2007; Советов и др., 2012], что позволяет ограничить верхнюю возрастную границу накопления осадочных пород балаганахского горизонта поздним рифеем.

Объектами настоящего исследования стали позднерифейские «предледниковые» терригенные отложения верхней части балаганахского регионального стратиграфического горизонта, а именно осадочные породы ипситской свиты карагасской серии Саянского сегмента СБПП, нуганской свиты Байкальского сегмента СБПП и бугарихтинской свиты балаганахской серии Патомского сегмента СБПП. В работе представлены новые данные по вещественному составу терригенных пород нуганской и бугарихтинской свит, а также результаты U-Pb (LA-ICP-MS) исследований детритовых цирконов из пород бугарихтинской свиты. Кроме этого, приведено сопоставление данных, полученных в ходе настоящего исследования, с ранее опубликованными результатами изучения состава пород ипситской свиты карагасской серии, а также с U-Pb возрастом детритовых цирконов из пород ипситской и нуганской свит [Мотова и др., 2018; Мазукабзов и др., 2018]. Целью исследования явилась оценка возраста, геодинамической обстановки формирования осадочных пород верхней части балаганахского регионального стратиграфического горизонта СБПП и определение состава основных источников обломочного материала, поступающего в бассейны их седиментации.

КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Породы ипситской, нуганской и бугарихтинской свит относятся к верхней части балаганахского регионального стратиграфического горизонта и располагаются в различных сегментах СБПП (см. рис. 1, 2).

Терригенные и карбонатные отложения ипситской свиты Саянского сегмента СБПП входят в состав карагасской серии, которая распространена вдоль предгорьев Восточного Саяна и с резким угловым несогласием залегает на докембрийских породах фундамента юго-западной окраины Сибирской платформы. В составе карагасской серии выделяются шангулежская, тагульская и ипситская свиты [Хоментовский и др., 1972; Брагин, 1986; Галимова и др., 2012]. Ипситская свита расположена в верхней части разреза карагасской серии и со стратиграфическим несогласием залегает на нижележащих доломитах тагульской свиты [Советов и др., 2012]. В ипситской свите выделяются две согласно залегающие подсвиты. Нижняя подсвита, однородная по составу, сложена тонкозернистыми песчаниками и алевролитами серого, красновато-серого и розового цвета. Породы нижней подсвиты ипситской свиты характеризуются исключительной однородностью минерального состава и хорошей сортировкой кластического материала. Верхняя подсвита ипситской свиты в основном сложена карбонатными породами, представленными переслаиванием доломитов, алевролитов и аргиллитов. Мощность отложений ипситской свиты варьируется от 500 до 1100 м.

Отложения нуганской свиты Байкальского сегмента СБПП имеют локальное распространение в центральной части западного побережья оз. Байкал, где они залегают на раннедокембрийских породах фундамента Сибирской платформы и перекрываются отложениями голоустенской свиты байкальской серии [Федоровский, 1985; Мазукабзов и др., 2018]. Нуганская свита с мелкогалечными кварцевыми конгломератами в основании сложена в нижней части разреза преимущественно кварцевыми гравелитами, среди которых отмечаются редкие линзовидные прослои кварцевых песчаников и алевролитов. Выше по разрезу залегает толща зеленых хлоритовых сланцев мощностью около 75 м. Завершают разрез нуганской свиты кварц-полевошпатовые алевролиты и песчаники, переслаивающиеся друг с другом. Мощность отложений нуганской свиты составляет 600—650 м.

Терригенные толщи бугарихтинской свиты Патомского сегмента СБПП относятся к балаганахской серии и слагают относительно обширные площади в пределах Байкало-Патомской окраины Сибирской платформы. Породы бугарихтинской свиты согласно залегают на отложениях хайвергинской свиты и согласно перекрываются массивными известняками мариинской свиты балаганахской серии, которые, в свою очередь, несогласно перекрываются базальными конгломератами джемкуканской свиты дальнетайгинской серии с горизонтом тиллитов в основании. Бугарихтинская свита, в базальной части которой отмечается горизонт мелковалунных конгломератов, преимущественно сложена кварцполевошпатовыми песчаниками, переслаивающимися с углеродистыми сланцами и известковыми песчаниками, с редкими прослоями и линзами светло-серых доломитов [Иванов и др., 1995]. Мощность свиты варьируется от 1030 до 1360 м.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Терригенные породы нуганской свиты были изучены в стратотипе, в береговых обнажениях руч. Нуган — левого притока р. Сарма (Ольхонский район Иркутской области) (рис. 3). Ранее для песчаника нуганской свиты из этого разреза был определен возраст детритовых цирконов [Мазукабзов и др., 2018], который ниже обсуждается в данной статье.

Породы бугарихтинской свиты изучались в двух коренных обнажениях вдоль правого борта р. Эксекюлях (левый приток р. Хомолхо) в 15 км на северо-запад от п. Перевоз (рис. 4).

Определение концентраций основных петрогенных оксидов выполнено методом силикатного анализа в Центре коллективного пользования (ЦКП) «Геодинамика и геохронология» ИЗК СО РАН по методике [Ревенко, 2014]. Концентрации Со и Sc были определены методом спектрального анализа по стандартной методике на модернизированном атомно-эмиссионном спектрометре ДФС-13 в ЦКП «Геодинамика и геохронология» ИЗК СО РАН. Пределы обнаружения Со и Sc составили 2 г/т. Содержания

Рис. 3. Схема геологического строения бассейна руч. Нуган (по [Мазукабзов и др., 2018] с изменениями).

1—3 — байкальская серия: 1 — качергатская свита, 2 — улунтуйская свита, 3 — голоустенская свита; 4 — нуганская свита; 5 — породы фундамента Сибирской платформы; 6 — разрывные нарушения; 7 — место отбора проб. На врезке: 1—3 — Сибирская платформа: 1 — архей-раннепротерозойские породы (фундамент), 2 — позднедокембрийские породы, 3 — раннепалеозойские породы; 4 — Центрально-Азиатский складчатый пояс; 5 — район исследований.

редких и редкоземельных элементов определялись методом ICP-MS в Лимнологическом институте CO PAH, ЦКП «Ультрамикроанализ», на квадрупольном масс-спектрометре Agilent 7500се (Agilent Technologies Inc., США) (аналитик С.В. Пантеева). Концентрации элементов рассчитаны относительно международных стандартов AGV-2, BCR-2, JG-2, GSP-2. Химическое разложение проб для ICP-MS анализа проводилось в ЦКП «Геодинамика и геохронология» ИЗК СО РАН методом сплавления с метаборатом лития по методике [Panteeva et al., 2003]. Ошибка определений редких и редкоземельных элементов методом ICP-MS составляла не более 5 %.

Изучение зерен детритовых цирконов из песчаника бугарихтинской свиты проводилось в Институте наук о Земле Академии Синика (Тайпей, Тайвань) с использованием сканирующего электронного микроскопа (JEOL JSM-6360LV) с детектором Gatan mini-CL [Chiu et al., 2009]. U-Pb изотопный анализ циркона выполнен методом лазерной абляции (LA-ICP-MS) на квадрупольном масс-спектрометре Agilent 7500s, соединенным с эксимерным лазером New Wave UP213, в Департаменте геонаук Национального Университета Тайваня (Тайпей, Тайвань) [Chiu et al., 2009]. При анализе проводилось измерение изотопных отношений в цирконах без какого-либо их предварительного отбора по размеру или морфологии, при этом исключались участки с трещинами и включениями. Диаметр лазерного луча — 30 мкм, частота — 4 Гц, плотность энергии — 15 Дж/см². Калибровка проводилась с использованием стандартного циркона GJ-1, имеющего ²⁰⁷Pb/²⁰⁶Pb возраст 608.5 ± 0.4 млн лет [Jackson et al., 2004]. Цирконовые стандарты 91500 (1065.4 \pm 0.6 млн лет [Wiedenbeck et al., 2004]), Mud Tank (608.5 \pm 0.4 млн лет [Jackson et al., 2004]) и Plešovice (337.1 ± 0.4 млн лет [Sláma et al., 2008]) применяли для контроля качества данных. Обработка измеренных изотопных отношений и построение графиков проводились по программе GLITTER 4.4 (GEMOG) и ISOPLOT/EX (3.0) [Ludwig, 2003] соответственно. Обыкновенный свинец откорректирован согласно методике [Andersen, 2002]. В интерпретации учитывались оценки возраста зерен, дискордантность (D) которых не превышает 10 %. Гистограммы и кривые относительной вероятности для цирконов построены по ²⁰⁷Pb/²⁰⁶Pb значениям возраста с ошибкой 1 о.

Рис. 4. Схема геологического строения бассейна р. Хомолхо (по [Митрофанов и др., 2010] с изменениями).

I—10 — вендско-позднерифейские осадочные породы патомского комплекса, свиты: *I* — никольская; *2* — валюхтинская; *3* — баракунская; *4* — угаханская; *5* — джемкуканская; *6* — мариинская; *7* — бодайбинская; *8* — бугарихтинская; *9* — хайвергинская; *10* — харлухтахская; *11* — места отбора проб.

ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА

В соответствии с классификацией для песчаных и алевритовых пород, по Ф.Дж. Петтиджону [Pettijohn et al., 1972] (рис. 5, *a*) и В.Н. Шванову [1987] (см. рис. 5, *б*), исследованные породы нуганской и бугарихтинской свиты соответствуют аркозам.

Породы нуганской свиты представлены алевропесчаниками и песчаниками, в основном сложенными полуокатанным и плохо отсортированным обломочным материалом. Текстура пород ориентированная, обусловленная субпараллельно расположенными чешуйками слюды и хлорита. Размеры обломочных зерен в алевропесчаниках составляют 0.06—0.10—0.30 мм, в песчаниках — 0.3—0.6 мм. Цемент смешанный, контактово-поровый, глинисто-слюдистый. Среди обломочной массы преобладают кварц (20—50 %), полевые шпаты (25—35 %), представленные серицитизированным плагиоклазом (20—28 %) и пелитизированным калиевым полевым шпатом (7—10 %), а также хлорит (17—23 %). Второстепенные минералы представлены биотитом (2—11 %), рудным минералом (2—4 %), мусковитом (2—3 %), акцессорные минералы — турмалин, рутил, сфен-лейкоксен и циркон. Среди обломков пород (5—22 %) отмечаются кварциты, гранитоиды и эффузивы среднего и основного состава. Повсеместно присутствуют обломки железистого карбоната в ассоциации с альбитом. Породы катаклазированы, по микротрещинам развиваются гидроксиды железа.

Породы бугарихтинской свиты представлены песчаниками, сложенными полуокатанным (65 %) и неокатанным (35 %) обломочным материалом средней степени сортировки. Размеры обломочных зерен составляют 0.1—0.3—1.6—2.8—3.2 мм. Текстура пород ориентированная, обусловленная наличием в междуобломочном пространстве однонаправленно-ориентированных новообразованных чешуек серицита. Цемент смешанный, контактово-поровый, базально-поровый. Среди обломочной массы преобладают кварц (35—56 %) и полевые шпаты (20—27), представленные плагиоклазом (12—17) и калиевым полевым шпатом (8—10 %). Второстепенные минералы: хлорит (3—9 %), мусковит (2—3), серицит (6—8), рудный минерал (1—2) и эпигенетический карбонат (4—8 %). Акцессорные минералы: апатит, турмалин, циркон, сфен-лейкоксен. Среди обломков пород (9—17 %) отмечаются гранитоиды и кварциты. Песчаники катаклазированы, эпигенетические изменения представлены серицитизацией плагиоклаза, пелитизацией калиевых шпатов и карбонатизацией.

Рис. 5. Петрографические классификации песчаников на треугольных диаграммах, по (*a*) [Pettijohn et al., 1972], (*б*) [Шванов, 1987].

1 — ипситская свита [Мотова и др., 2018]; 2 — нуганская свита; 3 — бугарихтинская свита.

ЛИТОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ТЕРРИГЕННЫХ ПОРОД НУГАНСКОЙ И БУГАРИХТИНСКОЙ СВИТ

Петрогенные элементы. Петрохимическая классификация терригенных пород нуганской и бугарихтинской свит проведена с использованием диаграммы Ф.Дж. Петтиджона [Pettijohn et al., 1972]. Генетическая типизация была проведена с использованием гидролизатного петрохимического модуля: $\Gamma M = (Al_2O_3 + TiO_2 + Fe_2O_3 + FeO)/SiO_2$ [Юдович, Кетрис, 2000]. Содержания петрогенных оксидов в представительных образцах терригенных пород нуганской и бугарихтинской свит, а также рассчитанные для них значения гидролизатного модуля приведены в табл. 1.

На классификационной диаграмме Ф.Дж. Петтиджона [Pettijohn, 1972] точки состава пород нуганской свиты расположились в полях граувакк, лититов и аркозов, фигуративные точки пород бугарихтинской свиты отвечают составам граувакк и лититов (рис. 6).

Алевропесчаники и песчаники нуганской свиты, для которых концентрации SiO₂ составляют 57.0—66.0 мас. %, обнаруживают значения гидролизатного модуля (ГМ), равные 0.29—0.47, что в совокупности с высокими концентрациями в них MgO (4.6—6.5 мас. %) (см. табл. 1) позволяет классифицировать эти породы как псевдосиаллиты (т. е. туффоиды или их дериваты) [Юдович, Кетрис, 2000]. Пес-

чаник нуганской свиты, имеющий $SiO_2 = 78.3$ мас. %, MgO = 1.2 мас. % и ГМ = 0.18, может быть отнесен к нормосилитам (т. е. аркозовым, полевошпат-кварцевым, слюдистым песчаникам или кислым граувак-кам) [Юдович, Кетрис, 2000].

Песчаники бугарихтинской свиты характеризуются содержаниями SiO_2 , варьирующимися от 66.8 до 87.5 мас. %, и концентрациями MgO = 0.07—2.51

Усл. обозн. см. на рис. 5.

Рис. 6. Положение фигуративных точек терригенных пород нуганской и бугарихтинской свит на классификационной диаграмме $lg(Na_2O/K_2O)$ $lg(SiO_2/Al_2O_3)$ [Pettijohn, 1972].

1/			Нуганск	ая свита			Бугарихтинская свита							
компонент	1113	1114	1115	1116	1117	1118	1190	1191	1192	1193	1194	1195	1196	
SiO ₂ , мас. %	56.96	58.99	57.78	78.28	65.99	61.47	82.78	81.22	78.49	84.54	82.17	81.23	87.48	
TiO ₂	0.93	0.83	0.93	0.51	0.87	0.75	0.75	1.02	0.85	0.52	0.68	0.83	0.51	
Al_2O_3	17.10	15.94	17.15	10.18	11.69	10.67	7.31	7.84	9.12	6.04	7.60	8.55	5.90	
Fe ₂ O ₃	1.50	0.94	1.40	1.44	0.75	1.76	0.53	0.41	0.36	0.07	0.39	0.72	0.42	
FeO	7.14	8.03	7.20	1.99	6.05	5.77	2.47	2.89	2.82	1.87	2.41	2.75	1.63	
MnO	0.02	0.03	0.01	0.02	0.09	0.18	0.03	0.04	0.05	0.04	0.03	0.03	0.02	
MgO	6.40	6.52	5.83	1.21	4.81	4.64	0.70	1.01	0.98	0.07	1.11	1.08	0.52	
CaO	0.23	0.16	0.15	0.15	1.25	4.94	0.67	0.74	1.08	1.12	0.85	0.65	0.53	
Na ₂ O	1.13	1.34	1.11	0.83	1.19	0.63	1.76	2.10	2.06	1.57	1.90	2.29	1.73	
K_2O	2.85	2.09	2.82	3.57	1.00	1.31	0.84	0.78	1.18	0.58	0.79	0.86	0.57	
P_2O_5	0.08	0.08	0.08	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.05	0.05	0.05	
H_2O	0.07	0.03	0.09	0.09	0.04	0.11	0.18	0.21	0.10	0.13	0.05	0.04	0.02	
П.п.п.	4.94	5.07	5.04	1.88	4.16	3.94	1.46	1.50	1.69	2.11	1.21	1.36	0.84	
CO ₂	0.63	0.19	0.19	< 0.06	1.73	3.88	0.52	0.20	0.79	0.99	0.34	0.00	0.26	
Сумма	99.99	100.24	99.78	100.20	99.66	100.10	100.05	100.01	99.62	99.68	99.58	100.44	100.48	
ГМ	0.47	0.44	0.46	0.18	0.29	0.31	0.13	0.15	0.17	0.10	0.13	0.16	0.10	
ТМ	0.05	0.05	0.05	0.05	0.07	0.07	0.10	0.13	0.09	0.09	0.09	0.10	0.09	
Rb, г/т	104.51	76.81	102.63	78.22	105.15	108.79	30.40	24.50	39.35	19.17	26.71	27.51	18.05	
Ba	938.71	572.45	912.03	576.88	965.81	962.58	223.75	227.74	344.35	175.83	249.88	254.73	172.69	
Sr	41.63	28.35	14.02	19.96	41.11	20.52	96.12	72.28	123.64	81.19	71.48	64.35	54.03	
Υ	22.22	19.23	22.21	21.54	22.46	22.25	13.73	15.04	13.42	9.03	11.22	12.49	9.34	
Zr	200.53	170.24	211.54	168.49	213.71	215.51	437.07	586.00	481.15	298.29	358.92	498.16	266.75	
Hf	5.35	4.56	5.63	4.53	5.62	5.61	11.41	14.90	12.26	7.43	9.81	12.93	6.72	
Та	0.86	0.78	0.89	0.79	0.93	0.88	0.60	0.75	0.60	0.33	0.48	0.61	0.34	
Nb	13.05	11.63	13.02	11.90	13.52	13.12	9.14	11.92	9.86	5.86	8.29	9.64	5.94	
La	28.01	21.45	25.11	21.57	24.94	30.16	28.85	34.84	28.03	17.32	26.72	28.06	17.91	
Ce	52.82	41.29	50.35	43.70	50.18	59.97	58.17	70.10	56.68	36.51	51.91	57.60	36.17	
Pr	6.01	4.83	5.67	5.00	5.66	6.58	6.08	7.74	6.02	3.81	5.43	5.98	3.69	
Nd	22.03	18.56	22.00	19.81	22.12	25.12	21.96	27.64	21.27	13.75	20.26	21.92	13.45	
Sm	4.34	3.73	3.91	4.11	4.28	4.88	4.03	4.83	3.82	2.39	3.54	3.71	2.22	
Eu	1.03	0.91	0.89	0.96	0.84	1.08	0.77	0.89	0.76	0.52	0.76	0.73	0.60	
Gd	3.93	3.43	3.95	3.74	3.93	4.15	3.11	3.81	3.09	1.94	2.84	3.18	2.05	
Tb	0.63	0.59	0.68	0.65	0.63	0.65	0.46	0.52	0.45	0.29	0.39	0.44	0.31	
Dy	3.92	3.60	4.06	3.85	4.10	3.81	2.43	2.86	2.53	1.65	2.22	2.52	1.67	
Но	0.81	0.76	0.83	0.79	0.87	0.80	0.49	0.54	0.48	0.33	0.42	0.49	0.33	
Er	2.44	2.11	2.36	2.32	2.49	2.30	1.37	1.52	1.33	0.94	1.13	1.35	0.94	
Tm	0.36	0.33	0.36	0.36	0.39	0.38	0.21	0.24	0.21	0.15	0.17	0.20	0.15	
Yb	2.39	2.10	2.43	2.28	2.48	2.43	1.45	1.57	1.45	0.97	1.13	1.42	0.93	
Lu	0.35	0.31	0.36	0.32	0.36	0.35	0.21	0.24	0.21	0.14	0.20	0.22	0.14	
Th	9.41	8.20	9.07	8.10	9.24	10.12	13.50	17.24	13.38	7.69	11.45	13.19	8.19	
U	1.76	1.51	1.68	1.52	1.83	1.77	1.10	1.52	1.35	0.81	1.12	1.31	0.78	
Co	46.00	31.00	34.00	34.97	43.94	31.98	7.70	7.40	6.10	3.80	5.00	5.40	2.80	
Sc	32.00	22.00	30.00	28.00	24.00	20.00	4.10	4.20	7.00	2.80	5.80	5.50	2.00	
Eu/Eu*	0.76	0.78	0.69	0.75	0.63	0.73	0.66	0.63	0.68	0.74	0.73	0.65	0.86	
(La/Yb) _n	7.91	6.88	6.98	6.39	6.77	8.37	13.38	14.96	13.04	12.06	15.89	13.29	12.93	
$(La/Sm)_n$	4.06	3.62	4.04	3.30	3.66	3.89	4.50	4.54	4.61	4.56	4.75	4.76	5.07	
Th/Co	0.20	0.26	0.27	0.23	0.21	0.32	1.75	2.33	2.19	2.02	2.29	2.44	2.93	
Th/Sc	0.29	0.37	0.30	0.29	0.38	0.51	3.29	4.11	1.91	2.75	1.97	2.40	4.10	
La/Sc	0.88	0.98	0.84	0.77	1.04	1.51	7.04	8.30	4.00	6.19	4.61	5.10	8.96	
Zr/Sc	6.27	7.74	7.05	6.02	8.90	10.78	106.60	139.52	68.74	106.53	61.88	90.57	133.38	
ΣΡ3Э	129.06	104.01	122.93	109.45	123.27	142.68	129.58	157.33	126.32	80.73	117.12	127.83	80.57	

Таблица 1. Литогеохимический состав терригенных пород нуганской и бугарихтинской свит

10	Бугарихтинская свита												
компонент	1197	11100	11101	11102	11103	11104	11105	11106	11107	11109	11111	11112	
SiO ₂ , мас. %	82.53	81.23	77.46	76.72	75.97	74.03	80.00	83.32	66.76	71.23	73.48	78.50	
TiO ₂	0.85	0.45	0.45	0.68	0.67	0.58	0.32	0.42	0.88	0.42	0.81	0.46	
Al ₂ O ₃	7.80	7.40	9.35	10.30	10.85	11.25	6.25	7.70	15.25	9.35	12.10	8.15	
Fe ₂ O ₃	0.50	0.41	0.89	0.51	0.49	0.80	0.33	0.41	1.13	0.61	0.67	0.65	
FeO	2.57	2.63	3.23	3.66	3.93	4.29	1.86	2.53	3.72	2.70	3.68	2.79	
MnO	0.04	0.01	0.03	0.02	0.02	0.02	0.03	0.01	0.02	0.04	0.03	0.03	
MgO	0.99	1.23	1.61	2.03	1.94	2.38	0.81	1.08	2.51	1.45	1.77	1.09	
CaO	0.54	1.70	1.46	0.71	0.82	0.76	4.19	0.62	1.27	5.52	0.76	2.50	
Na ₂ O	2.05	2.40	2.80	2.81	3.16	2.78	1.95	2.48	2.24	2.90	3.67	2.57	
K ₂ O	0.87	0.65	0.84	0.84	0.90	1.10	0.50	0.59	3.02	0.78	1.11	0.75	
P_2O_5	0.04	0.07	0.09	0.11	0.12	0.11	0.05	0.07	0.31	0.09	0.15	0.06	
H ₂ O-	0.01	0.03	0.05	0.05	0.04	0.07	0.08	0.05	0.19	0.02	0.09	0.05	
П.п.п.	1.24	1.28	1.57	1.86	1.16	1.37	0.81	0.92	3.02	1.52	1.83	0.92	
CO ₂	0.26	0.64	0.65	0.12	0.00	0.00	3.18	0.20	0.17	3.83	0.32	1.93	
Сумма	100.29	100.13	100.48	100.42	100.07	99.54	100.36	100.40	100.49	100.46	100.47	100.45	
ГМ	0.14	0.13	0.18	0.20	0.21	0.23	0.11	0.13	0.31	0.18	0.23	0.15	
TM	0.11	0.06	0.05	0.07	0.06	0.05	0.05	0.05	0.06	0.04	0.07	0.06	
Rb, г/т	28.60	20.24	28.31	26.99	31.33	37.63	17.35	19.68	103.13	26.59	34.17	23.35	
Ba	259.06	197.74	281.97	268.40	301.54	381.18	181.97	198.03	1011.98	260.36	391.61	252.66	
Sr	67.73	37.99	76.00	40.64	45.90	52.31	185.82	34.65	64.42	222.54	52.26	95.99	
Y	12.86	9.83	11.79	14.67	14.36	14.24	8.23	9.90	25.00	8.73	13.74	8.09	
Zr	486.07	247.22	240.48	341.93	310.30	290.61	198.47	237.04	247.12	163.11	370.28	202.76	
Hf	12.40	6.82	6.75	9.13	8.44	7.75	5.32	6.33	6.45	4.38	9.58	5.48	
Та	0.54	0.27	0.30	0.44	0.42	0.42	0.20	0.26	0.74	0.26	0.49	0.25	
Nb	10.04	4.99	5.53	7.56	7.65	6.71	3.92	4.94	11.26	4.96	9.10	4.94	
La	26.87	16.87	14.81	15.82	16.58	13.25	15.01	16.93	13.45	14.75	22.41	18.69	
Ce	53.02	32.44	28.20	36.31	39.18	27.14	29.26	33.36	28.21	28.96	46.54	35.99	
Pr	5.63	3.67	3.45	4.21	4.44	3.05	3.22	3.78	3.50	3.37	5.06	3.89	
Nd	19.67	13.80	14.70	16.28	17.14	12.60	12.05	14.17	14.90	13.90	17.91	15.06	
Sm	3.45	2.51	2.88	3.39	3.42	2.91	2.08	2.53	3.59	2.39	3.26	2.51	
Eu	0.67	0.65	0.67	0.71	0.68	0.65	0.48	0.62	0.92	0.61	0.75	0.57	
Gd	2.83	2.13	2.39	2.74	2.81	2.49	1.85	2.05	3.83	2.09	3.05	2.19	
Tb	0.44	0.31	0.40	0.43	0.43	0.42	0.27	0.30	0.64	0.32	0.44	0.29	
Dy	2.31	1.80	2.32	2.73	2.77	2.59	1.49	1.81	4.18	1.77	2.50	1.57	
Но	0.47	0.36	0.44	0.56	0.52	0.54	0.29	0.36	0.89	0.34	0.49	0.31	
Er	1.34	0.97	1.19	1.45	1.45	1.44	0.78	1.01	2.55	0.92	1.39	0.85	
Tm	0.20	0.14	0.17	0.22	0.21	0.21	0.11	0.15	0.42	0.14	0.21	0.12	
Yb	1.32	0.92	1.07	1.29	1.39	1.29	0.76	0.91	2.79	0.87	1.50	0.79	
Lu	0.20	0.12	0.14	0.19	0.17	0.21	0.10	0.12	0.41	0.12	0.20	0.12	
Th	14.30	7.05	6.85	10.48	9.31	7.84	5.73	6.90	9.83	5.00	9.14	5.88	
U	1.20	0.72	0.73	1.08	0.87	0.83	0.63	0.68	2.30	0.68	0.87	0.58	
Co	4.60	7.30	6.70	7.50	9.90	4.40	6.90	4.60	4.50	7.20	6.40	5.90	
Sc	5.40	6.80	8.90	6.30	13.00	4.00	5.50	16.00	12.00	8.10	9.70	6.70	
Eu/Eu*	0.65	0.86	0.78	0.71	0.67	0.74	0.75	0.83	0.76	0.83	0.73	0.75	
$(La/Yb)_n$	13.71	12.35	9.35	8.27	8.03	6.92	13.27	12.51	3.25	11.49	10.07	16.04	
$(La/Sm)_n$	4.90	4.22	3.23	2.94	3.05	2.86	4.54	4.20	2.36	3.88	4.33	4.67	
Th/Co	3.11	0.97	1.02	1.40	0.94	1.78	0.83	1.50	2.19	0.69	1.43	1.00	
Th/Sc	2.65	1.04	0.77	1.66	0.72	1.96	1.04	0.43	0.82	0.62	0.94	0.88	
La/Sc	4.98	2.48	1.66	2.51	1.28	3.31	2.73	1.06	1.12	1.82	2.31	2.79	
Zr/Sc	90.01	36.36	27.02	54.28	23.87	72.65	36.09	14.82	20.59	20.14	38.17	30.26	
ΣРЗЭ	118.43	76.71	72.82	86.33	91.20	68.81	67.76	78.12	80.30	70.56	105.73	82.95	

 $\frac{1}{\Pi \text{ р и м е ч а н и е. } \Pi \text{ ертохимические модули [Юдович, Кетрис, 2000]: } \Gamma M (гидролизатный) = (Al_2O_3 + TiO_2 + Fe_2O_3 + FeO)/SiO_2; TM (гитановый) = TiO_2/Al_2O_3; нормирование по хондриту [Boynton, 1984]; Eu/Eu* = (Eu_n)/((Sm)_n \times (Gd)_n)^{1/2}; \Sigma P3Э = \Sigma(La - Lu).$

Рис. 7. Содержания элементов-примесей, нормированные на ПКП [Condie, 1993] и хондрит [Boynton, 1984]:

а — в породах нуганской свиты; в — в породах бугарихтинской свиты; спектры распределения РЗЭ, нормированные по хондриту [Boynton, 1984]: б — в породах нуганской свиты; г — в породах бугарихтинской свиты. Штриховой линией показан спектр распределения РЗЭ в ПКП [Condie, 1993].

мас. %. Рассчитанные значения гидролизатного модуля (ГМ), равные 0.10—0.31, дают основание классифицировать эти породы как силиты (таксон «силиты» объединяет алюмосиликатные кремневые, кварц-полевошпатовые обломочные породы и некоторые кислые туффоиды) [Юдович, Кетрис, 2000].

Редкие и редкоземельные элементы. Концентрации редких и редкоземельных элементов в изученных терригенных породах нуганской и бугарихтинской свит, а также отношения некоторых элементов приведены в табл. 1. Для наглядного представления особенностей распределения редких и редкоземельных элементов в породах этих свит проведено сопоставление их концентраций с содержаниями таковых в среднем протерозойском кратонном песчанике [Condie, 1993] (далее по тесту — ПКП).

Терригенные породы нуганской свиты обнаруживают близкие к ПКП концентрации Sr и U. Содержания Rb, Ba, Th, Nb, Ta, Zr, Hf и Y немного повышены относительно указанного эталона (рис. 7, *a*). Суммарное содержание РЗЭ в изученных породах нуганской свиты составляет 104—143 г/т. Для этих пород характерны фракционированные спектры распределения РЗЭ (La/Yb)_{*n*} = 6.4—8.4 (рис. 7, *б*), обогащение легкими лантаноидами (La/Sm)_{*n*} = 3.3—4.1 и наличие отчетливой отрицательной европиевой аномалии (Eu/Eu* = 0.6—0.8).

Песчаники бугарихтинской свиты характеризуются близкими к ПКП концентрациями Rb, Ba, Th, U, Nb, Ta и Y. Содержания Sr, Zr и Hf в этих породах немного повышены относительно ПКП (см. рис. 7, *в*). Сумма РЗЭ в породах бугарихтинской свиты варьируется от 68 до 157 г/т. Терригенные породы бугарихтинской свиты обнаруживают фракционированные спектры РЗЭ (La/Yb)_n = 3.3—16.0 (см. рис. 7, *г*), обогащение легкими лантаноидами (La/Sm)_n = 2.4—5.1 и отрицательную европиевую аномалию (Eu/Eu* = 0.6—0.9).

U-Pb (LA-ICP-MS) ВОЗРАСТ ДЕТРИТОВЫХ ЦИРКОНОВ

Для U-Pb геохронологических исследований детритовых цирконов из песчаников бугарихтинской свиты была отобрана проба (пр. 11090). Всего было проанализировано 453 зерна циркона. Конкордант-

из песчаника бугарихтинской свиты балаганахской серии (пр. № 11090)														
Nº			Возр	аст, млн лет			Nº		Возраст, млн лет					
п/п	№ анализа	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	D, %	п/п	№ анализа	²⁰⁶ Pb/238U	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	D, %	
1	W90-221	1741	31	1741	18	0	54	W90-118	1777	29	1891	15	6	
2	W90-356	1724	31	1766	17	2	55	W90-98	1890	30	1895	15	0	
3	W90-439	1636	28	1788	16	9	56	W90-98	1890	30	1895	15	0	
4	W90-400	1644	28	1792	15	8	57	W90-75	1856	29	1897	15	2	
5	W90-89	1756	28	1809	15	3	58	W90-219	1833	32	1897	18	3	
6	W90-90	1863	30	1813	15	_3	59	W90-371	1806	30	1897	15	5	
7	W90-348	1815	31	1823	16	0	60	W90-16	1775	30	1897	15	6	
8	W90-399	1810	31	1823	15	1	61	W90-393	1805	31	1898	15	5	
9	W90-31	1688	29	1826	15	8	62	W90-317	1823	31	1899	15	4	
10	W90-327	1672	28	1826	15	8	63	W90-212	1897	33	1902	16	0	
11	W90-130	1765	29	1830	15	4	64	W90-440	1829	31	1902	15	4	
12	W90-215	1663	28	1835	16	9	65	W90-126	1881	30	1910	14	2	
13	W90-228	1873	33	1842	16	_2	66	W90-367	1863	30	1910	15	2	
14	W90-88	1915	31	1843	15	_4	67	W90-314	1878	32	1911	15	2	
15	W90-390	1680	28	1843	15	9	68	W90-26	1917	32	1913	15	0	
16	W90-378	1849	31	1845	15	0	69	W90-234	1933	34	1915	16	_1	
17	W90-05	1847	31	1845	17	0	70	W90-146	1900	31	1918	15	1	
18	W90-355	1822	37	1845	16	1	71	W90-304	1700	30	1910	15	6	
19	W90-258	1816	30	1848	15	2	72	W90-34	1914	32	1920	15	0	
20	W90-451	1808	31	1848	15	$\frac{2}{2}$	73	W90-330	1821	31	1920	15	5	
21	W90-333	1889	31	1849	15	_2	74	W90-59	1918	32	1923	15	0	
21	W90-403	1910	31	1850	15	_3	75	W90-19	1924	33	1926	15	Ő	
23	W90-441	1822	32	1850	16	2	76	W90-283	1763	28	1920	15	9	
23	W90-363	1801	32	1851	17	3	77	W90-249	1925	34	1934	17	0	
25	W90-361	1801	30	1853	15	3	78	W90-256	1903	35	1934	18	2	
26	W90-365	1776	29	1853	15	4	79	W90-155	1895	31	1939	15	2	
27	W90-37	1757	29	1855	15	5	80	W90-45	1887	32	1939	15	3	
28	W90-186	1835	32	1857	15	1	81	W90-427	1846	31	1941	15	5	
29	W90-49	1826	32	1857	16	2	82	W90-236	1892	33	1944	16	3	
30	W90-285	1814	30	1859	15	2	83	W90-53	1935	32	1945	15	1	
31	W90-364	1808	31	1859	15	3	84	W90-06	1780	30	1952	17	9	
32	W90-282	1781	33	1859	19	4	85	W90-266	1840	31	1956	16	6	
33	W90-217	1861	32	1860	16	0	86	W90-421	1818	30	1956	15	7	
34	W90-97	1746	29	1860	17	6	87	W90-148	1968	32	1967	15	0	
35	W90-72A	1873	31	1861	15	-1	88	W90-127	1806	30	1968	16	8	
36	W90-296	1820	30	1864	15	2	89	W90-201	1797	32	1968	16	9	
37	W90-72	1872	32	1867	15	0	90	W90-144	1984	32	1969	15	-1	
38	W90-63	1826	31	1869	15	2	91	W90-95	1899	30	1969	15	4	
39	W90-288	1767	30	1870	16	6	92	W90-211	1791	31	1970	16	9	
40	W90-445	1847	32	1871	15	1	93	W90-336	1993	35	1972	17	-1	
41	W90-300	1802	30	1872	15	4	94	W90-120	1981	32	1973	15	0	
42	W90-230	1716	32	1872	17	8	95	W90-448	1944	33	1973	15	1	
43	W90-154	1815	31	1873	16	3	96	W90-65	1998	33	1974	15	-1	
44	W90-292	1835	31	1877	16	2	97	W90-332	1943	32	1974	15	2	
45	W90-291	1826	31	1877	16	3	98	W90-255	1891	33	1975	16	4	
46	W90-241	1868	33	1880	16	1	99	W90-167	1992	34	1980	15	-1	
47	W90-51	1815	31	1882	15	4	100	W9455R	1970	33	1981	15	1	
48	W90-386	1874	32	1884	15	1	101	W90-455	1997	33	1982	15	-1	
49	W90-35	1863	33	1885	16	1	102	W90-60	1975	33	1982	15	0	
50	W90-420	1826	32	1886	16	3	103	W90-170	2019	35	1985	16	-2	
51	W90-122	1823	30	1886	15	3	104	W90-68	1974	33	1985	16	1	
52	W90-159	1898	32	1888	15	-1	105	W90-310	1975	33	1987	15	1	
53	W90-40	1842	31	1888	15	2	106	W90-389	1828	30	1987	14	8	

Таблица 2.	Конкордантные U-Pb (LA-ICP-MS) значения возраста детритовых цирконов
	из песчаника бугарихтинской свиты балаганахской серии (пр. № 11090)

Таблица 2. (продолжение)

N⁰		Возраст, млн лет							Возраст, млн лет					
Π/Π	п/п № анализа	206Pb/238U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	D, %	п/п	№ анализа	²⁰⁶ Pb/238U	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	D, %	
107	W90-01	1980	34	1988	17	0	163	W90-322	2693	43	2690	14	0	
108	W90-156	1989	32	1991	15	0	164	W90-229	2529	42	2690	15	6	
109	W90-125	1996	32	1997	14	0	165	W90-09	2496	39	2691	15	7	
110	W90-171	1911	33	2006	15	5	166	W90-263	2534	41	2694	15	6	
111	W90-139	1832	30	2008	15	9	167	W90-380	2620	41	2695	14	3	
112	W90-80	2020	32	2012	15	0	168	W90-206	2561	42	2701	14	5	
113	W90-141	1957	32	2017	15	3	169	W90-321	2470	41	2702	14	9	
114	W90-104	1915	32	2017	17	5	170	W90-152	2611	40	2703	13	3	
115	W90-264	2012	36	2030	18	1	171	W90-248	2581	44	2704	16	5	
116	W90-375	2003	33	2033	15	1	172	W90-267	2622	45	2705	16	3	
117	W90-261	1917	33	2062	16	7	173	W90-157	2577	43	2705	15	5	
118	W90-163	2065	35	2085	15	1	174	W90-180	2634	43	2707	14	3	
119	W90-259	2033	35	2113	16	4	175	W90-411	2510	41	2707	14	7	
120	W90-344	2024	33	2113	15	4	176	W90-150	2709	42	2709	13	0	
121	W90-67	2075	34	2118	15	2	177	W90-372	2583	42	2709	14	5	
122	W90-39	2125	34	2175	14	2	178	W90-12	2617	41	2712	15	4	
123	W90-04	2175	36	2312	16	6	179	W90-373	2692	42	2715	14	1	
124	W90-315	2257	37	2376	15	5	180	W90-374	2642	42	2717	14	3	
125	W90-92	2225	35	2432	14	9	181	W90-55	2626	42	2718	13	3	
126	W90-204	2492	40	2440	14	-2	182	W90-306	2647	43	2721	14	3	
127	W90-33	2432	39	2459	14	1	183	W90-331	2681	42	2722	14	2	
128	W90-384	2407	38	2463	14	2	184	W90-129	2680	44	2722	18	2	
129	W90-111	2453	37	2468	15	1	185	W90-149	2675	42	2723	14	2	
130	W90-224	2381	41	2477	16	4	186	W90-44	2534	40	2724	13	7	
131	W90-182	2437	41	2485	15	2	187	W9431A	2494	42	2724	14	8	
132	W90-160	2446	40	2486	14	2	188	W90-415	2676	44	2726	15	2	
133	W90-62	2509	40	2493	14	-1	189	W90-202	2629	42	2729	14	4	
134	W90-196	2462	40	2495	14	1	190	W90-20	2733	45	2741	15	0	
135	W90-179	2405	38	2499	14	4	191	W90-23	2655	42	2745	14	3	
136	W90-66	2410	44	2502	24	4	192	W90-329	2733	42	2746	13	0	
137	W90-191	2383	40	2509	15	5	193	W90-140	2530	41	2754	14	8	
138	W90-176	2413	40	2515	14	4	194	W90-269	2579	41	2759	14	7	
139	W90-91	2372	37	2517	16	6	195	W90-131	2731	41	2769	14	1	
140	W90-136	2339	37	2517	14	7	196	W90-260	2714	44	2778	15	2	
141	W90-135	2437	39	2539	15	4	197	W90-293	2713	42	2782	14	2	
142	W90-112	2346	36	2539	15	8	198	W90-101	2596	39	2783	15	7	
143	W90-289	2495	40	2544	14	2	199	W90-350	2798	48	2805	16	0	
144	W90-25	2333	38	2555	14	9	200	W90-353	2743	43	2808	13	2	
145	W90-408	2514	42	2576	15	2	201	W 90-396	2723	45	2808	14	3	
146	W90-193	2480	42	2593	15	4	202	W90-22	2761	44	2814	14	2	
14/	W90-210	2583	42	2599	15		203	W90-452	2647	42	2819	14	6	
148	W 90-205	2408	39	2609	14	8	204	W 90-48	2793	44	2825	14	1	
149	W90-29	2367	41	2609	42	9	205	W90-298	2640	41	2830	14		
150	W90-402	2385	40	2629	14	9	206	W90-305	2001	42	2831	14	0	
151	W90-394	2481	40	2031	14	0	207	W90-349	2734	45	2835	14	3	
152	W00 222	2644	43	2637	14	2	208	W00 252	2393	41	2843	15	9	
155	W90-223	2010	43	2000	13	2	209	W90-233	2885	4/	2830	15	-1	
154	W00 205	2442	12	2000	14	0	210 211	W00.92	2024	+1 12	2012	1.0		
155	W00 71	2005	43 /1	2073	14	5	211	WQ0 425	2702	+2 11	20/3	14	- + 1	
150	W 20-/1	2541	41 /2	2070	14		212	W00 297	2100	44 12	2090	14	7	
157	W90-377	2077	43 43	2005	14	9	213	W90-367	2070	+∠ 44	2092	12	2	
150	W90_211	2521	40	2005	1/	6	217	W90.82	2868	42	2090	12	1	
160	W90-360	2619	42	2689	14	2	215	W90-388	2800	-12 44	2908	13	1	
161	W90-147	2519	30	2689	14	6	217	W90_432	2896	46	2915	14	1	
162	W90-18	2710	46	2690	15	_1	218	W90-301	2912	45	2931	14	1	
		1		1		-	1	1				- · ·	-	

Таблица 2. (окончание)

N₂	No orro wroo		Возр	аст, млн лет			Nº	No ouo uuoo	Возраст, млн лет					
п/п	²⁰⁶ Pb/238U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	D, %	п/п	л⊍ анализа	206Pb/238U	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	D, %		
219	W90-214	2893	46	2948	14	2	229	W90-119	2939	44	3060	13	4	
220	W90-209	2944	47	2957	14	0	230	W90-278	2961	46	3066	14	3	
221	W90-168	2743	45	2985	14	8	231	W90-280	3028	49	3117	15	3	
222	W90-397	3003	46	3012	13	0	232	W90-449	3104	49	3149	13	1	
223	W90-08	2799	44	3037	19	8	233	W90-290	3193	49	3213	14	1	
224	W90-407	2930	45	3039	13	4	234	W90-85	3293	48	3302	13	0	
225	W90-128	3065	46	3044	13	-1	235	W90-123	3097	46	3338	13	7	
226	W90-299	2890	45	3052	13	5	236	W90-231	3159	50	3369	14	6	
227	W90-313	2994	46	3057	13	2	237	W90-340	3385	49	3435	14	1	
228	W90-74	2952	44	3059	13	3		_	_			_		

Примечание. *D* — дискордантность.

ные значения получены для 237 зерен (52 %) (табл. 2). Возраст самого молодого детритового циркона составил 1741 млн лет, самого древнего 3435 млн лет. Большинство детритовых цирконов образует возрастные пики на 1856 млн лет (64 зерна), 1972 (38 зерен), 2495 (14 зерен), 2703 (30 зерен) и 3052 (10 зерен) (рис. 8, см. табл. 2), которые соответствуют возрасту пород фундамента южной части Сибирской платформы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Состав пород в области сноса. Рассмотренные в настоящей работе позднедокембрийские терригенные породы бугарихтинской свиты балаганахской серии Патомского сегмента СБПП и нуганской свиты Байкальского сегмента СБПП, а также породы ипситской свиты Саянского сегмента СБПП [Мотова и др., 2018] обнаруживают определенные сходства по своим вещественным характеристикам. В частности, на основе петрографической характеристики пород установлено, что большинство терригенных пород всех свит представлено аркозовыми алевропесчаниками и песчаниками, сложенными полуокатанным обломочным материалом средней степени сортировки. Петрографические и петрохимические характеристики свидетельствуют в пользу того, что большинство исследованных пород классифицируются как силиты и были образованы за счет разрушения магматических и метаморфических пород. Среди обломочной массы в породах всех свит преобладающими минералами являются кварц и полевые шпаты. Обломки пород в основном представлены гранитоидами и кварцитами. Набор акцессорных минералов (апатит, турмалин, циркон, сфен-лейкоксен) свидетельствует о преобладании кислых магматических пород в области сноса. Исключение составили терригенные породы нуганской свиты с содержанием SiO₂ = 57.0-66.0 мас. %. Среди обломочной массы в этих породах, помимо гранитоидов и кварцитов, отмечаются эффузивы среднего и основного состава. Петрохимические характеристики этих пород позволяют классифицировать их как псевдосиаллиты и позволяют допускать присутствие магматических пород основного состава в области источника [Юдович, Кетрис, 2000]. Однако характер распределения редких и редкоземельных элементов в породах всех трех свит свидетельствует о преобладании кислых магматических пород в области источника, а именно для всех исследованных

пород бугарихтинской, нуганской и ипситской свит обнаруживаются фракционированные спектры распределения РЗЭ, обогащение легкими лантаноидами и наличие отрицательной европиевой аномалии (см. рис. 7; табл. 1 [Мотова и др., 2018]). Положение фигуративных точек терригенных пород всех трех свит на диаграммах Th/Sc—Zr/Sc (рис. 9, *a*) [McLennan et al., 1993] и Th/Co—La/Sc (см. рис. 9, *б*) [Cullers, 2002] также указывает на

Рис. 8. Гистограмма и кривая относительной вероятности возраста детритовых цирконов из песчаника бугарихтинской свиты.

Рис. 9. Положение фигуративных точек терригенных пород ипситской, нуганской и бугарихтинской свит на диаграммах Th/Sc—Zr/Sc [McLennan et al., 1993] (*a*) и Th/Co — La/Sc [Cullers, 2002] (*b*).

Усл. обозн. см. на рис. 5.

кислый состав пород в области источника сноса, в то же время точки составов пород нуганской свиты смещены к полям пород основного состава, что позволяет допускать смешанный состав пород в источнике.

Возраст пород источника сноса. Результаты U-Pb исследования детритовых цирконов из песчаника бугарихтинской свиты балаганахской серии Патомского сегмента СБПП демонстрируют исключительно архей-раннепротерозойские значения возраста, при этом основные возрастные пики полностью соответствуют возрасту пород фундамента Сибирской платформы [Rojas-Agramonte et al., 2011], а наибольшее количество зерен детритовых цирконов соответствует возрасту коллизионных (2.00—1.87 млрд лет) и постколлизионных (1.88—1.84 млрд лет) магматических и метаморфических пород фундамента Сибирской платформы [Donskaya, 2020]. Аналогичные результаты были получены при изучении детритовых цирконов из позднедокембрийских пород нуганской свиты Байкальского сегмента СБПП и ипситской свиты Саянского сегмента СБПП [Мазукабзов и др., 2018; Мотова и др., 2018], это свидетельствует о том, что источником циркона во всех проанализированных песчаниках могли быть породы фундамента южной части Сибирской платформы (рис. 10).

Геодинамический режим и время седиментации. Совокупность приведенных в данной работе, а также в статьях [Мазукабзов и др., 2018; Мотова и др., 2018] результатов петрографических, литогеохимических и U-Pb (LA-ICP-MS) геохронологических исследований позднерифейских «предледниковых» терригенных толщ ипситской, нуганской и бугарихтинской свит трех различных сегментов СБПП дают основание предположить, что все эти породы формировались в основном за счет разрушения кислых магматических и метаморфических пород фундамента южной части Сибирской платформы и дополнительно (для нуганской свиты) магматических пород среднего и основного состава. Предварительная реконструкция геодинамических условий седиментации осадочных пород ипситской, нуганской и бугарихтинской свит проведена с использованием дискриминантных диаграмм DF1-DF2, основанных на логарифмических соотношениях основных элементов для терригенных пород с высокими (63—95 мас. %) и низкими (35—63 мас. %) концентрациями SiO₂ [Verma, Armstrong-Altrin, 2013]. Эффективность данных диаграмм доказана исследованиями, проведенными по валовым химическим составам образцов терригенных пород из известных тектонических обстановок [Verma, Armstrong-Altrin, 2013]. Так, положение фигуративных точек всех исследованных пород на дискриминационных диаграммах DF₁—DF₂ (рис. 11) показывает, что их формирование могло осуществляться в бассейне седиментации, развивавшемся в рифтогенной тектонической обстановке.

Как было отмечено выше, верхняя возрастная граница накопления осадочных пород ипситской, нуганской и бугарихтинской свит балаганахского горизонта ограничивается поздним рифеем, так как отложения этих свит перекрываются породами дальнетайгинского горизонта СБПП, в основании раз-

др., 2007; Ernst et al., 2016; Romanov et al., 2021].

Рис. 10. Корреляция возрастных спектров детритовых цирконов из терригенных пород ипситской, нуганской и бугарихтинской свит.

резов которых отмечаются тиллиты маринонского оледенения (~640— 635 млн лет) [Советов, Комлев, 2005; Станевич и др., 2007; Чумаков и др., 2007; Советов и др., 2012]. Нижняя возрастная граница может быть ограничена возрастом даек и силлов долеритов (~740—720 млн лет) Саяно-Байкальского дайкового пояса, широко распространенных в южной части Сибирской платформы [Gladkochub et al., 2006, 2010; Гладкочуб и

Традиционно в Саянском сегменте СБПП все дайки и силлы долеритов относились к единому нерсинскому комплексу, породы которого прорывают отложения карагасской серии и марнинской свиты [Галимова и др., 2012]. Однако проведенные в последние годы геохронологические исследования позволили выделить четыре разновозрастные группы долеритов, ранее входившие в единый нерсинский комплекс: дайки с возрастом 1.6 млрд лет, распространенные в поле пород шангулежской свиты [Ernst et al., 2016; Gladkochub et al., 2021], дайки и силлы, имеющие возраст ~740—720 млн лет, прорывающие отложения шангулежской свиты [Gladkochub et al., 2006; Romanov et al., 2021], а также дайки с возрастом 612 ± 6 млн лет и 511 ± 5 млн лет, прорывающие соответственно породы раннедокембрийского фундамента и осадочные отложения ипситской свиты карагасской серии [Gladkochub et al., 2006].

Рис. 11. Диаграммы DF_1 — DF_2 для высококремнистых (*a*) и низкокремнистых (*б*) составов [Verma, Armstrong-Altrin, 2013] терригенных пород ипситской, нуганской и бугарихтинской свит,

где DF₁=(-0.263 ·ln(TiO₂/SiO₂)_{adj})+(0.604 ·ln(Al₂O₃/SiO₂)_{adj})+(-1.725 ·ln(Fe₂O_{306tt}/SiO₂)_{adj})+(0.660 ·ln(MnO/SiO₂)_{adj})+(2.191 ·ln(MgO/SiO₂)_{adj}) + (0.144 ·ln(CaO/SiO₂)_{adj}) + (-1.304 ·ln(Na₂O/SiO₂)_{adj}) + (0.054 ·ln(K₂O/SiO₂)_{adj}) + (-0.330 ·ln(P₂O₅/SiO₂)_{adj}) + 1.588; DF₂ = (-1.196 ·ln(TiO₂/SiO₂)_{adj})+(1.064 ·ln(Al₂O₃/SiO₂)_{adj})+(0.303 ·ln(Fe₂O_{306tt}/SiO₂)_{adj})+(0.436 ·ln(MnO/SiO₂)_{adj})+(0.838 ·ln(MgO/SiO₂)_{adj})+ + (-0.407 ·ln(CaO/SiO₂)_{adj}) + (1.021 ·ln(K₂O/SiO₂)_{adj}) + (-0.126 ·ln(P₂O₅/SiO₂)_{adj}) - 1.068. Индекс «_{adj}» означает, что расчеты ведутся по содержаниям оксидов, приведенным к 100 % сухого вещества. Усл. обозн. см. на рис. 5.

Таким образом, было установлено, что в Саянском сегменте СБПП дайки и силлы долеритов с возрастом ~740—720 млн лет прорывают только отложения шангулежской свиты карагасской серии [Gladkochub et al., 2006; Romanov et al., 2021], а дайки, прорывающие осадочные породы залегающей выше по разрезу ипситской свиты, имеют более молодой возраст, что позволило сделать вывод, что отложения ипситской свиты накапливались уже после временного рубежа 720 млн лет. Дайки долеритов с возрастом ~720 млн лет пользуются большим распространением и в Западном Прибайкалье, где повсеместно прорывают раннедокембрийские породы фундамента Сибирской платформы, но не были зафиксированы среди пород нуганской свиты и перекрывающей ее голоустенской свиты байкальской серии [Гладкочуб и др., 2007; Мазукабзов и др., 2018]. Таким образом, ориентируясь на возраст тиллитов маринонского уровня, присутствующих в перекрывающих толщах рассматриваемых стратоподразделений верхней части балаганахского регионального стратиграфического горизонта, а также на возраст даек долеритов, прорывающих подстилающие их толщи, время накопления осадочных отложений ипситской, нуганской и бугарихтинской свит балаганахского горизонта может быть ограничено возрастным интервалом ~720—640 млн лет.

В настоящее время установлено, что внедрение позднепротерозойских даек долеритов Саяно-Байкальского дайкового пояса в южной части Сибирской платформы имело место в обстановке внутриконтинентального растяжения, предшествующего отделению Сибири от Лаврентии на стадии распада суперконтинента Родиния, завершившегося открытием Палеоазиатского океана [Gladkochub et al., 2010, 2019; Ernst et al., 2016]. В то же время для пород марнинской, голоустенской и джемкуканской свит нижней части дальнетайгинского горизонта, которые с несогласием перекрывают осадочные толщи балаганахского горизонта, предполагается накопление в обстановке пассивной континентальной окраины Палеоазиатского океана [Станевич и др., 2007; Чумаков и др., 2007; Метелкин и др., 2010; Powerman et al., 2015; Gladkochub et al., 2019; Romanov et al., 2021]. Преимущественно терригенный состав отложений ипситской, нуганской и бугарихтинской свит балаганахского регионального горизонта, геохимические характеристики, близкие осадочным породам рифтогенных геодинамических обстановок (см. рис. 11), а также тот факт, что накопление этих осадочных толщ происходило сразу после широкомасштабного внедрения даек долеритов вдоль всей южной части Сибирской платформы, позволяют сделать вывод о формировании отложений исследуемых стратоподразделений в осадочных бассейнах, заложившихся в обстановке внутриконтинентального растяжения. В то же время в связи с тем, что дайки долеритов с возрастом ~720 млн лет не прорывают отложения ипситской, нуганской и бугарихтинской свит балаганахского регионального горизонта можно предполагать, что породы этих свит накапливались в пострифтовых бассейнах, которые, возможно, сформировались сразу же после отделения Сибири от Лаврентии, но еще до основной стадии формирования пассивной континентальной окраины Палеоазиатского океана, отложения которой представлены породами дальнетайгинского регионального горизонта. Наверное, можно определить бассейны, в которых накапливались породы ипситской свиты карагасской серии Саянского сегмента СБПП, нуганской свиты Байкальского сегмента СБПП и бугарихтинской свиты балаганахской серии Патомского сегмента СБПП, как раннюю стадию раскрытия Палеоазиатского океана.

ЗАКЛЮЧЕНИЕ

Результаты проведенных исследований позволили сделать следующие выводы:

 Петрографические и петрохимические характеристики позднедокембрийских осадочных пород нуганской свиты Байкальского сегмента СБПП и бугарихтинской свиты балаганахской серии Патомского сегмента СБПП позволяют классифицировать эти породы как аркозовые алевропесчаники и песчаники и рассматривать их как породы, образованные за счет разрушения магматических и метаморфических пород.

2. Концентрации редких и редкоземельных элементов в породах нуганской и бугарихтинской свит указывают на преобладание кислых магматических пород в области их сноса. В то же время петрохимические характеристики пород нуганской свиты свидетельствуют о дополнительном присутствии магматических пород основного—среднего состава в источнике сноса, что также подтверждается петрографическим составом этих терригенных отложений.

3. Возрастные спектры по детритовым цирконам из песчаника бугарихтинской свиты балаганахской серии Патомского сегмента СБПП аналогичны ранее опубликованным данным о возрасте детритовых цирконов из терригенных пород ипситской свиты Саянского сегмента СБПП и нуганской свиты Байкальского сегмента СБПП и надежно указывают на породы фундамента Сибирской платформы как на основной источник обломочного материала в бассейны их седиментации.

4. Геологическая позиция пород верхней части балаганахского горизонта СБПП (ипситская, нуганская, бугарихтинская свиты) присутствие даек долеритов с возрастом ~740—720 млн лет в подстилающих породах и наличие тиллитов маринонского оледенения (~640—635 млн лет) в базальной части дальнетайгинского горизонта СБПП позволяют ограничить время накопления осадочных пород ипситской, нуганской и бугарихтинской свит временным интервалом ~720—640 млн лет.

5. Геологические, петрографические и геохимические данные позволяют сделать вывод о том, что накопление «предледниковых» осадочных толщ верхней части балаганахского горизонта СБПП имело место в пострифтовых бассейнах, которые сформировались непосредственно после отделения Сибири от Лаврентии на ранних стадиях раскрытия Палеоазиатского океана.

Геологические и геохронологические исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-05-00266), а геохимические исследования за счет средств Российского научного фонда (проект № 18-17-00101). Работа выполнена с использованием оборудования и инфраструктуры Центра коллективного пользования «Геодинамика и геохронология» ИЗК СО РАН по гранту 075-15-2021-682.

ЛИТЕРАТУРА

Брагин С.С. Некоторые проблемы стратиграфии карагасской серии позднего рифея Присаянья // Поздний докембрий и ранний палеозой Сибири. Стратиграфия и палеонтология. Новосибирск, ИГиГ СО АН СССР, 1986, с. 32—39.

Галимова Т.Ф., Пашкова А.Г., Поваринцева С.А., Перфильев В.В., Намолова М.М., Андрющенко С.В., Денисенко Е.П., Пермяков С.А., Миронюк Е.П., Тимашков А.Н., Плеханов А.О. Государственная геологическая карта Российской Федерации. М-б 1 : 1 000 000 (третье поколение). Серия Ангаро-Енисейская. Лист N-47 –Нижнеудинск. Объяснительная записка. СПб, Картографическая фабрика ВСЕГЕИ, 2012, 652 с. + 14 вкл.

Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М., Станевич А.М., Скляров Е.В., Пономарчук В.А. Комплексы-индикаторы процессов растяжения на юге Сибирского кратона в докембрии // Геология и геофизика, 2007, т. 48 (1), с. 22—41.

Гладкочуб Д.П., Станевич А.М., Мазукабзов А.М., Донская Т.В., Писаревский С.А., Николь Г., Мотова З.Л., Корнилова Т.А. Ранние этапы развития Палеоазиатского океана: данные по LA-ICP-MS датированию детритовых цирконов из позднедокембрийских толщ южного фланга Сибирского кратона // Геология и геофизика, 2013, т. 54 (10), с. 1472—1490.

Иванов А.И., Лившиц В.И., Перевалов О.В., Страхова Т.М., Яблоновский Б.В. Докембрий Патомского нагорья. М., Недра, 1995, 352 с.

Летникова Е.Ф., Кузнецов А.Б., Вишневская И.А., Вещева С.В., Прошенкин А.И., Джен Х. Вендская пассивная континентальная окраина юга Сибирской платформы: геохимические, изотопные (Sr, Sm-Nd) свидетельства, данные U-Pb датирования LA-ICP-MS детритовых цирконов // Геология и геофизика, 2013, т. 54 (10), с. 1507—1529.

Мазукабзов А.М., Станевич А.М., Гладкочуб Д.П., Донская Т.В., Хубанов В.Б., Мотова З.Л., Корнилова Т.А. Отложения рифтогенного этапа развития пассивной окраины Палеоазиатского океана (Байкальский сегмент) // ДАН, 2018, т. 478, № 5, с. 566—569.

Метелкин Д.В., Благовидов В.В., Казанский А.Ю. История формирования карагасской серии Бирюсинского Присаянья: синтез палеомагнитных и литолого-фациальных данных // Геология и геофизика, 2010, т. 51 (8), с. 1114—1133.

Митрофанов Г.Л., Митрофанова Н.Н., Пай В.М., Макарьев Л.Б. Государственная геологическая карта Российской Федерации. М-б 1 : 1 000 000 (третье поколение). Серия Алдано-Забайкальская. Лист О-50 — Бодайбо. Объяснительная записка. СПб, Картографическая фабрика ВСЕГЕИ, 2010, 612 с. + 7 вкл.

Мотова З.Л., Донская Т.В., Гладкочуб Д.П., Хубанов В.Б. U-Pb (LA-ICP-MS) возраст детритовых цирконов и источники вещества терригенных отложений ипситской свиты карагасской серии (Саянский сегмент Саяно-Байкало-Патомского пояса) // Геодинамика и тектонофизика, 2018, т. 9, № 4, с. 1313—1329.

Ревенко А.Г. Физические и химические методы исследования горных пород и минералов в Аналитическом центре ИЗК СО РАН // Геодинамика и тектонофизика, 2014, т. 5, № 1, с. 101—114.

Решения Всесоюзного стратиграфического совещания по докембрию, палеозою и четвертичной системе Средней Сибири. Ч. 1. Новосибирск, ИГиГ СО АН СССР, 1983, 214 с.

Советов Ю.К., Комлев Д.А. Тиллиты в основании оселковой серии Присаянья и нижняя граница венда на юго-западе Сибирской платформы // Стратиграфия. Геологическая корреляция, 2005, т. 48, № 4, с. 60—79.

Советов Ю.К., Кречетов Д.В., Соловецкая Л.В. Предвендский седиментационный цикл (сиквенс) Присаянья: условия осадконакопления и литостратиграфическая корреляция // Геодинамическая

эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): материалы совещания. Вып. 10, т. 2, Иркутск, ИЗК СО РАН, 2012, с. 84—86.

Станевич А.М., Немеров В.К., Чатта Е.Н. Микрофоссилии протерозоя Саяно-Байкальской складчатой области. Обстановки обитания, природа и классификация. Новосибирск, Академ. изд-во «Гео», 2006, 204 с.

Станевич А.М., Мазукабзов А.М., Постников А.А., Немеров В.К., Писаревский С.А., Гладкочуб Д.П., Донская Т.В., Корнилова Т.А. Северный сегмент Палеоазиатского океана в неопротерозое: история седиментогенеза и геодинамическая интерпретация // Геология и геофизика, 2007, т. 48 (1), с. 60—79.

Федоровский В.С. Нижний протерозой Байкальской горной области. М., Наука, 1985, 200 с.

Хоментовский В.В., Шенфиль В.Ю., Якшин М.С., Бутаков Е.П. Опорные разрезы отложений верхнего докембрия и нижнего кембрия Сибирской платформы. М., Наука, 1972, 356 с.

Чумаков Н.М., Покровский Б.Г., Мележик В.А. Геологическая история Патомского комплекса, поздний докембрий, Средняя Сибирь // ДАН, 2007, т. 413, № 3, с. 379—383.

Шванов В.Н. Петрография осадочных пород (компонентный состав, систематика и описание минеральных видов). Л., Недра, 1987, 269 с.

Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб, Наука, 2000, 497 с.

Andersen T. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb // Chem. Geol., 2002, v. 192, p. 59—79.

Boynton W.V. Cosmochemistry of the rare earth elements; meteorite studies // Rare earth element geochemistry / Ed. P. Henderson. Amsterdam, Elsevier, 1984, p. 63—114.

Chiu H.-Y., Chung S.-L., Wu F.-Y., Liu D.Y., Liang Y.-H., Lin I.-J., Iizuka Y., Xie L.-W., Wang Y.B., Chu M.-F. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet // Tectonophysics, 2009, v. 477, p. 3—19.

Condie K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales // Chem. Geol., 1993, v. 104, p. 1–37.

Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA // Chem. Geol., 2002, v. 191, p. 305—327.

Donskaya T.V. Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids // Precambrian Res., 2020, v. 348, doi.org/10.1016/j.precamres.2020.105869.

Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.N. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic // Nat. Geosci., 2016, v. 9 (6), p. 464—469.

Gladkochub D.P., Wingate M.T.D., Pisarevsky S.A., Donskaya T.V., Mazukabzov A.M., Ponomarchuk V.A., Stanevich A.M. Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia // Precambrian Res., 2006, v. 147, p. 260—278.

Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction // Precambrian Res., 2010, v. 183, p. 660—668.

Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean // Gondwana Res., 2019, v. 65, p. 1—16.

Gladkochub D.P., Donskaya T.V., Pisarevsky S.A., Salnikova E.B., Mazukabzov A.M., Kotov A.B., Motova Z.L., Stepanova A.V., Kovach V.P. Evidence of the latest Paleoproterozoic (~1615 Ma) mafic magmatism the southern Siberia: extensional environments in Nuna supercontinent // Precambrian Res., 2021, v. 354, 106049.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol., 2004, v. 211, p. 47–69.

Ludwig K.R. User's manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley, CA. Berkeley Geochronological Center, 2003, Spec. Publ. 4.

McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. Geochemical approaches to sedimentation, provenance, and tectonics // Processes controlling the composition of clastic sediments. Geol. Soc. Am. Spec. Pap., 1993, v. 285, p. 21–40.

Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion // Spectrochim. Acta Part B, 2003, v. 58 (2), p. 341—350.

Pettijohn F.J., Potter P.E., Siever R. Sand and sandstones. New York, Springer-Verlag, 1972, 158 p.

Powerman V., Shatsillo A., Chumakov N., Kapitonov I., Hourigane J. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia // Precambrian Res., 2015, v. 267, p. 39—71.

Priyatkina N.S., Collins W.J., Khudoley A.K., Letnikova E.F., Huang H.-Q. The Neoproterozoic evolution of the southwestern Siberian Craton margin: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift // Precambrian Res., 2018, v. 305, p. 197—217.

Rojas-Agramonte Y., Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu D., Sun M. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt // Gondwana Res., 2011, v. 19 (3), p. 751—763.

Romanov M., Sovetov Ju.K., Vernikovsky V.A., Rosenbaum G., Wilde S.A., Vernikovskaya A.E., Matushkin N.Yu., Kadilnikov P.I. Late Neoproterozoic evolution of the southwestern margin of the Siberian Craton: evidence from sedimentology, geochronology and detrital zircon analysis // Int. Geol. Rev., 2021, v. 63 (13), p. 1658—1681.

Sláma J., Košler D.J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol., 2008, v. 249, p. 1–35.

Verma S.P., Armstrong-Altrin J.S. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins // Chem. Geol., 2013, v. 355, p. 117–133.

Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y., Nasdala L., Fiebig J., Franchi I., Girard J.-P., Greenwood R.C., Hinton R., Kita N., Mason P.R.D., Norman M., Ogasawara M., Piccoli P.M., Rhede D., Satoh H., Schulz-Dobrick B., Skår O., Spicuzza M.J., Terada K., Tindle A., Togashi S., Vennemann T., Xie Q., Zheng Y.-F. Further characterisation of the 91500 zircon crystal // Geostand. Geoanal. Res., 2004, v. 28, p. 9–39.