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Рассмотрен метод описания кинематики деформирования, основанный на концепции смеще-

ния материальных площадок среды. Показано, что перемещения площадок описываются 

двумя векторными полями перемещений или, как альтернатива, одним тензорным полем, по-

лем относительного смещения площадок. Тензор несимметричен, его компоненты не связаны 

условиями совместности Сен-Венана. Такой подход восстанавливает “равноправие” между 

кинематическим и силовым описанием процесса деформирования среды. Принятое понятие 

напряжений относится к силам, действующим на площадки внутри тела, а понятие деформа-

ций — к изменению расстояний между парами точек. Приведен пример построения модели 

первоначально изотропной геосреды, в которой используется данное описание. 
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Согласно классическому определению, сплошная среда — это среда, в которой каждая точ-

ка арифметического пространства может рассматриваться как материальная точка деформиру-

емой среды. Точка арифметического пространства — это тройка вещественных чисел, момент 

времени — одно вещественное число. 

Если обратиться к теориям напряжений и деформаций сплошной среды, то можно заметить 

одно принципиальное несоответствие между ними. Теория деформаций основана на концеп-

ции, которую можно назвать точечной. Рассматриваются всевозможные пары близких точек. 

Затем вводится объект для описания изменения расстояний между точками — тензор деформа-

ций. Исторически “точечная” концепция принята для описания внутренних усилий в среде. 

Рассматривались пары близких точек. Изменение расстояний между ними связывалось с силой, 

которая возникает между точками. Дальше проводилось суммирование для каждой фиксиро-

ванной точки и на этой основе строилась вся теория [Навье, 1]. 
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Однако так сложилось, что данное направление в дальнейшем не развивалось и была при-

нята другая концепция, которую можно назвать концепцией площадок [Коши, 1]. Здесь 

за начальное понятие берутся не силы между двумя точками, а силы, действующие на площад-

ку, выделенную внутри деформируемой среды. Далее вся теория внутренних сил пошла 

по этому “площадочному” пути, в то время как описание кинематики осталось в рамках преж-

ней “точечной” концепции. 

Естественно сделать переход к площадкам и для описания кинематики. Тогда кинематика 

и внутренние усилия будут описываться в рамках одной и той же “площадочной” концепции. 

Необходимость в этом возникла при исследовании моделей сыпучей среды, в которых исполь-

зуются определенные регулярные упаковки упругих или жестких частиц [2 – 4]. Модели этого 

типа используются также при описании твердых тел, в которых учитывается их кристалличе-

ская структура [5, 6], механики кристаллических решеток [7 – 11] и наноматериалов [12 – 16]. 

КОНЦЕПЦИЯ ОПРЕДЕЛЯЮЩИХ ПЛОЩАДОК 

Пусть элемент среды испытывает простой сдвиг. Возможно множество внутренних меха-

низмов, которые реализуют данный сдвиг. Возможно также и множество различных мер 

напряжений и деформаций простого сдвига. Более адекватной будет математическая модель, 

в которой достигнуто наибольшее соответствие выбранных мер реальному механизму дефор-

мирования. Например, пусть структурные элементы среды представляют собой бесконечно 

тонкие горизонтальные пластины, а сдвиг происходит вследствие скольжения пластин подобно 

сдвигу колоды карт. Выберем в исходной конфигурации материальные точки A, B, C так, как 

показано на рис. 1а. 

 

Рис. 1. Исходное положение материальных точек (а) и в результате деформирования (б) 

В результате деформирования точки перейдут в новые положения A , B , C   (рис. 1б). 

Тензорное описание позволит вычислить изменение длины материальных волокон AB и AC, 

изменение угла CAB  и т. д. Причем это можно сделать при любой исходной ориентации отрез-

ков AC , AB , т. е. при любых углах  . Однако при 0   никакого физического смысла из-

менение длины волокна AB  и угла CAB  не имеет. Более того, никакого материального волок-

на AB  при 0   в действительности нет. Есть только относительное скольжение по горизон-

тальным площадкам структурных элементов среды. Все остальное — описание того, как вы-

глядит данное скольжение с различных точек зрения. Физический смысл имеет только вектор 

смещения точки C относительно площадки AB  при 0  . В рассматриваемом примере вектор 
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направлен горизонтально. В общем случае, если учесть дилатансию (неровности поверхности 

пластин), появляется также вертикальная компонента смещения. Главное, что данный вектор 

смещения ассоциирован с конкретным семейством площадок. Такие площадки назовем опре-

деляющими. Ясно, что адекватная математическая модель деформирования должна описы-

вать физические процессы, которые происходят именно на определяющих площадках. 

ПЛОСКАЯ ДЕФОРМАЦИЯ 

В [2] рассмотрена плоская анизотропная модель среды с двумя семействами определяющих 

площадок. Ориентация площадок заранее известна. В [17] дано обобщение на трехмерный слу-

чай. Рассмотрим обобщение плоской модели на случай первоначально изотропного тела, когда 

ориентация определяющих площадок заранее неизвестна. 

Обратимся к стандартной процедуре построения математических моделей. Предполагается, 

что кинематика деформирования описывается векторным полем смещений материальных то-

чек (“точечная” концепция). Данное поле является достаточно гладким — существуют все не-

обходимые частные производные (постулат о диффеоморфизме [18]). Внутренние силы описы-

ваются тензором напряжений (“площадочная” концепция). Поле напряжений также считается 

достаточно гладким. Выделяется элементарный объем среды и предполагается, что в пределах 

объема напряжения могут меняться. Из условий равновесия следует симметрия тензора напря-

жений и два дифференциальных уравнения относительно напряжений. Второй шаг состоит 

в том, что напряжения в пределах элементарного объема полагаются постоянными. На этой ос-

нове строятся определяющие уравнения. Формально данный подход является непоследова-

тельным: при выводе одних уравнений напряжения в элементе среды считаются переменными, 

а при выводе других уравнений — постоянными. Более последовательным представляется 

подход, когда напряжения предполагаются переменными как при выводе уравнений равнове-

сия, так и при выводе определяющих уравнений. Отсюда следует один принципиальный вывод. 

Четырем граням A, B, C, D элемента соответствуют восемь компонент векторов перемещений 

и восемь компонент напряжений. Причем и те и другие ассоциированы с указанными граня-

ми — площадками (рис. 2). 

 

Рис. 2. Элемент среды, выделенный определяющими площадками 

Три условия равновесия и три условия инвариантности уравнений относительно жесткого 

переноса и поворота элемента означают, что определяющих уравнений должно быть пять, 

а не три, как при стандартном подходе. Рассмотрим их вывод. 
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Предположим, что определяющие площадки ортогональны между собой. Введем криволи-

нейную систему координат 
0 0

1 2Ox x  с координатными линиями, касательными к определяющим 

площадкам. Все переменные, относящиеся к этим координатам, будем отмечать индексом “0”. 

Силы, действующие на элемент среды в точках A, B, обозначим 
0 ( )f A , 

0 ( )f B , смещения то-

чек — 
0 ( )u A , 

0 ( )u B . В разностных уравнениях и краевых условиях фигурируют все точки A, 

B, C, D для всех элементов. Уравнения равновесия, определяющие уравнения и условия 

на контактах, приводят к замкнутой системе уравнений — число неизвестных равно числу 

уравнений. Однако при переходе к континуальным уравнениям возникает проблема. Действи-

тельно, условие 0AB  означает, что все точки граней стремятся к центру элемента G . 

“Площадочная” концепция напряжений требует, чтобы 

 

0 0 0

11 12

0 0 0

21 22

( ) { ( ), ( )},

( ) { ( ), ( )}.

f A G G

f B G G

 

 




 (1) 

При этом “точечная” концепция перемещений дает принципиально другой результат: 

 
0 0 0 0( ) ( ), ( ) ( )u A u G u B u G  . (2) 

Значит, 
0 0( ) ( )u A u B . Подсчет баланса континуальных уравнений и неизвестных указывает 

на переопределенность системы — число уравнений превышает число неизвестных. Парадокс, 

так как в разностной системе баланс был. Баланс восстанавливается, если отказаться от “то-

чечной” концепции описания кинематики. В этом случае переход (2) меняется на переход того 

же вида, что и (1): 
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u A v G
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
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 (3) 

Баланс восстанавливается. 

Дальнейшие построения удобнее делать, исходя из выражения для удельной энергии де-

формирования. Суммирование работы по всем четырем площадкам элемента среды приводит 

к следующему выражению: 
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Полученное равенство (4) представляет собой тождество. Поэтому 
0v , 

0w  заменим 

на 
0dv , 

0dw  и предположим, что значение левой части d  есть полный дифференциал. В ре-

зультате получим выражения для упругих деформаций. Добавляя к ним пластические дефор-

мации и выбирая тот или иной потенциал, получим соответствующие определяющие уравне-

ния, например следующие [2]: 
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где 0

1F , 0

2F  — компоненты объемной силы; , , ,E     — параметры среды; 0

ijr , 1, 2i   — ком-

поненты пластических деформаций. Уравнения записаны в локальной системе координат, оси 

которой ориентированы вдоль определяющих площадок, где   — угол между локальной и ис-

ходной системой координат 1 2Ox x  (см. рис. 2). Если угол   известен из дополнительных со-

ображений, то система (2) становится замкнутой — семь уравнений относительно семи неиз-

вестных: 

 
0 0 0 0 0 0 0

11 22 12 1 2 1 2, , ; ,v v w w   . (6) 

По формуле Коши краевые условия относительно напряжений ij  преобразуются 

в условия для напряжений (6). Для смещений ситуация сложнее. Если на границе значение 

0  , то на участках 0

1 1 constx x   граничное перемещение равно 0 0

1 2,v v , а на участках 

0

2 2 constx x   — 0 0

1 2,w w . Общий случай 0   рассмотрим далее. 

ИЗОТРОПНАЯ МОДЕЛЬ 

Итак, при заданном угле   система (5) описывает поведение анизотропной среды. Вид 

анизотропии связан с ориентацией определяющих площадок. Представляет интерес случай, 

когда среда первоначально является изотропной, а сами определяющие площадки формиру-

ются в процессе нагружения. В классических моделях сыпучей среды такая ситуация являет-

ся типичной [19]. В изотропном случае ставится условие “обыкновенной предельной зависи-

мости”. Уравнения Кеттера показывают, что в этом случае ориентация площадок скольжения 

будет определяться углом внутреннего трения наибольшего сжатия элементарных объемов 

среды. С направлением наибольшего сжатия можно связать также и ориентацию определяю-

щих площадок. 

Вторая возможность связана с последними уравнениями системы (5). Они описывают ло-

кальные изгибы элементарного объема в направлениях 
0

1e , 
0

2e . Из всевозможных направлений 

выделяется одно — направление, по которому изгиб есть (например, по 
0

1Ox ), а по второму 

направлению изгиб отсутствует (
0 0

2 2 0v w  ). Следовательно, при 0   имеем 
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12 22

0 0

1 2x x
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 
. (7) 

Уравнение (7) включается в систему (5), а угол   — в список неизвестных (6). В результа-

те приходим к замкнутой модели первоначально изотропной среды. Здесь исходная упаковка 

частиц предполагается стохастической и изотропной. Ориентация определяющих площадок  

заранее неизвестна и определяется напряженно-деформированным состоянием среды. 

ПОЛЕ СМЕЩЕНИЙ МАТЕРИАЛЬНЫХ ПЛОЩАДОК 

Для построения замкнутой модели достаточно рассмотреть напряжения только на опреде-

ляющих площадках и два поля смещений этих площадок. Каждое из таких полей относится 

к своему семейству площадок, т. е. ассоциировано с соответствующими площадками. Для пол-

ноты описания необходимо ответить на вопрос: как выглядит указанный процесс сдвигов 

по определяющим площадкам в произвольной системе координат? Иными словами, речь идет 

о построении “площадочной” кинематики деформирования для любых площадок. 

Пусть n  — нормаль к близким площадкам M и N (см. рис. 2). Вектором относительных 

смещений площадок M и N назовем предел 

 
0

( ) ( )
lim n n

n
MN

u M u N
E

MN


 , (8) 

здесь ( )nu M , ( )nu N  — векторы смещения точек M и N, ассоциированные с нормалью n . 

Понятие ассоциированности определим следующим образом. Если направление n  отно-

сится к определяющим площадкам, то положим 
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 (9) 

где 
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0 0 0 01 2 1 2
11 12 21 220 0 0 0

1 1 2 2

, , ,
v v w w

E E E E
x x x x

   
   
   

. (10) 

Далее необходимо определить относительные смещения для площадок произвольной ори-

ентации. Как известно, понятие смещения является первичным по отношению к понятию рабо-

ты: работа равна скалярному произведению вектора силы на вектор смещения. Основная идея 

состоит в том, чтобы для элемента среды, выделенного определяющими площадками, работу 

вычислить как сумму соответствующих скалярных произведений. А для элементов среды, вы-

деленных произвольными площадками, поступить по-другому. Работу и силы считать первич-

ными понятиями, а смещение найти как частное от деления работы на силу. Точнее, вектор 

смещения необходимо найти из условия: скалярное произведение искомого вектора на извест-

ный вектор напряжения должно давать известный скаляр удельной работы. 

Вычислим удельную работу W, совершаемую над элементарным объемом, выделенным 

определяющими площадками. Напряжения в пределах объема считаем постоянными: 

 
0 0 0 0 0 0 0 0

11 11 22 22 12 12 21 21W E E E E       . (11) 
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Воспользуемся формулами тензорного проектирования для напряжений: 
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 (12) 

Подставив (12) в (11), получим 

 11 11 22 22 12 12 21 21W E E E E       , (13) 

где 
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 (14) 

Отсюда следует, что векторы 

 
11 1 12 2

21 1 22 2

,E e E e

E e E e




 (15) 

можно считать относительными смещениями площадок с нормалями 1n e  и 2n e , т. е. от-

носительными смещениями площадок, отклоняющихся от определяющих площадок на любой 

заданный угол  . Обозначим компоненты смещения площадки 1n e  через 1( )v  , 2 ( )v  , 

а для площадки 2n e  — через 1( )w  , 2 ( )w   (т. е. без индекса “0”). Тогда из (15) имеем: 
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 (16) 

Заменим правые части выражениями (14) и (10). Получим следующие дифференциальные 

уравнения: 
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 (17) 

Правые части представляют собой формулы тензорного проектирования, поэтому объект 

 1ij i jE E e e  

можно назвать тензором относительных смещений площадок. Тензор несимметричен и зависит 

от поворота объема среды. Главное его отличие от тензора деформаций, отвечающего приня-

тому “точечному” описанию кинематики, состоит в том, что для его компонент не требуется 

выполнение условия совместности Сен-Венана. 

Рассмотрим этот вопрос подробнее. В уравнениях (17) значение угла const  . Решение 

представляет собой интегралы от правых частей. Основной вопрос: как функции 1v , 2v , 1w , 2w , 

зависящие от угла  , связаны со спецификой правых частей (17). Перейдем в (17) к производ-

ным по 0

1x , 0

2x  и перепишем уравнения следующим образом: 
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 (18) 

Получаем решение, которое обращает в ноль не только суммы (18), но и каждое из выра-

жений под знаком производной. Правда, это возможно только при 
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Отсюда 
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 (20) 

Таким образом, здесь “площадочное” описание кинематики фактически перешло в “точеч-

ное”. Значит, если векторы смещений на определяющих площадках совпадают между собой 

(условия (19)), то определение компонент вектора, ассоциированного с любой площадкой,  

делается по правилам векторного проектирования (20). Фактически это и есть общепринятое, 
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“точечное” описание кинематики. Действительно, если исходить из заданного поля смеще-

ний 1 2( , )u x x  и подсчитать относительное смещение площадок (8), то придем к формулам тен-

зорного проектирования, причем компоненты тензора будут удовлетворять условиям совмест-

ности Сен-Венана. Следовательно, необходимое условие согласованности двух методов описа-

ния кинематики деформирования выполняются, а “площадочный” подход к описанию кинема-

тики приводит к моделям механики обобщенных сплошных сред [20, 21]. 

ВЫВОДЫ 

“Точечная” кинематика деформирования среды описывается одним векторным полем пе-

ремещений. Альтернативное описание — тензором деформаций, компоненты которого удовле-

творяют условиям совместности Сен-Венана. 

“Площадочная” кинематика описывается двумя векторными полями перемещений. Аль-

тернативное описание — тензором второго ранга (тензором относительного смещения площа-

док). На компоненты тензора условия Сен-Венана не накладываются. 

Наличие двух полей перемещений означает, что каждая материальная точка среды заменя-

ется бесконечно малым материальным объемом. Одно поле соответствует смещениям точек 

на концах выбранного диаметра элементарного объема, второе поле — это смещение концов 

диаметра, ортогонального первому. 
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