УДК 546.93+548.737+546.817

В.Г. ИСАКОВА, И.А. БАЙДИНА, Н.Б. МОРОЗОВА, И.К. ИГУМЕНОВ, В.Б. РЫБАКОВ

СИНТЕЗ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ АЦЕТИЛАЦЕТОНАТА ИРИДИЯ(III) И ЕГО Br-, I-ЗАМЕЩЕННЫХ АНАЛОГОВ

В работе синтезированы γ -галогензамещенные ацетилацетонаты иридия(III) общей формулы Ir(acacX)₃, где acacX = CH₃—CO—CX—CO—CH₃, X = Br, I. Соединения охарактеризованы по точкам плавления и данным химического анализа на элементы C, H, Br, I, проведен рентгеноструктурный анализ ацетилацетоната иридия(III) и его γ -замещенных аналогов, получены кристаллографические характеристики и определены кристаллические структуры. Кристаллы исследуемых соединений принадлежат к моноклинной сингонии. Структуры — молекулярные. Основные кристаллографические данные:

 $Ir(acac)_3$ — $IrO_6C_{15}H_{21},\ a=13,900(2),\ b=16,440(3),\ c=7,494(2)$ Å, $\gamma=98,63(2)^\circ,\ V=1693,2$ ų, пр. гр. $P2_1/b,\ Z=4,\ d_{\mathrm{Bыч}}=1,92\ \mathrm{r/cm}^3,\ \sin\theta/\lambda_{\mathrm{max}}=0,703,\ F_{hkl}=2841,\ R=0,044.$ $Ir(acacBr)_3$ — $IrBr_3O_6C_{15}H_{18},\ a=12,794(2),\ b=15,753(2),\ c=9,990(2)$ Å, $\beta=105,76(2)^\circ,\ V=1937,6$ ų, пр. гр. $P2_1/n,\ Z=4,\ d_{\mathrm{Bыч}}=2,49\ \mathrm{r/cm}^3,\ \sin\theta/\lambda_{\mathrm{max}}=0,702,\ F_{hkl}=1748,\ R=0,048.$ $Ir(acacI)_3$ — $IrI_3O_6C_{15}H_{18},\ a=12,855(2),\ b=10,136(2),\ c=16,338(3)$ Å, $\beta=104,6(2)^\circ,\ V=2059,8$ ų, пр. гр. $P2_1/n,\ Z=4,\ d_{\mathrm{Bыч}}=2,79\ \mathrm{r/cm}^3,\ \theta_{\mathrm{max}}=25^\circ,\ F_{hkl}=2817,\ R=0,032.$ Расстояния Ir...Ir для $Ir(acac)_3$ имеют оценки > 7,49 Å, для $Ir(acacBr)_3$ и $Ir(acacI)_3$ — > 8,10 Å. Если ограничиться оценкой 10 Å, межмолекулярные координационные числа (МКЧ) в исследуемых структурах равны 10.

В работах по исследованию летучих хелатных бета-ликетонатов платиновых металлов в качестве одного из основных вопросов рассматривается зависимость свойств соединений от строения хелатирующего лиганда [1,2]. К настоящему времени наиболее полно изучен ряд летучих бета-дикетонатов трехвалентных металлов, образованный последовательной заменой метильных групп в исходном ацетилацетонатном лиганде на ---СF₃- и ---С(СН₃)₃-группы. В литературе также описан синтез у-галогензамещенных ацетилацетонатов инертных металлов, который основан на характерной для них реакции электрофильного замещения метинных водородов в ацетилацетонатном кольце и не представляет особого труда. Такие соединения с достаточно большим набором γ -заместителей (X = Cl, Br, I, NO₂, SCN и пр.) и разным числом замещенных лигандов получены Кольманом с сотрудниками и другими авторами для Co(III), Cr(III), Rh(III), Fe(III) [3 — 9]. В ряду трис-хелатов иридия наиболее подробно изучены комплексы, содержащие заместители в α-положении [10 — 14]. Соединения иридия, содержащие заместители в у-положении ацетилацетонатного лиганда типа Ir(CH₃—CO—CX—CO—CH₃)₃ (Х — заместитель), не были известны. Далее можно отметить, что в отличие от ацетилацетонатов трехвалентных металлов, которые достаточно хорошо изучены кристаллохимически [15], структурные данные, касающиеся у-замещенных комплексов, в литературе отсутствуют. В этой связи представляется интересным и

важным исследование кристаллических структур γ -замещенных ацетилацетонатов на примере иридия(III) с точки зрения изменений, вызываемых замещением γ -водорода в хелатирующем лиганде.

В настоящей работе впервые синтезированы γ -галогензамещенные ацетилацетонаты иридия(III) общей формулы Ir(acacX)₃, где acacX = CH₃—CO—CX—CO—CH₃, X = Br, I. Соединения охарактеризованы по точкам плавления и данным химического анализа на элементы C, H, Br, I, проведен рентгеноструктурный анализ ацетилацетоната иридия(III) и его γ -замещенных аналогов, получены кристаллографические характеристики и определены кристаллические структуры.

СИНТЕЗ ХЕЛАТОВ ИРИДИЯ (III)

Ацетилацетонат иридия(III) получен по разработанной нами методике [16] и охарактеризован по температуре плавления и по данным ИК спектроскопии.

 γ -Бромзамещенный и γ -иодзамещенный ацетилацетонаты иридия(III) были получены следующим образом. Растертый в порошок $Ir(acac)_3$ (250 мг) смачивали 5 мл 25%-х растворах НВг и НІ соответственно (1:1), затем при слабом нагревании (~60 °C) и перемешивании добавляли 5 мл 30%-й перекиси водорода. Через 10—15 мин осадок приобретал зеленоватый оттенок, раствор оставался прозрачным. Еще через 5—10 мин осадок отделяли фильтрованием либо, предварительно растворив в бензоле, разделяли органическую и неорганическую фазы.

Выделенные в реакциях продукты хроматографировали на колонке с Al_2O_3 высотой 300 мм, диаметром 20 мм смесями гексан — бензол в соотношениях 3:1. Хроматограммы содержат четыре зоны, и первыми вымываются комплексы $Ir(acacX)_3$.

Данные элементного анализа и температуры плавления (столик Кефлера):

				$T_{\rm nn}$ (°C)
найдено (%):	H(4,2),	C(36,5)		268—270
вычислено (%):	H(4,3),	C(36,8)		
найдено (%):	Br (32,6),	H(2,5),	C (25,3)	200-202
вычислено (%):	Br(33,0),	H(2,5),	C(24,8)	
найдено (%):	I(42,8),	H(2,5),	C(20,7)	257—260
вычислено (%):	I(43,9),	H(2,1),	C(20,8)	
	вычислено (%): найдено (%): вычислено (%): найдено (%):	вычислено (%): H(4,3), найдено (%): Br (32,6), вычислено (%): Br(33,0), найдено (%): I(42,8),	вычислено (%): H(4,3), C(36,8) найдено (%): Br (32,6), H(2,5), вычислено (%): Br(33,0), H(2,5), найдено (%): I(42,8), H(2,5),	вычислено (%): H(4,3), C(36,8) найдено (%): Br (32,6), H(2,5), C (25,3) вычислено (%): Br(33,0), H(2,5), C(24,8) найдено (%): I(42,8), H(2,5), C(20,7)

В синтезе γ -галогензамещенных ацетилацетонатов иридия(III) использованы особенности химического поведения *трис*-ацетилацетоната иридия и в первую очередь его исключительная инертность к отщеплению координированных лигандов. Даже при кипячении в концентрированных растворах галоидводородных кислот Ir(acac)₃ практически не подвергается изменению. Добавление перекиси водорода способствует растворению хелата, но в мягких условиях наблюдается галогенирование метинных групп в ацетилацетонатных лигандах без заметного перехода Ir(acac)₃ в растворимые формы. Нам удалось подобрать условия реакции:

$$Ir(acac)_{3(TB)} + nHX + nH_2O_2 \rightarrow Ir(acacX)_n(acac)_{3-n(TB)} + 2nH_2O$$

с практически количественным переходом $Ir(aa)_3$ в γ -галогензамещенные ацетилацетонаты (X = Br, I), хотя количественное образование формы $Ir(acacX)_3$ в данном случае, по-видимому, невозможно, так как наряду с трехзамещенными образуются моно- и дизамещенные ацетилацетонаты иридия(III). Попытки увеличить температуру реакционной системы или время синтеза приводили к окислению центрального иона и растворению продуктов реакции.

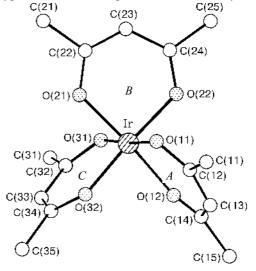
КРИСТАЛЛОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ

Для определения кристаллографических характеристик нами были выращены кристаллы Ir(acacBr)₃, Ir(acacI)₃ из растворов комплексов в ацетоне. Кристаллы Ir(acac)₃ выращены из ацетонового раствора и сублимацией. Все они представляют собой пластины оранжевого или желтого цвета, достаточно стабильные на воздухе.

Полное рентгеноструктурное исследование выполнено для ацетилацетоната иридия(III) (I) и его γ -Вг-замещенного (II) и γ -І-замещенного аналогов (III). Кристаллы исследуемых соединений принадлежат к моноклинной сингонии. Основные кристаллографические данные:

I — IrO₆C₁₅H₂₁, $a=13,900(2),\ b=16,440(3),\ c=7,494(2)$ Å, $\gamma=98,63(2)^\circ,\ V=1693,2$ Å³, пр. гр. $P2_1/b,\ Z=4,\ d_{\rm выч}=1,92\ {\rm г/cm}^3,\ \sin\theta/\lambda_{\rm max}=0,703,\ F_{hkl}=2841,\ R=0.044.$

II — IrBr₃O₆C₁₅H₁₈, a=12,794(2), b=15,753(2), c=9,990(2) Å, $\beta=105,76(2)^{\circ}, V=1937,6$ Å³, пр. гр. $P2_1/n, Z=4, d_{\rm выч}=2,49$ г/см³, sin $\theta/\lambda_{\rm max}=-0,702, F_{hkl}=1748, R=0,048$.


III — IrI₃O₆C₁₅H₁₈, a=12,855(2), b=10,136(2), c=16,338(3) Å, $\beta=104,6(2)$ °, V=2059,8 Å³, πp. гp. $P2_1/n$, Z=4, $d_{\text{выч}}=2,79$ г/см³, $\theta_{\text{max}}=25$ °, $F_{hkl}=2817$, R=0,032.

Уточнение параметров и получение набора экспериментальных интенсивностей проведено на автоматическом дифрактометре CAD-4, (MoK_{α} -излучение, графитовый монохроматор, $\omega/2\theta$ -сканирование). Структуры решены стандартным методом тяжелого атома и уточнены в анизотропном приближении; для II в уточнение включены заданные геометрически атомы H (координаты могут быть получены у авторов). Координаты базисных атомов, межатомные расстояния и валентные углы приведены в табл. 1—4.

Структуры исследуемых соединений молекулярные. Строение комплексов I, II и III показано на рис. 1—3. Центральный атом Ir во всех комплексах имеет слегка искаженную октаэдрическую координацию шестью атомами кислорода трех бетадикетонатных лигандов. Средние значения длин связей Ir—O равны $2.02 \stackrel{\wedge}{\triangle}$ для I, $1.99 \stackrel{\wedge}{\triangle}$ для II и $2.00 \stackrel{\wedge}{\triangle}$ для III, а средние значения хелатных углов O—Ir—O равны 94.5, 93.3 и 92.9° соответственно.

Длины связей и валентные углы хелатных бета-дикетонатных лигандов близки между собой и согласуются с литературными данными, средние С—О, С—Су и

С—С_{Ме} равны 1,27, 1,40 и 1,50 $\mathring{\triangle}$ для I; 1,29, 1,38 и 1,51 $\mathring{\triangle}$ для II; 1,27, 1,40 и 1,53 $\mathring{\triangle}$ для III. Среднее значение расстояний С γ —Вг в II равно 1,93 $\mathring{\triangle}$, С γ —І в III — 2,12 $\mathring{\triangle}$, а средние значения углов С—С γ —С при метинном атоме углерода практически равны во всех соединениях — 128° для I, 129° для II и 127° для III. Хелатные металлоциклы в исследованных комплексах не плоские, углы перегиба по линиям О...О для чистого ацетилацетоната близки между собой, их сред-

Puc 1. Строение молекулы комплекса Ir(acac)₃

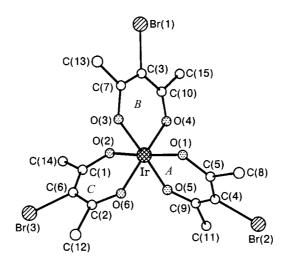
Таблица 1 Координаты базисных атомов исследованных соединений

	Ir(ac	Ir(acac) ₃ Ir(acacBr) ₃				Ir(acacI) ₃					
Атом	х	у	Z	Атом	x	у	Z	Атом	x	у	Z
Ir	0,23889	-0,03142	0,26668	Ir	0,00306	0,26152	0,14906	Ir	0,49414(3)	0,14872(4)	0,72966(3)
O(11)	0,2560	0,0152	0,5153	Br(1)	0,0177	0,2353	-0,3651	I(1)	0,4641(7)	-0,3743(7)	0,7751(6)
O(12)	0,3715	0,0219	0,1863	Br(2)	0,1232	0,5618	0,3919	I(2)	0,6669(7)	0,4101(9)	1,0162(3)
O(21)	0,1101	-0,0944	0,3384	Br(3)	-0,1572	-0,0294	0,4005	I(3)	0,3866(7)	0,3875(9)	0,4253(5)
O(22)	0,1805	0,0683	0,1816	O(1)	-0,0396	0,3732	0,1324	O(1)	0,6002(5)	0,0098(7)	0,7856(4)
O(31)	0,2114	-0,0767	0,0177	O(2)	0,0415	0,1489	0,1559	O(2)	0,3731(5)	0,0186(7)	0,6950(4)
O(32)	0,3038	-0,1264	0,3565	O(3)	-0,1066	0,2088	0,0098	O(3)	0,6102(2)	0,2831(7)	0,7610(4)
C(11)	0,3323	0,0903	0,7554	O(4)	0,1235	0,3006	0,0145	O(4)	0,4548(5)	0,1635(7)	0,8400(4)
C(12)	0,3351	0,0599	0,5659	O(5)	0,1113	0,3102	0,2941	O(5)	0,5387(5)	0,1256(7)	0,6222(4)
C(13)	0,4191	0,0798	0,4657	O(6)	-0,1130	0,2252	0,2876	O(6)	0,3899(6)	0,2918(7)	0,6795(5)
C(14)	0,4331	0,0601	0,2886	C(1)	-0,0090	0,0797	0,2293	C(1)	0,5771(8)	-0,112(1)	0,7908(7)
C(15)	0,5297	0,0914	0,2066	C(2)	-0,1406	0,1502	0,3390	C(2)	0,4751(7)	-0,169(1)	0,7579(6)
C(21)	-0,0572	-0,1259	0,3644	C(3)	0,0130	0,2430	-0,1726	C(3)	0,3798(8)	-0,104(1)	0,7143(6)
C(22)	0,0305	-0,0676	0,3125	C(4)	0,0772	0,4475	0,3049	C(4)	0,6746(9)	-0,190(1)	0,8391(8)
C(23)	0,0204	0,0097	0,2372	C(5)	-0,0021	0,4425	0,2099	C(5)	0,2748(9)	-0,176(1)	0,6858(8)
C(24)	0,0926	0,0734	0,1864	C(6)	-0,0944	0,0800	0,3085	C(6)	0,6390(8)	0,338(1)	0,8329(7)
C(25)	0,0685	0,1552	0,1178	C(7)	-0,0881	0,2094	-0,1195	C(7)	0,5928(8)	0,313(1)	0,9008(7)
C(31)	0,2076	-0,1692	-0,2189	C(8)	-0,0518	0,5162	0,1792	C(8)	0,5090(8)	0,229(1)	0,9024(6)
C(32)	0,2336	-0,1472	-0,0284	C(9)	0,1300	0,3893	0,3397	C(9)	0,7289(8)	0,439(1)	0,8381(8)
C(33)	0,2776	-0,2000	0,0769	C(10)	0,1102	0,2856	-0,1057	C(10)	0,4685(9)	0,209(1)	0,9828(7)
C(34)	0,3097	-0,1894	0,2590	C(11)	0,2190	0,4110	0,4458	C(11)	0,5072(8)	0,197(1)	0,5567(7)
C(35)	0,3611	-0,2519	0,3483	C(12)	-0,2339	0,1350	0,4344	C(12)	0,4291(8)	0,295(1)	0,5457(7)
				C(13)	-0,1873	0,1682	-0,1979	C(13)	0,3748(8)	0,3357(9)	0,6040(7)
				C(14)	0,0352	0,0011	0,2052	C(14)	0,5643(9)	0,162(1)	0,4868(7)
				C(15)	0,2185	0,3185	-0,1853	C(15)	0,286(1)	0,439(1)	0,5850(8)

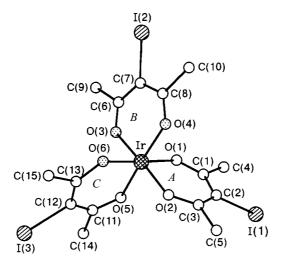
 $\label{eq:Table} T \ a \ б \ л \ и \ ц \ a \quad 2$ Межатомные расстояния $d\ (\mathring{\triangle})$ и валентные углы ω (град) s Ir(acac) $_3$

Связь	d	Угол	ω
	Метал	поцикл A	
Ir—O(11)	2,02(8)	O(11)IrO(12)	93,6(3)
Ir—O(12)	2,01(7)	IrO(11)C(12)	122,2(8)
O(11)—C(12)	1,28(1)	IrO(12)C(14)	123,4(8)
O(12)—C(14)	1,25(1)	O(11)C(12)C(13)	126(1)
C(12)—C(13)	1,39(2)	O(12)C(14)C(13)	127(1)
C(14)—C(13)	1,39(2)	C(12)C(13)C(14)	127(1)
C(12)—C(11)	1,51(2)	O(11)C(12)C(11)	114(1)
C(14)—C(15)	1,50(2)	C(11)C(12)C(13)	120(1)
C(13)—H(13)	1,12(11)	O(12)C(14)C(15)	116(1)
		C(15)C(14)C(13)	118(1)
	Метал	поцикл В	
Ir—O(21)	2,00(8)	O(21)IrO(22)	93,9(3)
Ir—O(22)	2,04(8)	IrO(21)C(22)	122,5(8)
O(21)—C(22)	1,27(2)	IrO(22)C(24)	124,2(8)
O(22)—C(24)	1,24(2)	O(21)C(22)C(23)	126(1)
C(22)—C(23)	1,42(2)	O(22)C(24)C(23)	124(1)
C(24)—C(23)	1,39(2)	C(22)C(23)C(24)	129(1)
C(22)—C(21)	1,49(2)	O(21)C(22)C(21)	114(1)
C(24)—C(25)	1,52(2)	O(22)C(24)C(25)	114(1)
C(23)—H(23)	1,02(11)	C(25)C(24)C(23)	122(1)
		C(21)C(22)C(23)	120(1)
	Метал	поцикл C	
Ir—O(31)	2,02(8)	O(31)IrO(32)	96,0(3)
Ir—O(32)	2,03(8)	IrO(31)C(32)	121,3(8)
O(31)—C(32)	1,29(2)	IrO(32)C(34)	121,5(8)
O(32)—C(34)	1,28(1)	O(31)C(32)C(33)	127(1)
C(32)—C(38)	1,38(2)	O(32)C(34)C(33)	126(1)
C(34)—C(33)	1,44(2)	C(32)C(33)C(34)	129(1)
C(32)—C(31)	1,50(2)	C(31)C(32)C(31)	113(1)
C(34)—C(35)	1,49(2)	O(32)C(34)C(35)	113(1)
C(33)—H(33)	1,20(12)	C(33)C(32)C(31)	120(1)
		C(33)C(34)C(35)	121(1)

нее значение 3°, в II углы перегиба составляют 0,7, 2 и 4,1°, их среднее значение равно 2,3°, в III углы перегиба 1,9, 5,1 и 1,26°, их среднее значение — 3,2°. Все межмолекулярные контакты превышают суммы ван-дер-ваальсовых радиусов. Расстояния Ir...Ir для I имеют оценки > 7,49 $\mathring{\triangle}$, для II и III — > 8,10 $\mathring{\triangle}$. Если ограничиться оценкой 10 $\mathring{\triangle}$, межмолекулярные координационные числа (МКЧ) в исследуемых структурах равны 10.


Таким образом, нами были синтезированы и идентифицированы ацетилацетонат иридия (III) и его γ -Вг-замещенный и γ -I-замещенный аналоги и определены

 $\label{eq:Table} T \ a \ б \ л \ и \ ц \ a \quad 3$ Межатомные расстояния d (Å) и валентные углы ω (град) s Ir(acacBr) $_3$


Связь	d	Угол	ω			
Металлоцикл <i>А</i>						
Ir—O(1)	1,99(1)	O(1)IrO(5)	92,8(7)			
Ir—O(5)	2,01(2)	IrO(1)C(5)	124(2)			
O(1)—C(5)	1,32(3)	IrO(5)C(9)	124(2)			
O(5)—C(9)	1,29(3)	O(1)C(5)C(4)	123(2)			
C(5)—C(4)	1,38(3)	O(5)C(9)C(4)	126(2)			
C(9)—C(4)	1,32(4)	C(5)C(4)C(9)	130(2)			
C(5)—C(8)	1,50(4)	O(1)C(5)C(8)	113(2)			
C(9)—C(11)	1,53(4)	O(5)C(9)C(11)	113(2)			
C(4)—Br(2)	1,94(2)	C(8)C(5)C(4)	124(2)			
		C(11)C(9)C(4)	121(2)			
		C(5)C(4)Br(2)	113(2)			
		C(9)C(4)Br(2)	116(2)			
	Метал.	лоцикл В				
Ir—O(3)	1,99(1)	O(3)IrO(4)	93,2			
Ir—O(4)	2,01(1)	IrO(3)C(7)	125(1)			
O(3)—C(7)	1,31(3)	IrO(4)C(10)	123(1)			
O(4)—C(10)	1,23(3)	O(3)C(7)C(3)	122(2)			
C(7)—C(3)	1,37(3)	O(4)C(10)C(3)	128(2)			
C(10)—C(3)	1,41(2)	C(7)C(3)C(10)	128(2)			
C(7)—C(13)	1,48(3)	O(3)C(7)C(13)	113(2)			
C(10)—C(15)	1,56(3)	O(4)C(10)C(15)	112(1)			
C(3)—Br(1)	1,93(2)	C(13)C(7)C(3)	125(2)			
		C(15)C(10)C(3)	120(2)			
		C(7)C(3)Br(1)	114(2)			
		C(10)C(3)Br(1)	118(2)			
	Метал.	лоцикл С				
Ir-O(2)	1,97(1)	O(2)IrO(1)	93,8			
Ir-O(6)	1,20(1)	IrO(2)C(1)	125(1)			
O(2)— $C(1)$	1,33(2)	IrO(6)C(2)	124(2)			
O(6)—C(2)	1,25(3)	O(2)C(1)C(6)	122(2)			
C(1)— $C(6)$	1,35(3)	O(6)C(2)C(6)	125(2)			
C(2)—C(6)	1,42(4)	C(1)C(6)C(2)	130(2)			
C(1)—C(14)	1,51(4)	O(2)C(1)C(14)	112(2)			
C(2)—C(12)	1,49(3)	O(6)C(2)C(12)	115(2)			
C(16)—Br(3)	1,93(2)	C(14)C(1)C(6)	125(2)			
	, - ()	C(12)C(2)C(6)	120(2)			
		C(1)C(6)Br(3)	115(2)			
		< / < / < /	\ /			

 $\label{eq:Table} T\ a\ б\ \pi\ u\ ц\ a\quad 4$ Межатомные расстояния $d\ (\mathring{\triangle})$ и валентные углы ω (град) в Ir(acacl) $_3$

Связь	d	<i>алентные углы</i> ω (град _, Угол				
Связь	а	у ГОЛ	ω			
Металлоцикл A						
Ir—O(1)	2,01(6)	O(1)IrO(2)	93,2(3)			
Ir—O(2)	2,01(7)	IrO(1)C(1)	124,3(5)			
O(1)—C(1)	1,28(1)	IrO(2)C(3)	124,7(5)			
O(2)—C(3)	1,28(1)	O(1)C(1)C(2)	125,4(9)			
C(1)—C(2)	1,41(1)	O(2)C(3)C(2)	124,9(9)			
C(3)—C(2)	1,41(1)	C(1)C(2)C(3)	127,3(9)			
C(1)—C(9)	1,52(1)	O(1)C(1)C(4)	111,1(8)			
C(3)—C(5)	1,50(2)	C(1)C(2)I(1)	116,2(6)			
C(2)—I(1)	2,11(1)	O(2)C(3)C(5)	113,5(8)			
O(1)—O(2)	2,92	C(5)C(3)C(2)	121,6(9)			
		C(3)C(2)I(1)	116,6(6)			
·	Металло	цикл В	•			
Ir—O(3)	1,99(7)	O(3)IrO(4)	93,5(3)			
Ir—O(4)	1,20(7)	IrO(3)C(6)	124,3(5)			
O(3)—C(6)	1,27(1)	IrO(4)C(8)	123,5(5)			
O(4)—C(8)	1,27(1)	O(3)C(6)C(7)	124,7(9)			
C(6)—C(7)	1,41(2)	O(4)C(8)C(7)	126(1)			
C(8)—C(7)	1,38(2)	C(6)C(7)C(8)	128(1)			
C(6)—C(9)	1,53(1)	O(3)C(6)C(9)	113(1)			
C(8)—C(10)	1,54(2)	C(7)C(6)C(9)	123(1)			
C(7)—I(2)	2,13(1)	O(4)C(8)C(10)	112,4(9)			
O(3)—O(4)	2,90	C(7)C(8)C(10)	121,9(9)			
		C(6)C(7)I(2)	115,6(6)			
		C(8)C(7)I(2)	116,5(6)			
·	Металло	цикл С	•			
Ir—O(5)	1,99(7)	O(5)IrO(6)	92,1(3)			
Ir—O(6)	2,00(7)	IrO(5)C(11)	125,0(5)			
O(5)—C(11)	1,27(1)	IrO(6)C(13)	124,7(5)			
O(6)—C(13)	1,28(1)	O(5)C(11)C(12)	126(1)			
C(11)—C(12)	1,39(2)	O(6)C(13)C(12)	125,6(9)			
C(13)—C(12)	1,38(2)	C(11)C(12)C(13)	127(1)			
C(11)—C(14)	1,55(2)	O(5)C(11)C(14)	112,4(9)			
C(13)—C(15)	1,53(2)	C(2)C(11)C(14)	122(1)			
C(12)—I(3)	2,12(1)	O(6)C(13)C(15)	111(1)			
O(5)—O(6)	2,88	C(12)C(13)C(15)	124(1)			
		C(11)C(12)I(3)	116,3(6)			
		C(13)C(12)I(3)	116,8(6)			

Рис. 2. Строение молекулы комплекса Ir(acacBr)₃

Рис. 3. Строение молекулы комплекса Ir(acacI)₃

кристаллические структуры. Показано, что по сравнению с ацетилацетонатом иридия(III) введение заместителей в γ -положение существенного влияния на кристаллографические характеристики не оказывает.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 95-03-08703) и Американского фонда гражданских исследований (CRDF, грант № RE1-355).

СПИСОК ЛИТЕРАТУРЫ

- 1. Joshi K.C., Pathak V.N. // Coord. Chem. Rev. 1977. 22. P. 37 122.
- 2. Fackler J.P. // Prog. Inorg. Chem. $-\,1966.-7.\ N\ 3.-P.\ 362-414.$
- 3. Collman J.P., Moss R.A., Maltz H., Heindel C.C. // J. Amer. Chem. Soc. 1961. **83**. N 3. –P. 531.

- Collman J.P., Moss R.A., Goldby S.D., Trahanovsky W.S. // Chemistry and Industry. 1960. N 39. – P. 1213 – 1214.
- Collman J.P., Blair R.P., Marshall R.L., Slade L. // Inorg. Chem. 1963. 2, N 8. P. 576 – 581.
- 6. Singh P.R., Sahai R. // Austral. J. Chem. 1969. 22, N 6. P. 1169 1175.
- 7. Balahura R.J., Johnston A.J. // Inorg. Chem. 1983. 22, N 22. P. 3309 3314.
- 8. Cardwell T.J., Lorman T.H. // Inorg. Chim. Acta. 1986. 120, N 1. P. L5 L6.
- 9. *Mahapatra S.C., Rao D.V.R.* // Ind. J. Chem. 1979. **A17**, N 5. P. 522 523.
- 10. Исакова В.Г., Игуменов И.К., Земсков С.В. // Координац. химия. 1985. **11**, № 10. С. 1377 1383.
- 11. Исакова В.Г., Семянников П.П., Гранкин В.М., Игуменов И.К. // Там же. 1988. **14**, № 1. С. 57 62.
- 12. Игуменов И.К., Чумаченко Ю.В., Исакова В.Г., Земсков С.В. // Журн. физ. химии. 1979. **53**, № 6. С. 1612 1618.
- 13. Земсков С.В., Игуменов И.К., Чумаченко Ю.В. и др. // Тез. докл. XIII Всесоюз. Чугаевского совещ. по химии комплексных соединений. М., 1978. С. 159.
- 14. Bennett M.A., Mitchel T.R.B. // Inorg. Chem. 1976. 15, N 11. P. 2936 2938.
- 15. *Школьникова Л.М.., Порай-Кошиц М.А.* // Итоги науки и техники. Сер. Кристаллохимия. М.: ВИНИТИ, 1982. **16**. С. 117 231.
- 16. Земсков С.В., Исакова В.Г., Жаркова Г.И., Игуменов И.К. // Тез. докл. Всесоюз. совещ. по химическому анализу и технологии платиновых металлов. М., 1979. С. 77.

Институт неорганической химии CO PAH 630090 Новосибирск пр. Акад. Лаврентьева, 3 E-mail: igumen@che.nsk.su Статья поступила 3 июля 1997 г.