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Приводятся результаты изучения влияния физической активности пациента с аневриз-
мой грудной аорты на частоту сердечных сокращений, а также влияния частоты сер-
дечных сокращений на рост аневризмы. С использованием результатов медицинского
исследования построена математическая модель аорты грудного отдела. Численно про-
анализированы гемодинамические параметры при различной частоте сердечных сокра-
щений. Установлено, что с увеличением частоты ударов сердца с 60 до 174 удар/мин
максимальные напряжение сдвига в стенке, скорость кровотока и давление в течение
сердечного цикла увеличиваются на 19,1, 12,7 и 50,0 % соответственно. Также установ-
лено, что с увеличением частоты сердцебиения среднее по времени напряжение сдвига
в стенке аорты уменьшается, а частота колебаний напряжения сдвига увеличивается,
в результате чего повышается вероятность развития аневризмы и разрыва аорты.
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жение сдвига в стенке, частота сердцебиения, численные методы гидродинамики

Введение. Сердечно-сосудистые заболевания являются причиной большинства вне-
запных смертей [1]. В развитии этих заболеваний важную роль играют такие факторы,
как наследственность, диабет, ожирение, гипертония и курение [2, 3]. Наиболее распро-
страненными сердечно-сосудистыми заболеваниями являются аневризмы, артериальная
гипертензия, атеросклероз, стенозы и тромбозы [4].

Аневризма — постепенное расширение артерии до размера, превышающего половину
ее начального диаметра [5], — начинается с разрушения эластина и деформации колла-
гена в артериальной стенке, что в конечном счете приводит к уменьшению эластичности
стенки [6]. При аневризме происходит кальцификация и возникают артериальные тромбо-
зы, что может вызвать инсульт [7]. Во многих случаях аневризма грудной аорты (АГА)
выявляется при лечении других заболеваний [8].

Вероятность разрыва и расслоения стенки аорты зависит, прежде всего, от размера
аневризмы. Показания к хирургическому вмешательству при лечении АГА часто основы-
ваются на максимально допустимом диаметре, который для восходящего и нисходящего
участков аорты составляет 5,5 и 6,5 см соответственно [6]. Поскольку средняя скорость
роста аневризмы, как правило, предсказуема, большинство пациентов откладывают хи-
рургическое лечение [9]. Однако во многих случаях разрывы происходят при значениях
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диаметра, меньших допустимого [10–12]. Таким образом, традиционные методы, основан-
ные только на визуализации, могут быть недостаточно точными при определении обла-
стей, в которых возможен разрыв [13].

Из результатов многочисленных исследований следует, что гемодинамические пара-
метры, такие как скорость, давление и напряжение сдвига в стенке (НСС), связаны с

заболеваниями аорты [14, 15]. Механические силы, возникающие в потоке крови, воздей-
ствуют на структуру эндотелиальных клеток, что может привести к разрыву артериаль-
ной стенки. Результаты численного моделирования кровотока могут быть использованы
при оценке динамических и биомеханических показателей кровотока [16]. Анализ показа-
телей, полученных при моделировании, а также клинических данных позволяет получить
более точную информацию о состоянии пациентов [6].

Для получения данных, необходимых для выявления заболевания на ранней стадии
и назначения терапевтических процедур, при численном моделировании кровотока необ-
ходимо учитывать индивидуальную геометрию аорты у пациента [17]. Геометрические
характеристики аневризмы аорты оказывают существенное влияние на такие гемодина-
мические параметры, как НСС, осредненное по времени НСС и колебательный индекс

сдвига (КИС) [18–21].

Из количественной оценки изменения толщины внутрипросветного тромба следует,
что размер области с малым КИС зависит от размера тромба [17, 22]. Из результатов
аутопсийных [23], экспериментальных [24] и численных [9, 25] исследований следует, что
аневризма развивается под действием таких факторов, как низкое осциллирующее НСС
аорты (т. е. малое значение осредненного по времени напряжения сдвига и большое зна-
чение КИС), а также вследствие наличия зон циркуляции. В ряде работ установлено, что
в областях с большими значениями КИС могут произойти разрывы [14, 26].

Частота сердечного цикла и ударный объем (объем крови, перекачиваемой из сердца
при каждом сердечном сокращении) оказывают непосредственное влияние на НСС и дру-
гие параметры гемодинамики. Частота сердечных сокращений (пульс) зависит от физиче-
ского состояния человека. При физической нагрузке для обеспечения мышц достаточным
количеством кислорода пульс и ударный объем увеличиваются [27]. Одним из наиболее
важных параметров физиологического состояния является максимальная частота сокра-
щений сердечной мышцы Hmax. Значение этого параметра используется при назначении
физических упражнений при реабилитации и профилактике заболеваний [28]. В работе

[9] параметр Hmax использовался при описании гемодинамики при аневризмах брюшной

аорты (АБА) с помощью магнитно-резонансной томографии и методов вычислительной
гидродинамики.

Наименьшее значение осредненного по времени НСС аневризмы наблюдается в состоя-
нии покоя, в то время как при нагрузке этот параметр увеличивается, а КИС уменьшается.
Влияние физических нагрузок на развитие АГА изучено меньше, чем их влияние на разви-
тие АБА [29]. Проведен ряд клинических исследований влияния физических упражнений
на артериальное давление при реабилитации пациентов, перенесших операцию при диссек-
ции (расслоении) грудной аорты [29–32]. Однако необходима разработка дополнительных
рекомендаций для больных с АГА [29]. Насколько известно авторам данной работы, ис-
следования влияния частоты сердечных сокращений у пациентов с АГА на НСС и КИС

ранее не проводились.

Целью настоящей работы является определение влияния частоты сердечных сокраще-
ний на гемодинамические факторы: скорость кровотока, давление, НСС аорты и КИС —
с использованием модели для пациента с АГА.
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1.Метод исследования. При моделировании течения крови используются уравнение
неразрывности и уравнение движения несжимаемой жидкости:

∇u = 0, ρ
∂u

∂t
+ ρ(u∇)u = −∇p +∇τ.

Здесь u — вектор скорости; τ — тензор напряжений; p, ρ — давление и плотность соот-
ветственно.

Величина Hmax, используемая для определения интенсивности физической нагрузки,
как правило, оценивается с учетом возраста A пациента [28]:

Hmax = 208− 0,7A.

При детальном анализе гемодинамики потока используются два важных критерия:
среднее по времени НСС T̄w и КИС Iω:

T̄w =
1

T

T∫
0

|Tw| dt, Iω =
1

2

(
1−

∣∣∣ T∫
0

Tw dt
∣∣∣ / T∫

0

|Tw| dt
)
. (1)

Оба этих критерия являются функциями НСС.
Значение КИС изменяется в диапазоне Iω = 0 ÷ 0,5 (значение Iω = 0 соответству-

ет напряжению сдвига одного и того же знака, значение Iω = 0,5 — осциллирующему

напряжению сдвига со средним по времени значением, равным нулю).
Область, в которой проводилось численное моделирование, построена на основе обсле-

дования 48-летнего пациента с АГА методом компьютерной томографии с использованием
программного обеспечения Mimics. Сетка генерировалась с помощью программного обес-
печения ICEM CFD (ANSYS Inc.). Уравнения движения жидкости решались численно с
использованием программы ANSYS Fluent.

Расчетная сетка показана на рис. 1. Вблизи стенки сетка содержит шесть слоев эле-
ментов в форме призмы. Для того чтобы обеспечить развитое состояние потока, область
вблизи выхода была расширена. Для проверки независимости результатов расчета от раз-
мера ячеек сетки были созданы пять сеток, включающих 175 066, 375 330, 519 071, 722 402
и 1 026 030 элементов. Из результатов расчета следует, что при использовании последних

ÂÑ

Рис. 1. Сетка в расчетной области (ВС — входное сечение)
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Рис. 2. Зависимость расхода потока Q от времени t при различных значениях
частоты сокращения сердечной мышцы H [29]:
1 — в состоянии покоя, 2 — H = (1/2)Hmax, 3 — H = (2/3)Hmax, 4 — H = Hmax

трех сеток различие значений НСС и среднего по области давления составляло менее 2 %.
Поэтому использовалась сетка, состоящая из 519 071 элементов.

Предполагается, что поток крови является нестационарным ламинарным потоком

несжимаемой жидкости с постоянными свойствами (плотность ρ = 1060 кг/м3, динамиче-
ская вязкость µ = 0,0035 Па · с). Стенка артерии считается жесткой и нескользящей. На
входной и выходной границах задаются зависящие от времени расход жидкости и давле-
ние, значения которых соответствуют экспериментально полученным значениям кровото-
ка в аорте [33].

Изучены четыре значения частоты сердечных сокращений: частота сердечных сокра-
щений у человека в состоянии покоя (60 удар/мин) и частоты сердечных сокращений

у человека в активном состоянии H = (1/2)Hmax, (2/3)Hmax, Hmax. Значения T̄w и Iω вы-
числяются по уравнениям (1) с учетом состояния 48-летнего пациента. Значения частоты
сердечных сокращений в состоянии покоя, а также равные H = (1/2)Hmax, (2/3)Hmax,
Hmax, составляют 60, 87, 131, 174 удар/мин соответственно. На рис. 2 приведена зависи-
мость расхода потока от времени.

Для выбора шага по времени при моделировании гемодинамических параметров паци-
ента в состоянии покоя были проверены три шага: 0,5; 1,0; 2,5 мс. Результаты численного
моделирования среднего НСС с шагами по времени, равными 0,5 и 1,0 мс, близки, по-
этому был принят шаг по времени, равный 1 мс, что соответствует 0,001 длительности
сердечного цикла T . Расчеты проводились для четырех последовательных циклов кро-
вотока. Результаты третьего и четвертого циклов совпадают, поэтому ниже приводятся
результаты последнего (четвертого) цикла.

Дискретизация диффузионных и конвективных членов в уравнениях выполнена с ис-
пользованием противопоточных схем второго порядка. Параметры, зависящие от времени,
вычислялись с использованием неявных схем второго порядка.

Обследование пациентов проводилось анонимно. Выполненные процедуры соответ-
ствуют этическим стандартам, установленным общественными организациями и Наци-
ональным комитетом Ирана.

2. Результаты исследования и их обсуждение. Для оценки влияния физической
активности рассматривались различные значения частоты сердечных сокращений. Ни-
же представлены результаты исследований, полученные для четырех значений частоты
сердечных сокращений: в состоянии покоя (35 % Hmax), (1/2)Hmax, (2/3)Hmax и Hmax.
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Рис. 3. Зависимость давления от безразмерного времени на входе в аорту при
различных значениях частоты сердечных сокращений:
1 — в состоянии покоя, 2 — H = (1/2)Hmax, 3 — H = (2/3)Hmax, 4 — H = Hmax

На рис. 3 представлена зависимость среднего давления в течение сердечного цикла
на входе в восходящую аорту при различных значениях частоты сердечных сокращений.
Видно, что давление существенно зависит от частоты сердечных сокращений. Высокая
частота сердечных сокращений вызывает значительные колебания давления в артерии.
При H = (1/2)Hmax, (2/3)Hmax, Hmax максимальное среднее давление на входе увеличи-
вается соответственно на 10,5, 27,2 и 43,9 % по сравнению с давлением в состоянии покоя.
Почти во всех случаях колебания давления при диастоле (в интервале t/T = 0,57 ÷ 1,00)
отсутствуют. Скорость и колебания скорости в этом интервале незначительны.

Из распределения давления вдоль аорты при t/T = 0,11 следует, что с увеличением
частоты сердечных сокращений среднее давление в аорте увеличивается.

При H = Hmax давление на стенку аневризматического мешка увеличивается на 37 %
по сравнению с давлением в состоянии покоя. Из результатов моделирования следует, что
перепад давления в аорте увеличивается с увеличением частоты сердечных сокращений.
При H = (1/2)Hmax, (2/3)Hmax, Hmax увеличение перепада давления составляет 41, 106 и
171 % соответственно.

На рис. 4 показаны линии тока крови в течение сердечного цикла при различных зна-
чениях частоты сердечных сокращений. Во всех случаях при t/T = 0,11 имеются области,
в которых скорость потока V очень большая. Такими областями являются внутренняя
стенка дуги аорты, вход в аневризму, ветви аорты, а также нисходящая часть аорты за
аневризмой. При t/T = 0,32 средняя скорость уменьшается по сравнению со скоростью

при t/T = 0,11, при этом в аневризматическом мешке образуются крупные вихри. Од-
нако при увеличении частоты сердечных сокращений вихри внутри аневризмы, а также
скорость вблизи ее стенки уменьшаются. При t/T = 0,7 (середина периода диастолы) ча-
стота сердечных сокращений оказывает существенное влияние на процесс формирования

вихрей и турбулентного потока. В состоянии покоя в восходящей части аорты и аневриз-
матическом мешке присутствуют вихри, вследствие чего образуются области с большой
скоростью потока вблизи внешней стенки аневризмы. По мере увеличения частоты боль-
шие вихри уменьшаются, при этом области с большой скоростью потока перемещаются
по направлению к входному отверстию аневризмы. Такие изменения характера кровотока
в аневризме приводят к существенным изменениям кровотока в восходящей аорте.

На рис. 5 приведена зависимость среднего НСС в течение сердечного цикла от времени
при различных значениях частоты сердечных сокращений. Во всех случаях максимальное
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Рис. 4. Линии тока крови в течение сердечного цикла при различных значениях
частоты сердечных сокращений:
а–в — в состоянии покоя, г–е — H = (1/2)Hmax, ж–и — H = (2/3)Hmax, к–м —
H = Hmax; а, г, ж, к — t/T = 0,11, б, д, з, л — t/T = 0,32, в, е, и, м — t/T = 0,70
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Рис. 5. Зависимость среднего НСС от безразмерного времени при различных

значениях частоты сердечных сокращений:
1 — в состоянии покоя, 2 — H = (1/2)Hmax, 3 — H = (2/3)Hmax, 4 — H = Hmax

значение среднего напряжения сдвига достигается в тот момент, когда скорость потока на
входе становится максимальной. Максимальное среднее напряжение сдвига существенно
увеличивается при увеличении частоты сердечных сокращений. При частоте, соответству-
ющей состоянию покоя (35 % Hmax), максимальное значение среднего напряжения сдвига
составляет 4,4 Па, тогда как при H = (1/2)Hmax, (2/3)Hmax, Hmax оно составляет 4,8; 5,5;
6,1 Па соответственно.

Распределение НСС аорты в различные моменты времени в течение сердечного цикла

приведено на рис. 6. При t/T = 0,11 во всех случаях на участках с большими значениями
пристенной скорости (см. рис. 4) наблюдаются большие значения НСС. При увеличении
частоты сердечных сокращений эти области незначительно увеличиваются.

При t/T = 0,32 с увеличением частоты сердечных сокращений НСС в восходящей

и нисходящей частях аорты незначительно увеличиваются. Во всех случаях при увели-
чении частоты сердечных сокращений напряжения в стенке аневризматического мешка

существенно уменьшаются.
В таблице приведены максимальные значения скорости кровотока, НСС и давления

в течение сердечного цикла. Увеличение частоты сердечных сокращений вызывает су-
щественное увеличение максимальных значений НСС и давления. При H = Hmax это

увеличение достигает значений ∆Tw,max = 19, 1 % для НСС и ∆Pmax = 50 % для давления.
При этом максимальная скорость потока в аорте увеличивается приблизительно на 12,7 %.

Из данных, приведенных в таблице и на рис. 3, следует, что при увеличении часто-
ты сердечных сокращений максимальное артериальное давление в аорте увеличивается.
Поскольку гипертония может привести к ускоренному росту АГА [34], пациентам с ане-
вризмой аорты следует соблюдать необходимые меры предосторожности при выполнении

действий, увеличивающих частоту сердечных сокращений. Этот вывод согласуется с ре-
зультатами клинических и статистических исследований [29].

Таким образом, в данной работе исследуются два важных параметра: осредненное по
времени НСС аорты и КИС. При определении причин развития и разрыва аневризм аорты
грудного отдела на основе результатов проведенных ранее исследований можно сделать

вывод, что низкое НСС может привести к образованию на стенке бляшек [26, 35], а следова-
тельно, к ухудшению механических свойств артериальной стенки [36]. По мере увеличения
частоты колебаний потока на участках с бляшками увеличивается вероятность разрыва и

рассечения средних слоев стенки [14, 37]. Из результатов проведенных исследований сле-
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Рис. 6. Распределение НСС аорты в различные моменты времени в течение

сердечного цикла при различных значениях частоты сердечных сокращений:
а–в — в состоянии покоя, г–е — H = (1/2)Hmax, ж–и — H = (2/3)Hmax, к–м —
H = Hmax; а, г, ж, к — t/T = 0,11, б, д, з, л — t/T = 0,32, в, е, и, м — t/T = 0,70
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Максимальные значения скорости и НСС в течение сердечного цикла

при различных значениях частоты сердечных сокращений

H Tw,max, Па ∆Tw,max, % Vmax, м/c ∆Vmax, % Pmax, мм рт. ст. ∆Pmax, %

Состояние покоя 85,1 — 1,574 — 90 —
(1/2)Hmax 87,7 3,1 1,637 4,0 101 12,2
(2/3)Hmax 97,4 14,5 1,702 8,1 120 33,3
Hmax 101,3 19,1 1,773 12,7 135 50,0
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Рис. 7. Распределение осредненных по времени (в течение сердечного цикла)
НСС аорты при различных значениях частоты сердечных сокращений:
а — в состоянии покоя, б — H = (1/2)Hmax, в — H = (2/3)Hmax, г — H = Hmax

дует, что малое значение осредненного по времени НСС наряду с большими значениями
КИС может приводить к росту аневризмы и атеросклерозу [9, 23, 24, 26]. Поэтому данные
параметры могут быть использованы для прогнозирования областей, в которых возможен
разрыв [38].

На рис. 7 приведено распределение осредненных по времени (в течение сердечного
цикла) НСС аорты при различных значениях частоты сердечных сокращений. По мере
увеличения частоты сердечных сокращений в аневризматическом мешке осредненные по

времени НСС аорты значительно уменьшаются, поэтому при H = Hmax вдоль всей стен-
ки аневризматического мешка они очень малы. Однако на искривленных участках аорты,
включая восходящий участок, дугу аорты, а также нисходящий участок за мешком ане-
вризмы, значения осредненных по времени НСС увеличиваются с увеличением частоты
сердечных сокращений.

Распределение КИС вдоль стенки аорты приведено на рис. 8. Видно, что с увеличением
частоты сердечных сокращений на стенке аорты, в частности на стенке аневризматиче-
ского мешка, КИС существенно увеличивается, поскольку большинство участков стенки
аневризмы сильно колеблются. В результате увеличивается вероятность роста аневризм
и возникновения атеросклероза [9, 23, 24, 26]. Следовательно, любой фактор, в том числе
физическая активность, который приводит к увеличению частоты сердечных сокращений,
может увеличить вероятность роста АГА.
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Рис. 8. Распределение КИС вдоль стенки аорты при различных значениях ча-
стоты сердечных сокращений:
а — в состоянии покоя, б — H = (1/2)Hmax, в — H = (2/3)Hmax, г — H = Hmax

Заключение. С использованием геометрической модели аорты грудного отдела, учи-
тывающей состояние и возраст пациента, численно исследовано влияние числа сердечных
сокращений на параметры гемодинамики больного с аневризмой.

Установлено, что увеличение частоты сердечных сокращений приводит к негатив-
ным изменениям характера кровотока. При увеличении частоты сердечных сокращений
от частоты в состоянии покоя до частоты в состоянии максимальной активности макси-
мальные НСС аорты, скорость кровотока и давление увеличиваются на 19,1, 12,7 и 50,0 %
соответственно. С увеличением частоты сердечных сокращений на стенке аневризмы уве-
личивается количество участков с малым значением осредненных по времени напряжений

сдвига. С увеличением частоты сердечных сокращений частота колебаний кровотока зна-
чительно возрастает и на большинстве участков стенки аневризмы наблюдаются большие

значения КИС. В результате увеличивается вероятность роста АГА, возникновения ате-
росклероза и разрыва стенки аорты.

Полученные результаты могут быть использованы при лечении, а также при назна-
чении профилактических мероприятий для больных с аневризмой грудной аорты.

Авторы выражают благодарность М. Джахангири (Исламский университет Азад (фи-
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