лда) к появлению сильных ударных волн и нежелательной перестройке потока. Поэтому такое сужение потребует внимательного анализа неоднородности потока. По существу, обсуждаемое явление связано с некоторым подогревом газа в сверхзвуковой области течения и оптимальные значения a позволяют получить это наилучшее распределение температуры и давления сверхзвукового потока. В этом смысле полученные результаты обладают большой общеюностью, поскольку необходимое повышение температуры газа можно осуществить и иными методами (вдув горячего газа, электроподогрев и т. п.), используя при этом сопла без поджатия. Такой подогрев можно осуществить и с помощью системы достаточно слабых ударных волн (косых скачков уплотнения) аналогично предлагаемому в [2].

Поступила 17 IV 1976

ЛИТЕРАТУРА

УДК 533.4-021.039.91

ВЫСОКОЭНЕРГЕТИЧЕСКАЯ ЧАСТЬ ПОЛНОЙ ФУНКЦИИ
РАСПРЕДЕЛЕНИЯ

В МНОГОПРОБОЧНОЙ МАГНИТНОЙ ЛОВУШКЕ

Ю. В. Васильев, Д. Д. Рютов

(Новосибирск)

Существенное уменьшение теплопроводности и скорости продольного расширения плазмы в многопробочных магнитных ловушках [1] делает такие системы весьма перспективными с точки зрения осуществления термозапирания плотной плазмы вдоль магнитного полюс в термомеханическом реакторе. Количество поведение плазмы в многооброчных ловушках может быть описано с помощью уравнений газодинамического типа, полученных в работах [2, 3]. Справедливость этих уравнений подтверждена экспериментально на установках со щелевой плазмой [4, 5].

На установках следующего поколения с дейтеревой или дейтерий-тритийной плазмой актуальной станет измерение выхода нейтронов из плазмы (прежде всего в диагностических целях). В связи с этим возникает вопрос о нахождении связи между выходом нейтронов и макроскопическими параметрами плазмы.

Решение этой задачи в применении к рассматриваемым установкам связано со следующей спецификой системностью. Система газодинамических уравнений [1—3] правильно описывает функцию распределения частиц, длина свободного пробега которых λ мала по сравнению с длиной установки L. В практических интересных случаях это условие выполняется для основной массы частиц плазмы, однако, как хорошо известно (см., например, [6]), вклад в нейтронный выход при внесшем больших температурах плазмы ($T \lesssim 40—50$ кэВ) вносит главным образом высокоэнергетические электроузы функции распределения. А так как длина свободного пробега быстро растет с энергией, может оказаться, что для нахождения нейтронного выхода требуется знать функцию рас-
пределения в области энергий \(\varepsilon \), где \(\lambda(\varepsilon) > L \) и где поэтому нельзя пользоваться результатами работ [1—3]. Цель данной работы — отыскание функций распределения в области энергий, где \(\lambda(\varepsilon) > L \).

1. Асимптотики функций распределения в дейтерийной или дейтерий- тритийной плазме. Частицы с \(\lambda(\varepsilon)/k \ll L \) покидают установку диффузионным образом, испытывая множество столкновений. Для них функция распределения близка к максвелловской. В области энергий \(\lambda(\varepsilon)/k \gg L \) важную роль в формировании функций распределения, помимо кулоновских столкновений, начинает играть сток частиц в конус потерь установки. Как известно, кулоновские столкновения приводят, во-первых, к притоку частиц в область больших энергий вследствие их диффузии в пространстве скоростей и, во-вторых, к обратному стоку в область малых энергий за счет силы динамического трения, которую испытывает движущаяся среда частиц. В стационарном случае для безграничной плазмы без каких-либо потерь равенство между этими двумя потоками динамическим образом поддерживает максвелловскую функцию распределения частиц. Дополнительный сток частиц в конус потерь в многопроточных дозвуках приводит, очевидно, к исчезновению этой функции. Ниже получены асимптотики функций распределения ядер дейтерия и трития в области энергий, где \(\lambda(\varepsilon)/k > L \).

Согласно [1—3], наилучшая эффективность удержания плазмы достигается при выполнении следующих двух условий: 1) длина отдельного пробкотрона \(l \) должна быть порядка \(\lambda(T)/k \); 2) длина пробки (т. е. длина области, где магнитное поле меняется от \(H_{\text{min}} \) до \(H_{\text{max}} \)) должна быть много меньше \(l \). Ниже эти условия считаются выполненными, что, в частности, позволяет пренебречь длиной пробки по сравнению с длиной пробкотрона.

Плотность \(n \) и температуру \(T \) (которые характеризуют основную массу частиц плазмы) при решении можно считать известными функциями координат и времени: они могут быть найдены в рамках газодинамических уравнений [2, 3]. Поскольку перепад электростатического потенциала на длине отдельного пробкотрона не превышает \((T/e)(l/L) \), влиянием электрического поля на движение частиц с энергией \(\varepsilon \geq T \) можно пренебречь. Имеет смысл ограничиться рассмотрением лишь той области энергий частиц с \(\lambda(\varepsilon)/k > L \), в которой функции распределения в каждый момент времени успевают подстраиваться под \(n \) и \(T \). Для частиц с большими энергиями вид функций распределения определяется заданием их в начальный момент времени и скоростью дальнейшего распада этого состояния. Установки, в которых эта группа частиц вносит основной вклад в нейтральный выход, малозначимы с практической точки зрения. Таким образом, в кинетических уравнениях можно опустить производную по времени от функции распределения; в окончательный результат зависимость от времени входит только параметрически, через функции \(n(t) \) и \(T(t) \).

Учитывая указанные обстоятельства (стационарность задачи, малость электрического поля, однородность магнитного поля в пространстве между пробками), можно записать следующее уравнение для функции распределения частиц сорта \(a \):

\[
\sum_b S_{ab} \{f_a, f_b\} = 0,
\]

* В случаях, когда пробочное отношение \(k \equiv H_{\text{max}}/H_{\text{min}} \) велико по сравнению с единицей, условие пренебрежения газодинамического подхода определяется неравенством \(\lambda(\varepsilon)/k < L \) (а не \(\lambda(\varepsilon) < L \)), и будет учитываться ниже.

** Использование таких «точечных» пробок предпочтительно и в этом отношении, что на их создание требуются малые затраты магнитной энергии.
где S_{ab} — интеграл столкновений частиц сорта a с частицами сорта b [7]; f_a и f_b — соответствующие функции распределения. Учитывая, что скорость ионов в рассматриваемой области энергий $T < e < T (m_a / m_e)$ (где m_a — масса иона сорта a, m_e — масса электрона), приведем интеграл столкновений в простой форме

$$
(1.1) \quad \sum_b S_{ab} = \frac{2\pi \alpha}{m_a T_a} \sum_b \delta_{ab} \delta_{m_a} \frac{m_a}{m_e} \left(\frac{2f_a + \frac{1}{v} \frac{\partial f_a}{\partial v}}{\sin \theta} + \frac{\delta_y}{v^2} \frac{\partial f_a}{\partial v} + \frac{\delta_z}{v^2} \sin \theta \frac{\partial f_a}{\partial v} \right) = 0;
$$

$$
(1.2) \quad \delta_1 = \frac{4}{3} \sqrt{\pi} \left(\frac{m_e}{m_a} \right)^{1/2} \frac{e^2 \alpha}{\sum_b \delta_{ab} \delta_{m_a}} \delta_2 = \sum_b \delta_{ab} \delta_{m_b} \frac{m_a}{m_e} \frac{m_b}{m_a}.
$$

где v измеряется в единицах $v_{Te} = \sqrt{2T / m_a}$, а штрих у знаков сумм означает, что суммирование ведется только по ионам (электроны из суммирования исключаются). Второй член в фигурных скобках описывает столкновения ионов с электронами (плазма предполагается изотермической $T_e = T_i = T$), что справедливо для достаточно длинных струек [2].

Граньчные условия для уравнения (1.1) имеют вид

$$
f_a |_{v=0} = 0; \quad f_a (v) |_{v=v_0} = f = \text{const}; \quad f_a (v) |_{v=\infty} \to 0.
$$

Первое из них соответствует обращению в нуль функций распределения быстрых ионов на границе конуса потерй $\theta = \theta_0 = \arcsin \sqrt{H_{max} / H_{min}}$, во втором величина v_0 выбирается так, что $\lambda(v_0) / h \sim L$ (это автоматически означает, что $v_0 \gg 1$), смысл третьего очевиден.

В точке $v = v_0$ происходит переход от максвелловской функции распределения, имеющейся в области $v < v_0$, к более быстро убывающей функции распределения в области $v > v_0$. Для точного определения $f(v_0)$ требуется решить задачу в переходной области $v \sim v_0$, что весьма затруднительно в математическом отношении. Однако заранее ясно, что в точке $v = v_0$ функция распределения не слишком отличается от максвелловской, и поэтому будем полагать значение $f(v_0)$ известным и равным значению максвелловской функции распределения в этой точке. В результае этой аппроксимации полученное решение будет справедливо с точностью до некоторого численного множителя порядка единиц.

Уравнение (1.1) допускает разложение переменных, и его решение представим в виде

$$
(1.3) \quad f_a = \sum_{m=0}^{\infty} A_m R_m (\mu_m, 0) Q_m (v)
$$

с

$$
R_m (\mu_m, 0) = F \left(\frac{1 - \sqrt{4 \mu_m + 1}}{2}; \quad \frac{1 + \sqrt{4 \mu + 1}}{2}; \quad \frac{1}{2}; \quad \cos^2 \theta \right),
$$

где F — гипергеометрическая функция, определенная в соответствии с [8]. Собственные значения μ_m определяются из граничного условия $R_m (\mu_m, 0) = 0$, а коэффициенты разложения имеют вид

$$
A_m = \int_{\theta_0}^{\pi - \theta_0} f_a R_m \sin \theta d \theta / \int_{\theta_0}^{\pi - \theta_0} R_m \sin \theta d \theta.
$$
При больших пробочных отношениях \(k \gg 1 \) функция \(R_m(\mu_m, \theta) \) мало отличается от полиномов Лежандра степени \(2m \) для всех \(\theta \), за исключением узких областей у точек \(\theta = 0, \pi \), а \(\mu_m \) близка к значениям \(2m(2m+1) \) для \(m = 1, 2, 3, \ldots \). Для \(m = 0 \) первый член разложения \(\mu_k \) по \(k \) имеет вид

\[
(1.4) \quad \mu_k = 2\ln k, \quad R_0(\mu_0, \theta) = 1 - \ln \sin^2 \theta / \ln k.
\]

Численно выражение (1.4) является хорошей аппроксимацией \(\mu_0 \) до значений \(k \gg 2 \). Например, значение \(\mu_0 = 2 \) соответствует решению \(R_0(\mu_0, \theta) \), определяемое присоединенным полиномом Лежандра первой степени:

\[
R_0(\mu_0, \theta) = 1 - \frac{1}{2} \cos \theta \ln \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right),
\]

при этом, найденное из условия \(R_0(\mu_0, \theta_0) = 0 \), равно \(2, 8 \), что находится в хорошем согласии с (1.4).

Отметим, что величины \(\mu_m \) монотонно убывают с ростом \(k \). Поскольку также известно, что при \(k \to \infty \) \(\mu_m \) имеет предел \(2m(2m+1) \), это означает, что при произвольных \(k \) имеется неравенство \(\mu_m > 2m(2m+1) \) для всех \(m \) (ниже воспользуемся этим соотношением при оценке величин слагаемых с разными \(m \) в разложении (1.3)).

Функции \(Q_m(\nu) \) удовлетворяют уравнению

\[
(1.5) \quad \frac{1}{v} \frac{d}{dv} \left(\frac{1}{\nu} \frac{dQ_m}{dv} + 2Q_m \right) + \delta_1 \frac{d}{dv} \left(v^3 \frac{dQ_m}{dv} + 2v^3 Q_m \right) - \frac{\mu_m \delta_1}{v} Q_m = 0
\]

с граничными условиями \(Q_m(v_0) = 1, \quad Q_m(\infty) = 0 \).

Последний член в (1.5) соответствует стоку частиц в конус потерь. Без этого члена решением (1.5), удовлетворяющим граничным условиям, была бы максвелловская функция. При учете стока функция распределения будет, очевидно, убывать быстрее максвелловской, т. е. \(Q_m(\nu) \) имеет вид

\[
(1.6) \quad Q_m = q_m(\nu) e^{-\nu^2 + v_0^2},
\]

где \(q_m(v_0) = 1; \quad dq_m/d\nu < 0 \). Подставляя решение в форме (1.6) в уравнение (1.5), находим

\[
\frac{1}{v} \frac{d^2q_m}{dv^2} - 2 \frac{1 + 1}{1 + \delta_1 v^3} \frac{dq_m}{dv} - \frac{\mu_m \delta_1}{v(1 + \delta_1 v^3)} \frac{q_m}{v} = 0.
\]

Условие \(\nu \gg 1 \) позволяет в коэффициенте при \(dq_m/d\nu \) пренебречь членом \(1/2\nu^2 \) по сравнению с единицей и членом \(\delta_1 \nu \) по сравнению с \(\delta_1 v^3 \), что дает

\[
(1.7) \quad \frac{1}{v} \frac{d^2q_m}{dv^2} - 2 \frac{dq_m}{dv} - \frac{\mu_m \delta_1}{v (1 + \delta_1 v^3)} q_m = 0.
\]

Для дейтериевой или дейтерий-тритиевой плазмы \(\delta_1 \sim 10^{-2}, \delta_2 \sim 1 \), поэтому при не слишком близких и единиче пробочных отношениях \((k - 1) \gg 1 \) для первых нескольких \(m \) последнее слагаемое в уравнении (1.7) содержит малый множитель

\[
(1.8) \quad \eta_m(\nu) = \mu_m \delta_2 / (1 + \delta_1 v^3) \quad (\nu > \nu_0 \gg 1).
\]
Если бы этот множитель был равен нулю, то одно из двух линейно-независимых решений (1.7) было бы константой, а при учете конечности η_m оно делается медленно убывающим. Легко проверить, что при отыскании этого решения в уравнении (1.7) можно пренебречь первым слагаемым, т. е. записать (1.7) в виде

$$\frac{d^2 q_m}{dv} - \frac{\mu_m \delta_v}{2v(1 + \delta_v v^2)} q_m,$$

откуда, используя граничное условие $q_m(v_0) = 1$, получим

(1.9)

$$q_m(v) = \left(\frac{v_0^2}{1 + \delta_v v_0^2}\right)^{\frac{\mu_m \delta_v}{6}} \left(\frac{1 + \delta_v v_0^2}{v_0^2}\right)^{\frac{\mu_m \delta_v}{6}}.$$

Второе линейно-независимое решение уравнения (1.7) является быстро (экспоненциально) нарастающим и должно быть отброшено.

В силу того, что $\mu_m > 2m(2m + 1)$, $q_m(v)$ быстро убывает с ростом m, поэтому при расчетах нейтронного выхода в (1.3) достаточно ограничиться учетом одного-двух первых членов ряда.

В области $v \gg v_0$ основной вклад в f_a, очевидно, определяется членом разложения (1.3) $c = 0$. При $v \to \infty q_0(v)$ имеет предел величину

$$\left(\frac{\delta_v v_0^2}{1 + \delta_v v_0^2}\right)^{\frac{\mu_m \delta_v}{6}}.$$

Численно эта величина существенно отличается от единицы лишь при относительно небольших значениях пробочного отношения $k \sim 3$ (при $k = 2,8$, $\mu_0 = 2$, считая, что $v_0 = 1$, получим $q_0(v) \to \frac{1}{1 + v_0}$). Поскольку выход нейтронов из плазмы пропорционален квадрату f_a, такое обеднение f_a в области $v \gg v_0$ может привести к значительному падению нейтронного выхода. Для $k \gg 3 f_a$ хорошо аппроксимируется максвелловской функцией практически во всей области пространства скоростей, исключая конус потерь.

2. Асимптотика функций распределения ядер деятерия и трития в плазме с примесью многозарядных ионов. Для улучшения удержания плазмы в многопробоных ловушках ранее предлагалось использовать примеси многозарядных ионов [9]. Как известно, сечение рассеяния частицы по углам растет пропорционально квадратам их зарядов, поэтому уже относительно малые добавки многозарядных ионов $n_i/Z^2 \ll n_e \ll \Delta n_a Z$ (где Z — кратность заряда ионов, n_a — их концентрация) позволяют существенно уменьшить длину свободного пробега частиц деятерия и трития и замедлить скорость диффузионного растекания плазмы вдоль установки. Однако факт более быстрой изотропизации f_a существенным образом сказывается на виде функции распределения D и T в многопробочных ловушках для частиц с $\lambda(e)/k > L$.

Действительно, увеличение скорости рассеяния частиц D и T по углу приводит в области $\lambda(e)/k > L$ к более быстрому стоку частиц в конус потерь по сравнению со случаем $D = T$-плазмы без примесей. Поскольку, с другой стороны, присутствие в плазме примесей многозарядных ионов с $n_a \ll n_e Z$ не влияет сколько-нибудь значительно на процесс диффузии частиц по энергии в пространстве скоростей, это увеличение стока частиц, очевидно, ведет к более быструму падению f_a с ростом v.

Формально присутствие в плазме примесей многозарядных ионов с $n_i/Z^2 \ll n_e Z \ll n_a Z$ соответствует в уравнениям значению $\delta_v \gg 1$ (см. (1.2)). При оценке f_a основной интерес представляет поведение $q_0(v)$. Аппроксимация (1.9) для $q_0(v)$ справедлива до тех пор, пока выполняется неравенство $\eta_0(v_0) \leq 1$, где $\eta_0(v)$ дается формулой (1.8). Для плазмы с большими
концентрациях n_Z это условие нарушается и в некоторой области скоростей $v > v_0$, $\eta(v) > 1$. Чтобы найти в этом случае асимптотику $q_0(v)$, подставим в (1.7) $q_0(v)$ в форме $q_0(v) = \exp \left[-\frac{h(v)}{\lambda} \right]$. Удерживающая лишь квадратичные по $h(v)$ члены, получим

$$
(h'(v))^2 = \mu_0 \frac{\delta_2}{1 + \delta_1 v^2} \frac{1}{v^2},
$$

$$
h(v) = \frac{\mu_0 \delta_2}{(1 + \delta_1 v^2)^{3/2}}.
$$

В области $\eta(v) \ll 1$ $q_0(v)$ с точностью до числового множителя совпадает с (1.9).

Таким образом, в плазме с примесями многозарядных ионов $n_Z > n_0/Z^2$ для установки с не слишком большими пробочными отношениями k (таким, что $\mu_0 \delta_2/k = \delta_2/3 \ln k > 1$) может наблюдаться сильное обеднение f_0 по сравнению с максвелловской функцией в области больших энергий частиц $v > T$ и реальное падение выхода нейтронов.

Сделаем также оценку этой скорости, с которой начинается в переходной области $\lambda(e)/k \sim L$ падение функции распределения по сравнению с максвелловской. Скорость убывания f_0 за счет диффузионного растекания из плазмы по координате

$$
\frac{\partial f_0}{\partial t} \sim -D \frac{\partial f_0}{\partial s^2},
$$

с коэффициентом диффузии $D = (\lambda(a)/k^2) v$, а скорость ее восстановления вследствие диффузии частиц по энергии в пространстве скоростей

$$
\frac{\partial f_0}{\partial t} \approx \frac{1}{\delta_2 \lambda(T) v^2} \frac{\partial f_{HA}}{\partial s^2}.
$$

Сравнивая первую и вторую скорость, получим $v_1 \approx y_2^{-1/6} (Lk/\lambda(T))^{1/3} v_T a$. Из того, что v_1, очевидно, должно удовлетворять неравенству $\lambda(v_1)/k < L$, следует, что f_0 близка к максвелловской функции практически во всей области $\lambda(e)/k \leq L$ при концентрациях $n_Z < (Lk/\lambda(T))^{1/2} n_0/Z^2$.

Поступила 24 IX 1976

Литература

1. Будкер Г. И., Миронов В. В., Рютов Д. Д. Влияние гофрировок магнитного поля на расширение и охлаждение плазмы.— «Письма в ЖЭТФ», 1971, т. 14, вып. 15.
2. Миронов В. В., Рютов Д. Д. Газодинамическая дисперсия в плазме в когерентных магнитных полях.— «Нукл. Физика», 1972, т. 12, N 6.
5. Будкер Г. И., Денисов В. В., Крутиков Е. П., Рютов Д. Д., Шивко Е. В. Экспериментальное исследование динамики плазмы в многопротонной магнитной ловушке. — ЖЭТФ, 1973, т. 65, вып. 2.