СПЕКТРОСКОПИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 539.194

Банк параметров спектральных линий молекулы H₂S

А.А. Лукашевская, В.И. Перевалов*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1

Поступила в редакцию 4.02.2020 г.

Представлен банк параметров спектральных линий основной изотопической модификации молекулы сероводорода ($H_2^{32}S$), созданный на основе глобального моделирования центров и интенсивностей спектральных линий этой молекулы в рамках метода эффективных операторов. Параметры глобального эффективного гамильтониана и оператора эффективного дипольного момента были определены в результате их подгонки, соответственно, к экспериментальным центрам и интенсивностям спектральных линий, взятым из литературных источников. Банк данных покрывает спектральный диапазон 552,76–8424,32 см⁻¹ и содержит рассчитанные значения следующих параметров спектральных линий: центр линии, ее интенсивность, энергии верхнего и нижнего состояний, коэффициент Эйнштейна для спонтанного испускания, а также статистические веса верхнего и нижнего состояний. Отсечка по величине интенсивности линий выбрана равной 10^{-28} см/мол. при T = 296 К. Всего в банке данных содержится ~88 тыс. спектральных линий. Он размещен на сайте ИОА СО РАН по адресу: ftp://ftp.iao.ru/pub/H2S/.

Ключевые слова: сероводород, $H_2^{32}S$, спектры высокого разрешения, параметры спектральных линий, глобальное моделирование, эффективный гамильтониан, оператор эффективного дипольного момента, банк параметров спектральных линий; hydrogen sulfide, $H_2^{32}S$, high resolution spectra, spectral line parameters, global simulation, effective Hamiltonian, effective dipole moment operator, bank of spectral line parameters.

Введение

Сероводород — один из газов, загрязняющих атмосферу Земли. Его источниками являются нефтеи газоперерабатывающие заводы и извержения вулканов. Бактерии, живущие на дне Черного моря и в толще воды на глубине свыше 2 км, разлагая органику, попадающую с поверхности моря и с суши, также выделяют ядовитый сероводород [1].

Сероводород обнаружен в атмосферах других планет Солнечной системы. Сера — ключевой элемент в химии некоторых планет-гигантов, поскольку предполагается, что газообразные соединения серы реагируют с NH_3 и конденсируются в виде кристаллов NH_4SH , образуя тропосферные облака этих планет [2]. Так, например, сероводород обнаружен в атмосферах Урана [3] и Юпитера [4]. К тому же молекула сероводорода является индикатором жизни на экзопланетах [5].

В таких приложениях, как дистанционное зондирование атмосферы Земли, определение концентрации H_2S в атмосферах планет-гигантов, исследование химического состава атмосферы Венеры и экзопланет, используются спектроскопические методы, поэтому знание параметров спектральных линий этой молекулы весьма актуально.

Проводились многочисленные экспериментальные исследования спектров поглощения молекулы сероводорода от микроволнового до видимого диапазонов длин волн [2, 6–27]. В результате были получены списки спектральных линий, включающие в себя как центры, так и интенсивности линий молекулы. Эти списки в диапазоне 2,9–11329,78 см⁻¹ вошли в международную базу данных HITRAN [28]. Эта база не содержит переходы с высоковозбужденных колебательных и вращательных состояний для молекулы H_2^{32} S, в ней представлены только переходы с основного и с первого возбужденного колебательных состояний (010). Информация о параметрах спектральных линий «горячих полос» H_2 S необходима при исследовании таких горячих объектов, как вулканические газы и атмосферы горячих экзопланет.

1. Глобальное моделирование центров спектральных линий H₂³²S

В ходе настоящего исследования проведено глобальное моделирование центров линий молекулы $H_2^{32}S$ в спектральном диапазоне 4,38—16436,57 см⁻¹ в рамках полиадной модели эффективного гамильтониана молекулы.

Молекула сероводорода представляет собой нелинейную трехатомную молекулу симметрии C_{2V} с тремя колебательными модами. Колебательные состояния характеризуются набором трех колебательных квантовых чисел (v_1 , v_2 , v_3), относящихся к симметричному валентному ($\omega_1 \approx 2637$ см⁻¹), симметричному изгибному ($\omega_2 \approx 1187$ см⁻¹) и антисимметричному

^{*} Анастасия Александровна Лукашевская (Lukashevskaya@sibmail.com); Валерий Иннокентьевич Перевалов (vip@.iao.ru).

[©] Лукашевская А.А., Перевалов В.И., 2020

валентному ($\omega_3 \approx 2652 \text{ см}^{-1}$) колебаниям соответственно. Поскольку для частот гармонических колебаний этой молекулы справедливо приближенное равенство $\omega_1 \approx \omega_3 \approx 2\omega_2$, колебательные уровни энергии группируются в полиады, которые могут быть пронумерованы числом $P = 2v_1 + v_2 + 2v_3$.

1.1. Эффективный гамильтониан молекулы $H_2^{32}S$

Теоретическая полиадная модель глобального эффективного гамильтониана молекулы H₂³²S, используемая в настоящей работе, учитывает колебательно-вращательные резонансные взаимодействия, возникающие вследствие представленного выше соотношения между гармоническими частотами: резонансные взаимодействия Кориолиса и ангармонические резонансные взаимодействия (Ферми, Дарлинга—Деннисона и др.). Таким образом, эффективный гамильтониан может быть представлен как сумма нескольких операторов

$$H^{\rm eff} = H_{\rm VR} + H_{\rm C} + H_{\rm Anh},\tag{1}$$

где $H_{\rm VR}$ — диагональный по колебательным квантовым числам $V(v_1, v_2, v_3)$ колебательно-вращательный оператор типа Уотсона; $H_{\rm C}$ и $H_{\rm Anh}$ — операторы резонансных взаимодействий Кориолиса и ангармонических резонансных взаимодействий соответственно. Оператор $H_{\rm VR}$ записан в представлении I', использован A-тип редукции. Следовательно, ненулевые матричные элементы существуют только в случае $\Delta K = 0, \pm 2$. Ниже приведены выражения для операторов, входящих в состав эффективного гамильтониана (1).

Выражение для оператора $H_{\rm VR}$:

$$\begin{split} H_{\rm VR} &= E_V + \left[A^V - \frac{B^V + C^V}{2} \right] J_z^2 + \left[\frac{B^V + C^V}{2} \right] J^2 + \\ &+ \left[\frac{B^V - C^V}{2} \right] J_{xy}^2 - \Delta_K^V J_z^4 - \Delta_{JK}^V J_z^2 J^2 - \Delta_J^V (J^2)^2 - \\ &- \delta_K^V \Big\{ J_z^2, J_{xy}^2 \Big\} - 2\delta_J^V J_{xy}^2 J^2 + H_K^V J_z^6 + H_{KJ}^V J_z^4 J^2 + \\ &+ H_{JK}^V J_z^2 (J^2)^2 + H_J^V (J^2)^3 + h_K^V \Big\{ J_z^4, J_{xy}^2 \Big\} + \\ &+ h_{KJ}^V \Big\{ J_z^2, J_{xy}^2 \Big\} J^2 + h_J^V J_{xy}^2 (J^2)^2 + \dots, \end{split}$$
(2)

где J, J_x, J_y, J_z — оператор полного углового момента и его проекции на молекулярно-фиксированные оси; $J_{xy}^2 = J_x^2 - J_y^2$; E_V — колебательная энергия; A^V, B^V, C^V — вращательные параметры; $\Delta^V, \delta^V, H^V, h^V$ — параметры центробежного искажения. Здесь и ниже символ {...} используется для обозначения антикоммутатора двух операторов.

Выражение для оператора резонансного кориолисова взаимодействия *H*_C:

$$H_{\rm C} = h^{\rm C} i J_y + h_J^{\rm C} i J_y J^2 + h_{JJ}^{\rm C} i J_y (J^2)^2 + h_{JJJ}^{\rm C} i J_y (J^2)^3 + h_K^{\rm C} \{J_x, J_z\} + h_{KK}^{\rm C} \{i J_y, J_z^2\} + h_{KK}^{\rm C} \{i J_y, J_z\} + h_{KK}^{$$

$$+ h_{KKK}^{C} \{\{J_{x}, J_{z}\}, J_{z}^{2}\} + h_{KJ}^{C} \{J_{x}, J_{z}\} J^{2} + h_{KKJ}^{C} \{iJ_{y}, J_{z}^{2}\} J^{2} + h_{KJJ}^{C} \{J_{x}, J_{z}\} (J^{2})^{2} + \dots, \quad (3)$$

где h^{C} , h_{J}^{C} , h_{JJ}^{C} , h_{JJJ}^{C} , h_{KK}^{C} , h_{KK}^{C} , \dots — параметры взаимодействия Кориолиса. Формула (3) представлена в символическом виде. У параметров для краткости опущены индексы взаимодействующих колебательных состояний.

Выражение для оператора ангармонического резонансного взаимодействия H^{Anh} :

$$\begin{split} H^{\text{Anh}} &= h^{\text{Anh}} + h_J^{\text{Anh}} J^2 + h_{JJ}^{\text{Anh}} (J^2)^2 + h_K^{\text{Anh}} J_z^2 + \\ &+ h_{KK}^{\text{Anh}} (J_z^2)^2 + h_{KKK}^{\text{Anh}} (J_z^2)^3 + h_{\Delta K}^{\text{Anh}} \{J_z^2, J_{xy}^2\} + \dots, \end{split}$$
(4)

где h^{Anh} , h_J^{Anh} , h_K^{Anh} , ... — параметры ангармонических резонансных взаимодействий. Как и в предыдущем случае, для краткости у параметров опущены индексы взаимодействующих колебательных состояний.

В рамках глобального подхода параметры диагональной части эффективного гамильтониана, а также параметры операторов резонансных взаимодействий рассматриваются как функции колебательных квантовых чисел:

$$E_{V} = \sum_{i} \omega_{i} v_{i} + \sum_{i \geq j} x_{ij} v_{i} v_{j} + \sum_{i \geq j \geq k} y_{ijk} v_{i} v_{j} v_{j} + \sum_{i \geq j \geq k \geq l} z_{ijkl} v_{i} v_{j} v_{k} v_{l} + \ldots,$$

$$A^{V} = A_{0} - \sum_{i} \alpha_{i}^{A} v_{i} + \sum_{i \geq j} \gamma_{i}^{A} v_{i} v_{j} + \sum_{i \geq j} \gamma_{ij}^{A} v_{i} v_{j} + \sum_{i \geq j \geq k \geq l} \gamma_{ijk}^{A} v_{i} v_{j} v_{k} v_{l} + \ldots,$$

$$\Delta_{K}^{V} = \Delta_{K} + \sum_{i} \beta_{i}^{\Delta K} v_{i} + \sum_{i \geq j} \eta_{ij}^{\Delta K} v_{i} v_{j} + \sum_{i \geq j \geq k} \tau_{ijk}^{\Delta K} v_{i} v_{j} v_{k} + \ldots,$$

$$H_{K}^{V} = H_{K} + \sum_{i} \delta_{i}^{H_{K}} v_{i} + \ldots,$$

$$H_{K}^{V} = H_{K} + \sum_{i} \delta_{i}^{H_{K}} v_{i} + \ldots,$$

$$P_{K}^{V} = P_{K} + \sum_{i} \xi_{i}^{P_{K}} v_{i} + \ldots,$$

$$P_{K}^{V} = P_{K} + \sum_{i} \xi_{i}^{P_{K}} v_{i} + \ldots,$$

$$h^{C} = h_{0}^{C} + \sum_{i} h_{i}^{C} \left(v_{i} + \frac{\Delta v_{i}}{2} \right) +$$

$$+ \sum_{i \geq j} h_{ij}^{C} \left(v_{i} + \frac{\Delta v_{i}}{2} \right) \left(v_{j} + \frac{\Delta v_{j}}{2} \right) + \ldots,$$

$$h^{Anh} = h_{0}^{Anh} + \sum_{i} h_{i}^{Anh} \left(v_{i} + \frac{\Delta v_{j}}{2} \right) + \ldots.$$
(5)

Лукашевская А.А., Перевалов В.И.

В разложениях для параметров h^{C} и h^{Anh} используются колебательные квантовые числа v_i одного из взаимодействующих колебательных состояний, а Δv_i — разность колебательных квантовых чисел взаимодействующих колебательных состояний для моды i.

В табл. 1 перечислены матричные элементы операторов резонансных взаимодействий, которые были учтены в настоящей работе.

Таблица 1 Матричные элементы операторов резонансных взаимодействий в молекуле H₂S

Δv_1	Δv_2	Δv_3	ΔK						
Резонанс	ные взаимод	действия Ко	риолиса						
1	0	-1	<u>±1</u>						
1	0	-1	<u>±</u> 3						
0	2	-1	±1						
0	2	-1	<u>±</u> 3						
2	-2	-1	±1						
2	-2	-1	<u>+</u> 3						
3	0	-3	±1						
3	0	-3	± 3						
Анг	Ангармонические резонансные								
	взаимоде	ействия							
2	0	-2	0						
2	0	-2	±2						
1	-2	0	0						
1	-2	0	±2						
2	-4	0	0						
2	-4	0	±2						
1	2	-2	0						
1	2	-2	±2						

1.2. Подгонка параметров эффективного гамильтониана молекулы H₂S

Параметры эффективного гамильтониана были определены их подгонкой к экспериментальным значениям центров линий, взятым из [2, 6—27], с помощью метода наименьших квадратов. Была осуществлена невзвешенная подгонка с целью минимизации стандартного отклонения

$$\chi = \sqrt{\frac{\sum_{i} (\nu_i^{\text{obs}} - \nu_i^{\text{calc}})^2}{N - n}}, \qquad (6)$$

где v_i^{obs} и v_i^{calc} — экспериментальные и рассчитанные значения центров линий; N — количество вовлеченных в подгонку данных; n — количество подгоночных параметров.

В качестве начальных значений параметров основного колебательного состояния мы использовали константы из [2], уточнив их подгонкой к центрам линий переходов внутри основного колебательного состояния. Наш подогнанный набор параметров очень близок к начальному. В табл. 2 представлено сравнение значений параметров основного состояния, полученных в настоящей работе, со значениями из работы [2].

Т	а	б	л	и	П	а	2
	и	o	.1	*1	щ	u	

Параметры эффективного гамильтониана для основного колебательного состояния молекулы H₂S

		-
Параметр	Работа [2]	Данная работа
Α	10,3601594	10,3600762
(B + C)/2	6,8744595	6,8743232
(B - C)/4	1,07183815	1,07179959
$\Delta_K \cdot 10^{-2}$	0,370326	0,369955
$\Delta_{JK} \cdot 10^{-2}$	0,228026	0,227569
$\Delta_J \cdot 10^{-3}$	0,652598	0,650182
$\delta_K \cdot 10^{-3}$	-0,132618	-0,132776
$\delta_J \cdot 10^{-3}$	0,295517	0,294491
$H_K \cdot 10^{-5}$	0,13811	0,14051
$H_{KJ} \cdot 10^{-5}$	0,12592	0,11737
$H_{JK} \cdot 10^{-5}$	-0,15329	-0,14662
$H_J \cdot 10^{-6}$	0,27098	0,25363
$h_K \cdot 10^{-5}$	0,12143	0,12290
$h_{KJ} \cdot 10^{-6}$	-0,47530	-0,48509
$h_J \cdot 10^{-6}$	0,12708	0,13541
$L_K \cdot 10^{-8}$	-0,4396	-0,4478
$L_{KKJ} \cdot 10^{-8}$	0,5331	0,5480
$L_{KJ} \cdot 10^{-8}$	-0,2986	-0,3319
$L_{KJJ} \cdot 10^{-8}$	0,09472	0,11843
$L_J \cdot 10^{-9}$	-0,0985	-0,1395
$l_K \cdot 10^{-8}$	0,1757	-0,08936
$l_{KJ} \cdot 10^{-9}$	-0,301	-0,1507
$l_{JK} \cdot 10^{-9}$	0,4051	0,1769
$l_J \cdot 10^{-10}$	-0,7044	-0,4994
$P_K \cdot 10^{-11}$	0,571	0,367
$p_K \cdot 10^{-11}$	0,401	0,141
$P_{KKKJ} \cdot 10^{-11}$	-0,708	-0,314

При последующей подгонке параметры для основного колебательного состояния были фиксированы полученными значениями. Варьировались параметры, описывающие их колебательную зависимость, и параметры резонансных взаимодействий. Таким образом было определено 609 постоянных, описывающих колебательную зависимость параметров оператора $H_{\rm VR}$, 16 главных параметров операторов резонансных взаимодействий, а также 120 постоянных, описывающих колебательную зависимость резонансных параметров. Этот набор параметров может быть получен от авторов после направленного запроса.

Из подгонки были исключены колебательновращательные переходы с экспериментальной ошибкой более 0,01 см⁻¹. Таким образом, в результирующую подгонку было включено 26723 экспериментальных центра линий (7571 уровень энергии) 64 колебательных полос. Стандартное отклонение подгонки составило 0,022 см⁻¹. Невязки между экспериментальными и рассчитанными центрами линий в зависимости от волнового числа приведены на рис. 1. В табл. З представлен результат глобального моделирования центров линий молекулы H₂S.

В [29] дан список из 115 млн колебательновращательных переходов молекулы H₂³²S, рассчитанных с использованием полуэмпирической поверхности потенциальной энергии и *ab initio* поверхности дипольного момента, который доступен

Рис. 1. Невязки между экспериментальными и рассчитанными значениями центров линий молекулы H₂S в зависимости от волнового числа

Таблица З

Результат глобального моделирования центров линий молекулы H₂S

Характеристика	Значение
Спектральный диапазон, см ⁻¹	4,38-16436,57
Количество переходов	26723
Количество КВ уровней энергии	7571
Количество колебательных полос	64
J_{\max}	26
$K_{a \max}$	16
СКО, см ⁻¹	$2,2\cdot 10^{-2}$

Примечание. J_{\max} – максимальное значение квантового числа полного углового момента J; $K_{a\max}$ – максимальное значение вращательного квантового числа K_a .

по ссылке [30]. На рис. 2 показаны рассчитанные в настоящей работе значения уровней энергии в сравнении со значениями из [30]. Большинство уровней энергии, полученных в результате двух расчетов, согласуются в пределах 0,2 см⁻¹. Однако есть уровни, для которых различие достигает больших величин. Из рис. 2 исключено 2480 уровней энергии, для которых разница значений энергии варьируется в пределах от 1 до 1425 см⁻¹. Такая большая разница, на наш взгляд, является следствием неправильной идентификации соответствующих уровней энергии в [29].

В [31] подгонкой к 4175 экспериментальным уровням энергии семи изотопических модификаций молекулы сероводорода получена изотопически инвариантная полуэмпирическая функция потенциальной энергии этой молекулы, которая воспроизводит вовлеченные уровни энергии со среднеквадратичным отклонением 0,05 см⁻¹. Детально сравнить наши рас-

Рис. 2. Разности между уровнями энергии молекулы H₂S, рассчитанными вариационным методом [30], и значениями, рассчитанными в настоящей работе

четы с расчетами работы [31] не представляется возможным, поскольку в последней не опубликован список рассчитанных уровней энергии.

2. Глобальное моделирование интенсивностей спектральных линий H₂³²S

На основе собственных функций эффективного гамильтониана, полученных при глобальном моделировании центров линий молекулы, была проведена подгонка параметров эффективного дипольного момента для первых шести серий переходов $\Delta P = 1$, 2, 3, 4, 5, 6.

Интенсивность линии *S*, обусловленной колебательно-вращательным переходом из состояния *a* в состояние *b*, определяется следующей формулой:

$$S_{b\leftarrow a}(T) = \frac{8\pi^3}{3hc} Cg_a v_{b\leftarrow a} \frac{\exp(-hcE_a/kT)}{Q(T)} \times \left[1 - \exp(-hcv_{b\leftarrow a})/kT\right] W_{b\leftarrow a},$$
(7)

где C — доля изотополога в образце; $v_{b\leftarrow a}$ — волновое число, соответствующее переходу $b\leftarrow a$; g_a ядерный статистический вес нижнего состояния ($g_a = 3$ для ortho состояний ($v_3 + K_a + K_c$ — нечетное) и $g_a = 1$ для para состояний ($v_3 + K_a + K_c$ четное)); E_a — энергия нижнего состояния; c скорость света; h — постоянная Планка; k — постоянная Больцмана; Q(T) — статистическая сумма; T — абсолютная температура, K; $W_{b\leftarrow a}$ — момент перехода.

Момент перехода определен выражением из [32]:

$$W_{V'J'K'_{a}K'_{c} \leftarrow VJK_{a}K_{c}} = (2J+1) \left| \sum_{2V_{1}+V_{2}+2V_{3}=P} \sum_{2\Delta V_{1}+\Delta V_{2}+2\Delta V_{3}=\Delta P} \sum_{K\Delta K} C_{VJ'K'_{a}K'_{c}}^{V_{1}+\Delta V_{1}V_{2}+\Delta V_{3}K+\Delta K} C_{VJK_{a}K_{c}}^{V_{l}V_{2}V_{3}K} \times M_{\Delta V}^{|\Delta K|} \left(1 + \sum_{i} \kappa_{\Delta V_{i}}^{|\Delta K|} V_{i} + F_{\Delta J\Delta K}^{\Delta V}(J,K) \right) \Phi_{\Delta J\Delta K}(J,K) \right|^{2},$$

$$(8)$$

Лукашевская А.А., Перевалов В.И.

где $C_{VJ'K_{a}K_{c}}^{V_{1}+\Delta V_{1}V_{2}+\Delta V_{2}V_{3}+\Delta V_{3}K+\Delta K}$ и $C_{VJK_{a}K_{c}}^{V_{1}V_{2}V_{3}K}$ – коэффициенты разложения, определяющие собственные функции эффективного гамильтониана для верхнего и нижнего колебательно-вращательных состояний соответственно; $M_{\Delta V}^{[\Delta K]}$ – главные параметры матричных элементов оператора дипольного момента; параметры $\kappa_{\Delta V_{i}}^{[\Delta K]}$ описывают их колебательную зависимость; $\Phi_{\Delta J \Delta K}(J,K)$ равен коэффициенту Глебша— Гордана ($1\Delta KJK|J + \Delta JK + \Delta K$) для $\Delta K = 0, \pm 1$; для $\Delta K = \pm 2$:

$$\Phi_{\Delta J=1\ \Delta K=\pm 2}(J,K) =$$

$$= \sqrt{\frac{(J\mp K)(J\pm K+1)(J\pm K+2)(J\pm K+3)}{2(J+1)(2J+1)}},$$

$$\Phi_{\Delta J=0\ \Delta K=\pm 2}(J,K) =$$

$$= \pm \sqrt{\frac{(J\mp K)(J\mp K-1)(J\pm K+1)(J\pm K+2)}{2J(J+1)}},$$

$$\Phi_{\Delta J=-1\ \Delta K=\pm 2}(J,K) =$$

$$= \sqrt{\frac{(J\mp K)(J\mp K-1)(J\mp K-2)(J\pm K+1)}{2J(2J+1)}};$$
(9)

функции $\Phi_{\Delta J \Delta K}(J, K)$ в случае $\Delta K = \pm 3$ могут быть найдены в нашей работе [32]. $F_{\Delta J \Delta K}^{\Delta V}(J, K)$ — функции Германа—Уоллиса, которые представляются следующими выражениями:

для полос с нечетным значением $|\Delta v_3|$:

$$F_{\Delta J=\pm 1}^{\Delta V} {}_{\Delta K=0}^{\Delta V}(J,K) = b_m^{\Delta V}m + d_m^{\Delta V}m^2 + d_K^{\Delta V}K^2,$$

$$F_{\Delta J=0}^{\Delta V} {}_{\Delta K=0}^{\Delta V}(J,K) = d_{JQ}^{\Delta V}J(J+1) + d_K^{\Delta V}K^2,$$

$$F_{|\Delta J|=1}^{\Delta V} {}_{\Delta K=\pm 2}^{\Delta V}(J,K) = {}^{2}b_m^{\Delta V}m \pm {}^{2}b_K^{\Delta V}(K\pm 1),$$

$$F_{\Delta J=0}^{\Delta V} {}_{\Delta K=\pm 2}^{\Delta V}(J,K) = \pm {}^{2}b_K^{\Delta V}(K\pm 1);$$
(10)

для полос с четным значением $|\Delta v_3|$:

$$F_{|\Delta J|=1\ \Delta K=\pm 1}^{\Delta V}(J,K) = b_m^{\Delta V}m \pm b_K^{\Delta V}(2K\pm 1) + d_m^{\Delta V}m^2 \pm d_{mK}^{\Delta V}m(2K\pm 1) + d_K^{\Delta V}(2K\pm 1)^2,$$

$$F_{\Delta J=0\ \Delta K=\pm 1}^{\Delta V}(J,K) = \pm b_K^{\Delta V}(2K\pm 1) + d_{JO}^{\Delta V}J(J+1) + d_K^{\Delta V}(2K\pm 1)^2,$$
(11)

где m = -J для P-ветви и m = (J + 1) для R-ветви.

Параметры эффективного дипольного момента были определены в ходе подгонки рассчитанных значений интенсивностей линий к экспериментальным значениям, взятым из работ [11, 18, 28, 33, 35, 36], методом наименьших квадратов путем поиска минимума функционала

$$\chi = \sqrt{\frac{\sum_{i} \left((S_{i}^{\text{obs}} - S_{i}^{\text{calc}}) / S_{i}^{\text{obs}} \right)^{2}}{N - n}} \cdot 100\%, \qquad (12)$$

где S_{obs} и S_{calc} — экспериментальные и рассчитанные интенсивности линий соответственно; N — число вовлеченных в подгонку интенсивностей линий; n — число варьируемых параметров эффективного дипольного момента. Для расчета интенсивностей линий статистическая сумма была взята из [34]. В табл. 4 представлен результат подгонки интенсивностей линий для каждой серии полос.

Таблица 4 Результат моделирования интенсивностей линий первых шести серий колебательных переходов ΔР в молекуле H₂S

Серия ΔP	Полоса*	$N_{ m line}$	$N_{ m par}$	СКО, %
1	ν_1	61	3	2,96
2	$\begin{array}{c} \nu_1 \\ 2\nu_2 \\ \nu_3 \end{array}$	531	22	3,39
3	$\begin{array}{c} \nu_1+\nu_2\\ 3\nu_2\\ \nu_2+\nu_3 \end{array}$	530	12	3,36
4	$\begin{array}{c} 2\nu_{1} \\ 2\nu_{2} + \nu_{3} \\ 4\nu_{2} \\ \nu_{1} + \nu_{3} \\ \nu_{1} + 2\nu_{2} \\ 2\nu_{3} \end{array}$	1316	22	4,92
5	$\begin{array}{c} 2v_{1}+v_{2}\\ 3v_{2}+v_{3}\\ 5v_{2}\\ v_{1}+v_{2}+v_{3}\\ v_{1}+3v_{2}\\ v_{2}+2v_{3} \end{array}$	1102	19	5,88
6	$\begin{array}{c} 3v_1 \\ v_1 + 2v_3 \\ v_1 + 2v_2 + v_3 \\ 2v_1 + v_3 \\ 2v_1 + 2v_2 \\ 3v_3 \end{array}$	1088	15	9,09

П р и м е ч а н и е. *Полосы данной серий переходов, участвующие в подгонке; $N_{\rm line}$ — количество линий соответствующей серии переходов, включенных в подгонку; $N_{\rm par}$ — количество подогнанных параметров.

Из табл. 4 следует, что СКО лежит в пределах экспериментальной точности 3-5% для первых пяти серий колебательных переходов. Что касается серии колебательных переходов $\Delta P = 6$, то для подгонки параметров эффективного дипольного момента использовались предварительные оценочные интенсивности линий, точность которых лежит в интервале 5-20% [35]. Поэтому достигнутое в результате подгонки значение СКО = 9,09% является вполне удовлетворительным. Таблица параметров эффективного дипольного в 9 фективного дипольного в 9 фективного дипольного момента представлена в «Приложении».

На рис. З в качестве примера приведены относительные невязки интенсивностей линий для полосы $v_3 H_2^{32}S$. Большинство невязок лежит в пределах декларируемой авторами [11] экспериментальной

Банк параметров спектральных линий молекулы H₂S

Рис. 3. Относительные невязки между экспериментальными и рассчитанными интенсивностями линий полосы v₃ молекулы H₂S в зависимости от квантового числа *m*; горизонтальные линии *y* = -4 и *y* = 4 представляют неопределенность экспериментальных интенсивностей линий, связанную с декларированной в [11] неопределенностью интегральной интенсивности полосы

неопределенности в 4% для интегральной интенсивности этой полосы. Интересно отметить, что вследствие хорошо известного факта малости для молекулы H₂³²S первых производных функции дипольного момента по нормальным координатам параметр матричного элемента с $|\Delta K| = 2$ эффективного дипольного момента M^2_{001} = -0,21889(90) × 10⁻³ Д по абсолютной величине больше параметра с $|\Delta K| = 0$ $M_{001}^0 = 0,185(11) \cdot 10^{-3}$ Д, хотя первый появляется в более высоком порядке малости теории возмущений. Для расчета интенсивностей линий горячих полос $2v_3 - v_3$, $3v_3 - 2v_3$, $v_3 + v_2 - v_2$ и т.д. нужно учитывать колебательную зависимость параметра Моол. Однако мы не располагаем экспериментальными интенсивностями линий соответствующих «горячих» полос, чтобы определить параметры, отвечающие за колебательную зависимость M_{001}^0 .

3. Банк параметров спектральных линий молекулы $H_2^{32}S$

На основе моделирования центров и интенсивностей колебательно-вращательных переходов молекулы сероводорода в ходе настоящего исследования был создан банк параметров спектральных линий, включающий в себя первые шесть серий колебательных переходов ($\Delta P = 1, 2, 3, 4, 5, 6$) при T = 296 К. Банк данных охватывает спектральный диапазон 552,76—8424,32 см⁻¹ и содержит ~88 тыс. колебательно-вращательных переходов. Отсечка по величине интенсивности линий выбрана равной 10^{-28} см/мол.

В банке данных содержится следующая информация: колебательные и вращательные квантовые числа верхнего и нижнего состояний; центр линии (в см⁻¹); энергии верхнего и нижнего состояний (в см⁻¹), вычисленные с использованием набора параметров глобального эффективного гамильтониана, полученного в рамках настоящего исследования; интенсивность линии (в см/мол. при T = 296 K), вычисленная с использованием собственных функций глобального эффективного гамильтониана и набора параметров эффективного дипольного момента, найденного в настоящей работе; коэффициент Эйнштейна (в с⁻¹), а также статистические веса для верхнего и нижнего состояний. В табл. 5 представлена характеристика банка данных.

Заключение

Представленный в настоящей работе банк параметров спектральных линий для молекулы сероводорода размещен на сайте ИОА СО РАН по адресу: ftp://ftp.iao.ru/pub/H2S/.

В банке данных, помимо параметров спектральных линий для «холодных» колебательных полос поглощения, содержатся данные по «горячим» переходам, что может быть полезным при исследовании атмосферы Венеры, а также горячих атмосфер экзопланет.

В связи с отсутствием экспериментальных данных по интенсивностям горячих полос с $\Delta V_3 = 1$, необходимых для определения параметров $\kappa^0_{\Delta V_3=1i}$, описывающих колебательную зависимость M^0_{001} , соответствующие горячие полосы отсутствуют в нашем банке данных.

Авторы выражают благодарность О.В. Науменко за полезные обсуждения и предоставление файлов экспериментальных данных.

Исследование выполнено за счет гранта РНФ (проект № 17-12-01204).

Т	а	б	Л	И	ц	а	5
---	---	---	---	---	---	---	---

Характеристика банка параметров спектральных линий молекулы ${ m H}_2 { m S}$									
Серия ΔP	$N_{ m line}$	v_{min}	ν_{max}	$S_{\rm max}$	$J_{ m max}$	$K_{a \max}$	$E_{\rm low}({\rm max})$		
1	7949	552,76	2033,69	1,99E-21	28	20	4346,57		
2	13978	1737,15	3419,26	3,66E-22	29	20	3935,92		
3	17357	2978,40	4691,36	1,90E-21	29	20	3935,92		
4	20179	4250,36	5976,71	3,36E-22	28	18	3671,64		
5	16399	5600,08	6987,34	1,41E-22	27	18	3416,27		
6	12110	6926,04	8424,32	1,50E-23	25	16	2987,40		

<u>Примечание</u> – количество линий в списке для данной серии переходов; v_{min} , v_{max} – минимальное и максимальное значения центров линий (см⁻¹); S_{max} – максимальное значение интенсивности линий (см/мол. при T = 296 K); E_{low} (max) – максимальное значение энергии нижнего состояния (см⁻¹).

Лукашевская А.А., Перевалов В.И.

Приложение

Параметры эффективного дипольного момента							для серий п	epexo	цов Δ Р	• = 1-	-6 в м	олекуле H ₂ S	
Параметр	Δv_1	Δv_2	Δv_3	ΔK	Величина*	Порядок	Параметр	Δv_1	Δv_2	Δv_3	ΔK	Величина*	Порядок
			4	$\Delta P =$	1		$\Delta P = 4$						
M	0	1	0	1	0,7416(18)	10 ⁻²	M	1	0	1	0	0,30406(40)	10^{-2}
b_K	0	1	0	1	0,1083(41)		M	1	0	1	2	-0,06700(38)	10-4
d_{mK}	0	1	0	1	-0,516(99)	10 ⁻⁵	b_m	1	0	1	0	0,7002(55)	10^{-2}
			4	$\Delta P =$	2		${}^{2}b_{m}$	1	0	1	2	0,4174(46)	10^{-3}
M	0	0	1	0	0,185(11)	10 ⁻³	M	0	4	0	1	-0,4713(4)	10^{-4}
M	0	0	1	2	-0,21889(90)	10 ⁻³	b_m	0	4	0	1	-0,6820(93)	10^{-1}
b_m	0	0	1	0	-1,579(11)		M	0	2	1	0	0,11118(20)	10 ⁻²
d_m	0	0	1	0	0,3153(24)	10-1	M	0	2	1	2	-0,1758(21)	10 ⁻⁴
d_K	0	0	1	0	-0,2060(48)		b_m	0	2	1	0	-0,1879(32)	10-1
d_{JQ}	0	0	1	0	0,5573(43)	10 ⁻¹	d_{JQ}	0	2	1	0	0,1146(57)	10^{-2}
$^{2}b_{m}$	0	0	1	2	0,516(17)	10 ⁻¹	M	0	0	2	1	-0,3043(19)	10^{-3}
$^{2}b_{K}$	0	0	1	2	-0,334(29)	10 ⁻¹	b_m	0	0	2	1	-0,5275(51)	10 ⁻¹
M	0	2	0	1	-0,23223(63)	10 ⁻²	b_K	0	0	2	1	-0,312(38)	10-1
b_m	0	2	0	1	-0,1969(93)	10 ⁻¹				ΔP	9 = 5	-	
b_K	0	2	0	1	0,45776(93)	10 ⁻¹	M	2	1	0	1	0,4206(46)	10 ⁻³
d_{mK}	0	2	0	1	-0,102(36)	10 ⁻²	b_m	2	1	0	1	0,1135(46)	
d_K	0	2	0	1	0,976(24)	10 ⁻³	b_K	2	1	0	1	-0,5328(27)	10-1
d_{JQ}	0	2	0	1	-0,154(22)	10 ⁻²	M	0	1	2	1	0,5052(59)	10^{-3}
M	1	0	0	1	0,22181(56)	10 ⁻²	M	1	1	1	0	0,18493(27)	10 ⁻²
M	1	0	0	3	0,1075(99)	10 ⁻⁵	M	1	1	1	2	0,433(19)	10^{-5}
b_m	1	0	0	1	0,8955(21)	10 ⁻¹	b_m	1	1	1	0	-0,7111(40)	10^{-2}
b_K	1	0	0	1	0,5556(11)	10 ⁻¹	$^{2}b_{m}$	1	1	1	2	0,226(23)	10 ⁻³
d_m	1	0	0	1	0,702(20)	10 ⁻³	M	0	5	0	1	0,1505(20)	10^{-4}
d_{mK}	1	0	0	1	0,263(21)	10 ⁻²	M	0	5	0	3	-0,636(66)	10 ⁻⁷
d_K	1	0	0	1	-0,226(15)	10 ⁻²	b_m	0	5	0	1	0,1793(35)	
d_{JQ}	1	0	0	1	0,437(18)	10 ⁻²	b_K	0	5	0	1	-0,953(36)	10^{-1}
			4	$\Delta P =$	3		d_m	0	5	0	1	0,3773(37)	10 ⁻²
M	1	1	0	1	0,47790(57)	10 ⁻²	M	0	3	1	0	0,33885(85)	10 ⁻³
b_m	1	1	0	1	0,2251(15)	10 ⁻¹	d_K	0	3	1	0	0,958(10)	10 ⁻²
b_K	1	1	0	1	-0,4118(97)	10 ⁻²	d_{JQ}	0	3	1	0	-0,283(55)	10 ⁻²
M	0	3	0	1	0,12287(18)	10 ⁻²	M	1	3	0	1	-0,9640(79)	10 ⁻⁴
b_m	0	3	0	1	0,2702(32)	10-1	b_m	1	3	0	1	-0,1667(13)	
b_K	0	3	0	1	-0,2542(39)	10 ⁻¹	b_K	1	3	0	1	0,566(12)	10^{-1}
d_m	0	3	0	1	-0,9587(40)	10 ⁻³				ΔP	9 = 6		
d_{mK}	0	3	0	1	0,764(77)	10 ⁻³	M	3	0	0	1	-0,23940(63)	10^{-3}
M	0	1	1	0	0,8826(12)	10 ⁻²	b_m	3	0	0	1	-0,356(17)	10 ⁻¹
M	0	1	1	2	0,3698(93)	10-4	b_K	3	0	0	1	0,130(10)	10-1
b_m	0	1	1	0	-0,816(16)	10 ⁻²	M	0	0	3	0	0,411049(84)	10-3
d_K	0	1	1	0	-0,608(58)	10 ⁻³	M	0	0	3	2	-0,422(11)	10-5
				$\Delta P =$	4		M	2	0	1	0	0,3459(13)	10 ⁻³
M	2	0	0	1	0,15620(19)	10-2	M	2	0	1	2	-0,1107(13)	10-4
<u>M</u>	2	0	0	3	-0,996(56)	10-6	b_m	2	0	1	0	0,193(19)	10 ⁻¹
b_m	2	0	0	1	-0,5125(50)	10-1	b_m	1	0	2	1	0,626(15)	10 ⁻⁵
b_K	2	0	0	1	0,1697(35)	10-1	b_m	2	2	0	1	0,419(14)	10-5
M	1	2	0	1	0,2437(10)	10-3	b_K	2	2	0	1	0,276(15)	10-5
M	1	2	0	3	-0,670(30)	10-6	M	1	2	1	0	0,27075(84)	10-3
b_m	1	2	0	1	0,7168(21)	10-1	M	1	2	1	2	-0,339(11)	10-5
b_K	1	2	0	1	0,364(17)	10-1	b_m	1	2	1	0	-0,145(15)	10^{-1}
d_{JQ}	1	2	0	1	-0,309(35)	10 ⁻²							

* Параметры M даны в Дебаях, а параметры функций Германа–Уоллиса b_m , b_K , d_{JQ} , d_{mK} , d_K – безразмерные.

- 1. Brimblecombe P., Hammer C., Rodhe H., Ryaboshapko A., Boutron C.F. Human influence on the sulfur cycle // Evolution of the global biogeochemical sulphur cycle. Chichester, New York: John Wiley & Sons, Ltd., 1989. V. 39. P. 77-121.
- 2. Flaud J.M., Camy-Peyret C., Johns J.W.C. The farinfrared spectrum of hydrogen sulfide. The (000) rota-

tional constants of $H_2^{\ 32}S$, $H_2^{\ 33}S$, and $H_2^{\ 34}S$ // Can. J. Phys. 1983. V. 61. P. 1462–1473.

- 3. Irwin P.G.J., Toledo D., Garland R., Teanby N.A., Fletcher L.N., Orton G.A., Bezard B. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere Nat. Astron. 2018. V. 2. P. 420–427.
- 4. Niemann H.B., Atreya S.L., Carignan G.R., Donahue T.H., Haberman J.A., Harpold D.N., Hartle R.E.,

Hunten D.M., Kasprzak W.T., Mahaffy P.R., Owen T.C., Way S.H. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer // J. Geophys. Res. 1998. V. 103. P. 22831–22845.

- 5. Kaltenegger L., Sasselov D. Detecting planetary geochemical cycles on exoplanets: Atmospheric signatures and the case of SO_2 // Astrophys. J. 2010. V. 708, N 2. P. 1162–1167.
- Yamada K.M.T., Klee S. Pure rotational spectrum of H₂S in the far-infrared region measured by FTIR spectroscopy // J. Mol. Spectrosc. 1994. V. 166. P. 395–405.
- Azzam A.A.A., Yurchenko S.N., Tennyson J., Martin M.A., Pirali O. Terahertz spectroscopy of hydrogen sulfide // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. P. 341–351.
- Cazzoli G., Puzzarini C. The rotational spectrum of hydrogen sulfide: The H₂³³S and H₂³²S isotopologues revisited // J. Mol. Spectrosc. 2014. V. 298 (Suppl. C). P. 31–37.
- Belov S.P., Yamada K.M.T., Winnewisser G., Poteau L., Bocquet R., Demaison J., Polyansky O., Tretyakov M.Y. Terahertz rotational spectrum of H₂S // J. Mol. Spectrosc. 1995. V. 173. P. 380–390.
- Lechuga-Fossat L., Flaud J.M., Camy-Peyret C., Johns J.W.C. The spectrum of natural hydrogen-sulfide between 2150 cm⁻¹ and 2950 cm⁻¹ // Can. J. Phys. 1984. V. 62. P. 1889–1923.
- Brown L.R., Crisp J.A., Crisp D., Naumenko O.V., Smirnov M.A., Sinitsa L.N., Perrin A. The absorption spectrum of H₂S between 2150 and 4260 cm⁻¹: Analysis of the positions and intensities in the first (2v₂, v₁, and v₃) and second (3v₂, v₁ + v₂, and v₂ + v₃) triad regions // J. Mol. Spectrosc. 1998. V. 188. P. 148–174.
- Ulenikov O.N., Malikova A.B., Koivusaari M., Alanko S., Anttila R. High resolution vibrational rotational spectrum of H₂S in the region of the ν₂ fundamental band // J. Mol. Spectrosc. 1996. V. 176. P. 229–235.
- Brown L.R., Crisp J.A., Crisp D., Naumenko O.V., Smirnov M.A., Sinitsa L.N. The first hexad of interacting states of H₂S molecule // Proc. SPIE. 1997. V. 3090. P. 111-113.
- Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Absorption spectrum of H₂S between 7200 and 7890 cm⁻¹ // Proc. SPIE. 2004. V. 5396. P. 5396–5397.
- Ulenikov O.N., Liu A.W., Bekhtereva E.S., Gromova O.V., Hao L.Y., Hu S.M. On the study of highresolution rovibrational spectrum of H₂S in the region of 7300–7900 cm⁻¹ // J. Mol. Spectrosc. 2004. V. 226. P. 57–70.
- Lane W.C., Edwards T.H., Gillis J.R., Bonomo F.S., Murcray F.J. Analysis of v₂ of H₂S // J. Mol. Spectrosc. 1982. V. 95. P. 365–380.
- 17. Strow L.L. Measurement and analysis of the v_2 band of H₂S: Comparison among several reduced forms of the rotational Hamiltonian // J. Mol. Spectrosc. 1983. V. 97. P. 9–28.
- Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulfide absorption spectrum in the 5700-6600 cm⁻¹ spectral region // Proc. SPIE. 2004. V. 5311. P. 59-67.
- Ulenikov O.N., Liu A.W., Bekhtereva E.S., Gromova O.V., Hao L.Y., Hu S.M. High-resolution Fourier transform spectrum of H₂S in the region of the second hexade // J. Mol. Spectrosc. 2005. V. 234. P. 270– 278.
- Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulfide absorption spectrum in the

8400–8900 cm $^{-1}$ spectral region // Proc. SPIE. 2004. V. 5743. P. 1–7.

- Vaittinen O., Biennier L., Campargue A., Flaud J.M., Halonen L. Local mode effects on the high-resolution overtone spectrum of H₂S around 12500 cm⁻¹ // J. Mol. Spectrosc. 1997. V. 184. P. 288–299.
- Ulenikov O.N., Liu A.W., Bekhtereva E.S., Grebneva S.V., Deng W.P., Gromova O.V., Hu S.M. High resolution Fourier transform spectrum of H₂S in the region of 8500–8900 cm⁻¹ // J. Mol. Spectrosc. 2004. V. 228. P. 110–119.
- Ding Y., Naumenko O.V., Hu S.M., Zhu Q., Bertseva E., Campargue A. The absorption spectrum of H₂S between 9540 and 10000 cm⁻¹ by intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser // J. Mol. Spectrosc. 2003. V. 217. P. 222–238.
- 24. Naumenko O.V., Campargue A. Local mode effects in the absorption spectrum of H_2S between 10780 and 11330 cm⁻¹ // J. Mol. Spectrosc. 2001. V. 209. P. 242–253.
- Campargue A., Flaud J.M. The overtone spectrum of H₂S near 13200 cm⁻¹ // J. Mol. Spectrosc. 1999. V. 194. P. 43–51.
- 26. Grobklob R., Rai S.B., Stuber R., Demtroder W. Diode laser overtone spectroscopy of hydrogen sulfide // Chem. Phys. Lett. 1994. V. 229. P. 609–615.
- Naumenko O.V., Campargue A. H₂S: First observation of the (70 ±, 0) local mode pair and updated global effective vibrational Hamiltonian // J. Mol. Spectrosc. 2001. V. 210. P. 224–232.
- 28. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Camparque A., Chance K.V., Drouin B.J., Flaud J.M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database / J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3-69. DOI: 10.1016/j.jqsrt.2017.06.038.
- 29. Azzam A.A.A., Yurchenko S.N., Tennyson J., Naumenko O.V. Exomol line lists XVI: A hot line list for H₂S // Mon. Not. R. Astron. Soc. 2016. V. 460. P. 4063–4074.
- URL: http://www.exomol.com/data/molecules/H2S/ 1H2-32S/AYT2/ (last access: 12.01.2020).
- Tyuterev Vl.G., Tashkun S.A., Schwenke D.W. An accurate isotopic invariant potential function of the hydrogen sulfide molecule // Chem. Phys. Lett. 2001. V. 348. P. 223–234.
- 32. Perevalov V.I., Lukashevskaya A.A. Parameterization of the effective dipole moment matrix elements in the case of the asymmetric top molecules. Application to NO₂ molecule // Atmos. Ocean. Opt. 2015. V. 28. P. 17–23.
- 33. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Glushkov P.A., Scherbakov A.P., Horneman V.M., Sydow C., Maul C., Bauerecker S. Extended analysis of the high resolution FTIR spectra of H_2^{MS} (M = 32, 33, 34, 36) in the region of the bending fundamental band: The v_2 and $2v_2 - v_2$ bands: Line positions, strengths, and pressure

broadening widths // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 76–98.

- 34. Fischer J., Gamache R.R., Goldman A., Rothman L.S., Perrin A. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 401–412.
- 35. Brown L.R., Naumenko O.V. Частное сообщение.
- 36. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Raspopova N.I., Belova A.S., Maul C., Sydow C., Bauerecker S. Experimental line strengths of the 5v₂ band of H₂³²S in comparison with the results of "variational" calculation and HITRAN database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 243. P. 76–98. URL: https://doi.org/10.1016/j.jqsrt.2019.106812 (last access: 12.01.2020).

A.A. Lukashevskaya, V.I. Perevalov. Databank of spectral line parameters of the H₂S molecule.

The bank of spectral line parameters of the principal isotopologue of the hydrogen sulfide molecule $(H_2^{32}S)$ is presented. The databank is based on the global simulation of the line positions and intensities of this molecule performed within the method of effective operators. The parameters of the global effective Hamiltonian and of the effective dipole moment operator were obtained by their fittings to, respectively, the observed line positions and intensities, taken from the literature. The databank covers the 552.76–8424.32 cm⁻¹ spectral range and contains the calculated values of the following spectral line parameters: line position, line intensity, energies of lower and upper states, Einstein coefficient for the spontaneous emission, and the statistical weights of the lower and upper states. The intensity cutoff was chosen equal to 10^{-28} cm/molecule at T = 296 K. In total, the databank contains about 88 thousand lines. This databank is deployed on the website of V.E. Zuev Institute of Atmospheric Optics SB RAS (ftp://ftp.iao.ru/pub/H2S/).