УДК 532.517.6

Численное исследование теплопередачи при нестационарном осциллирующем МГД-течении с точкой торможения

Т. Джавед, А. Гаффари^{*}, Х. Ахмад

Международный Исламский Университет, Исламабад, Пакистан

*E-mail: abuzar.iiui@gmail.com

Рассматривается неустановившееся течение с точкой торможения в присутствии однородного магнитного поля, возникающее при наклонном натекании осциллирующего потока на плоскую пластину. Изучены точки торможения нестационарных потоков по наклонной плоской пластине в присутствии равномерно приложенного магнитного поля в пульсирующем потоке. Соответствующие дифференциальные уравнения приводятся к безразмерному виду и решаются с помощью функции тока аналогично [1]. Безразмерные дифференциальные уравнения в частных производных решаются численно с помощью известной неявной разностной схемы, названной блочным методом Келлера. Полученные результаты хорошо согласуются с исследованиями, имеющимися в литературе. Влияние соответствующих параметров, участвующих в задаче, а именно магнитного параметра, числа Прандтля, угла наклона потока и теплообменнных характеристик проиллюстрированы в виде графиков. Показано, что присутствие магнитного поля приводит к увеличению скорости жидкости и что при увеличении угла наклона поверхностное трение увеличивается.

Ключевые слова: МГД, точка торможения при наклонном натекании, теплоперенос, численное решение.

Введение

Изучению течения с точкой торможения уделялось значительное внимание исследователями в последнем столетии, что обусловлено его важностью для многих инженерных приложений. В некоторых случаях поток тормозится твердой поверхностью, также встречаются случаи свободных точек или линий торможения, существующих внутри области жидкости. В настоящем исследовании рассматривается случай твердой поверхности, на которую жидкость натекает в общем случае наклонно. Задача о течении с точкой торможения занимает значительное место в истории гидродинамики. В работе [1] впервые было получено точное решение уравнений, описывающих стационарное течение с точкой торможения при натекании потока по нормали на бесконечную плоскую пластину. В работе [2] рассматривалось соответствующее течение при колеблющейся плоской пластине. Колебания пластины считались синусоидальными. Было предложено решение в виде наложения колебаний с частотой колебаний пластины на стационарное течение Хименца [1]. Позже в работах [3-5] независимо исследовалось решение для точки торможения при наклонном натекании жидкости на пластину. Авторы обобщили решение для течения с точкой торможения на случай наклонного натекания, когда набегающий поток составлял острый угол с пластиной. В работе [6] рассматривалось нестационарное течение с колебательной точкой торможения при наклонном натекании на пластину. В работе [7] рассматривался поток, в котором плоская стенка движется с постоянной

© Джавед Т., Гаффари А., Ахмад Х., 2016

скоростью либо к точке торможения, либо от нее. Наклонный поток от стены считался состоящим из невихревой точки застоя, простого сдвигового течения с постоянной завихренностью и однородной струи, направленных параллельно стене. В работах [8, 9] исследовалась точка торможения наклонного течения несжимаемой вязкоупругой жидкости в направлении растяжения. МГД-эффекты в области точки торможения также обсуждались в работах [10–13].

В настоящей работе исследуется течение вязкой несжимаемой жидкости с нестационарной точкой торможения. Нестационарность обусловлена тем, что наклонно натекающий на плоскую пластину поток является колебательным. Учитывается влияние поперечного магнитного поля на течение. Определяющие уравнения преобразовываются к удобному виду и численно решаются с использованием конечно-разностной схемы, называемой блочным методом Келлера. Насколько известно авторам, эта проблема до сих пор не рассматривалась в литературе.

1. Математическая формулировка

Рассматривается нестационарное ламинарное течение несжимаемой проводящей жидкости, в котором набегающий наклонно на бесконечную плоскую пластину поток имеет скорость $U_e = K(x + \gamma y) - Ue^{i\Omega t}$ (не следует забывать, что другая ортогональная составляющая скорости при этом характеризуется выражением $V_e = -Ky$.) Оси x и y отложены вдоль пластины и по нормали к ней соответственно. Внешнее однородное магнитное поле напряженности B_0 приложено перпендикулярно потоку жидкости в направлении оси y. Магнитное число Рейнольдса принимается малым с тем, чтобы можно было пренебречь индуцированным магнитным полем. Также пренебрежём влиянием джоулевого тепла, считая параметр магнитогидродинамического взаимодействия малым. Физическая модель и система координат показаны на рис. 1. При изложенных предположениях уравнения неразрывности, Навье–Стокса и уравнения энергии задаются следующим образом:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\sigma B_0^2}{\rho} u, \tag{2}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right), \tag{3}$$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{\rho C_p} \frac{\partial^2 T}{\partial y^2},\tag{4}$$

где u и v — это x- и y-компоненты скорости соответственно, t — время, v — кинематическая вязкость, σ — электропроводимость, B_0 — напряженность однородного магнитного поля, ρ — плотность жидкости, T — температура жидкости, C_p — удельная теплоемкость, k — теплопроводность жидкости. Граничные условия

Рис. 1. Физическая модель задачи.

имеют вид:

$$u = 0, \quad v = 0, \quad T = T_w \quad \text{при} \quad y = 0,$$

$$u = U_e, \quad T = T_\infty \quad \text{при} \quad y \to \infty.$$
(5)

Здесь T_w — температура стенки, T_∞ — температура окружающей среды, $U_e = K(x + \gamma y) - Ue^{i\Omega t}$ *х*-компонента скорости набегающего пульсирующего потока, γ — безразмерная константа, характеризующая наклон набегающего потока. Исключив давление *p* из уравнений (2) и (3), получим

$$\frac{\partial^{2} u}{\partial t \partial y} - \frac{\partial^{2} v}{\partial t \partial x} + \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} + u \frac{\partial^{2} u}{\partial y \partial x} + \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} + v \frac{\partial^{2} u}{\partial y^{2}} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} - u \frac{\partial^{2} v}{\partial x^{2}} \left\{ -\frac{\partial v}{\partial x} \frac{\partial v}{\partial y} - v \frac{\partial^{2} v}{\partial y \partial x} = v \left(\frac{\partial^{3} u}{\partial y \partial x^{2}} + \frac{\partial^{3} u}{\partial y^{3}} - \frac{\partial^{3} v}{\partial x^{3}} - \frac{\partial^{3} v}{\partial x \partial y^{2}} \right) - \frac{\sigma B_{0}^{2}}{\rho} \frac{\partial u}{\partial y}.$$
(6)

Рассмотрим функцию тока ψ , как предлагалось в работе [6]:

$$\psi = K \left(x f(y) + g(y, t) \right), \tag{7}$$

при этом граничные условия приводятся к виду

f

$$f = g = 0, \quad f_y = 0, \quad g_y = 0 \quad \text{при} \quad y = 0,$$

$$\sim y, \quad g - (1/2)\gamma y^2 - \frac{U}{K} y e^{i\Omega t}, \quad T \to T_{\infty} \quad \text{при} \quad y \to \infty, \end{cases}$$
(8)

а компоненты скорости будут иметь следующий вид:

$$u = \partial \psi / \partial y = K \left(x f_y + g_y \right), \ v = -\partial \psi / \partial x = -K f.$$
(9)

Здесь *К* — константа, а индекс определяет частную производную. Подставляя уравнение (7) в уравнение (6), получим:

$$g_{yyt} + K[(xf_{yy} + g_{yy})f_{y} + f_{yy}(xf_{y} + g_{y}) - f_{y}(xf_{yy} + g_{yy}) - f(xf_{yyy} + g_{yyy})] =$$

= $v(xf_{yyyy} + g_{yyyy}) - \frac{\sigma B_{0}^{2}}{\rho}(xf_{yy} + g_{yy}).$ (10)

Приравнивая коэффициенты при одинаковых степенях переменной *x* в уравнении (10), получаем следующие уравнения:

$$K(2f_{y}f_{yy} - f_{yyy} - f_{y}f_{yy}) = \nu f_{yyyy} - (\sigma B_{0}^{2}/\rho) f_{yy},$$
(11)

$$g_{yyt} + K \Big(g_{yy} f_y + g_y f_{yy} - f g_{yyy} - f_y g_{yy} \Big) = \nu g_{yyyy} - (\sigma B_0^2 / \rho) g_{yy}.$$
(12)

Проинтегрируем уравнения (11) и (12) по у и с учетом граничных условий на бесконечности получим:

$$K((f_y)^2 - ff_{yy} - 1) = v f_{yyy} - (\sigma B_0^2 / \rho)(f_y - 1),$$
(13)

И

$$g_{yt} + K \left(f_y g_y - f g_{yy} \right) = \nu g_{yyy} - \frac{\sigma B_0^2}{\rho} \left(g_y - \gamma y + \frac{U}{K} e^{i\Omega t} \right) - U e^{i\Omega t} - \left(\frac{U}{K} \right) i\Omega e^{i\Omega t}.$$
 (14)

Введем безразмерные переменные:

$$y = \left(\frac{\nu}{K}\right)^{\frac{1}{2}} \eta, \ t = \frac{\tau}{\Omega}, \ f(y) = \left(\frac{\nu}{K}\right)^{\frac{1}{2}} F(\eta), \ g(y,t) = \left(\frac{\nu}{K}\right) G(\eta,\tau), \ T = T_{\infty} + (T_w - T_{\infty})\theta.$$
(15)

При использовании соотношений (15) уравнения (13, 14) и (4) приводятся к виду:

$$F''' + FF'' - (F')^{2} - M(F'-1) + 1 = 0,$$
(16)

$$G''' + FG'' - F'G' - \beta G' - M(G' - \gamma \eta + \varepsilon e^{i\tau}) = (1 + i\beta)\varepsilon e^{i\tau}, \qquad (17)$$

$$(1/\Pr)\theta'' + F\theta' - \beta\theta = 0, \tag{18}$$

где штрих означает дифференцирование по η , точка над символами означает дифференцирование по τ , $M = \sigma B_o^2 / \rho K$ — магнитный параметр. Соответствующие граничные условия имеют вид:

$$F = G = 0, F' = 0, G' = 0, \theta = 1 при \eta = 0,$$

$$F' = 1, G' = \gamma \eta - \varepsilon e^{i\tau}, \theta = 0 при \eta \to \infty,$$
(19)

здесь $\beta = \Omega/K$, $\varepsilon = U/\sqrt{\nu K}$ — безразмерные параметры. Коэффициент поверхностного трения C_f задается следующим образом:

$$C_f = \tau_w / \left(\rho U^2\right), \ \tau_w = \mu \left(\partial u / \partial y\right)_{y=0}, \tag{20}$$

$$(\varepsilon \cos \tau)^2 C_f = \xi F''(0) + (\partial^2 G / \partial \eta^2) \cdot (0, \tau), \tag{21}$$

где *x* заменена безразмерной переменной $\xi = (K/\nu)^{1/2} x$. Безразмерная функция тока и компоненты скорости равны:

$$\psi^* = \psi/\nu = \xi F(\eta) + G(\eta, \tau), \tag{22}$$

$$u^* = u/\sqrt{\nu k} = \xi F'(\eta) + \partial G/\partial \eta, \qquad (23)$$

$$v^* = v/\sqrt{vk} = -F(\eta). \tag{24}$$

На рис. 1 разделяющая линия тока образует угол θ с пластиной. Разделяющая линия тока — это прямая, наклон которой определяется подстановкой $\psi^* = 0$, тогда, как следует из [5],

$$\psi^* = \xi \eta + (1/2) \gamma \eta^2 = 0,$$
 где $\eta = (-2/\gamma) \xi,$
(25)

отсюда находим, что наклон равен

$$m = -2/\gamma. \tag{26}$$

Следовательно, соотношение между параметром у и углом наклона имеет вид

$$\theta = \tan^{-1}(-2/\gamma). \tag{27}$$

2. Результаты и обсуждение

Система дифференциальных уравнений (16)–(18) с учетом граничных условий (19) решается численно в стационарном случае (т.е. когда $\tau = 0$), при помощи метода Келлера, что очень хорошо объясняется в монографии [14]. Размер шага $\Delta \eta$ вдоль η и на границе пограничного слоя η_{∞} регулируется для различных значений параметров M, Рг и γ для сохранения точности результатов. Переходим к $\tau = \pi/4$, $\pi/2$ и π , взяв размер шага $\Delta \eta = 0,01$ и $\Delta \tau = \pi/36$ для проводимого численного исследования. Чтобы оценить точность

Таблица

полученных результатов, значения *F*"(0) по *M* сравниваются с данными [15] и [16] (см. таблицу). Видно, что полученные результаты отличаются высокой точностью и хорошо согласуются с данными предыдущих исследований.

Сравнение вариации $F^{(0)}$ для разных значении м при $\gamma = 0, p = 0, \varepsilon = 0$				
	М	Работа [15]	Работа [16]	Настоящее исследование
	0,0	1,232588	1,232588	1,232597
	0,16	1,295368	1,295368	1,295377
	0,64	1,467976	1,467976	1,467987
	1.00	1.585331	1.585331	1.585342

Спарионно рапианий F''(0) иля париых знаноний M при w=0 $\beta=0$ c=0

Результаты для поверхностного трения, профилей скорости и температуры представлены на графиках. На рис. 2a-2d изображена функция тока $\psi^*(\xi, \eta)$ для двух различных значений магнитного параметра M при $\gamma = 2$, $\beta = 2$, $\varepsilon = 1$, $\Pr = 0,7$ при $\tau = 0, \pi/4, \pi/2$ и π соответственно. Штриховыми линиями показаны линии тока в отсутствие магнитного поля (т.е. M = 0), а сплошными линиями — в присутствии магнитного поля (т.е. M = 2). Заметно, что на разных временных шагах положение точки торможения может быть приближено к исходной точке, и линии тока становятся ближе к стенке при приложении магнитного поля, которое также уменьшает толщину пограничного слоя. На рис. 3a-3d представлены линии тока для $\varepsilon = 0$ (1) и $\varepsilon = 2$ (2), где $\gamma = 1, \beta = 2$,

Рис. 2. Линии тока при $\tau = 0$ (*a*), $\pi/4$ (*b*), $\pi/2$ (*c*), $\pi(d)$ в случаях M = 0 (штриховые линии), 2 (сплошные линии). $\gamma = 2, \beta = 2, \varepsilon = 1$ и Pr = 0,7.

403

Рис. 3. Линии тока для $\tau = 0$ (*a*), $\pi/4$ (*b*), $\pi/2$ (*c*), π (*d*) при $\varepsilon = 0$ (*l*), 2 (*2*). $M = 2, \gamma = 1, \beta = 2, Pr = 0,7.$

Pr = 0,7 и M = 2 при τ = 0, $\pi/4$, $\pi/2$ и π соответственно. Видно, что точка торможения колеблется между 1,5 и -2,5 со средним значением -0,5 на разных временных шагах.

На рис. 4a-d отображено изменение безразмерных профилей скорости $u^*(\xi = 1, \eta)$ для различных значений M = 0, 0, 5, 1, 2 для $\gamma = 1, \beta = 2, \varepsilon = 1$ и Pr = 0,7. Видно, что имеется небольшое возрастание скорости с увеличением значения магнитного поля на разных временных шагах $\tau = 0, \pi/4, \pi/2$ и π . На рис. 5a-5d изменение безразмерных профилей скорости $u^*(\xi = 1, \eta)$ для различных значений $\varepsilon = 0, 1, 2, 5$ для $\gamma = 1, \beta = 2, M = 2$ и Pr = 0,7 показано на временных шагах $\tau = 0, \pi/4, \pi/2$ и π соответственно. Для $\tau = 0$ и $\pi/4$ увеличение значения ε приводит к уменьшению значения скорости $u^*(\xi, \eta)$, в то время как для $\tau = \pi/2$ и π скорость $u^*(\xi, \eta)$ увеличивается с увеличением ε . На рис. 6 изображен профиль температуры $\theta(\eta, \tau)$ при $\tau = 0$ по η при $\gamma = 1, \beta = 2, \varepsilon = 1$ и Pr = 0,7. Можно заметить, что с увеличением значения M температура уменьшается. Заметно также, что наблюдается незначительное снижение толщины теплового пограничного слоя с увеличением значений M. На рис. 7 представлен температурный профиль $\theta(\eta, \tau)$, полученный для различных значений Pr и M при $\gamma = 1, \beta = 2$ и $\varepsilon = 1$. Из рисунка видно, что температура уменьшается с увеличением значения исла Прандтля. Также видно, что с увеличением числа Прандтля толщина теплового пограничного слоя уменьшается.

На рис. 8 изображена зависимость поверхностного трения от τ для различных значений ε при M = 2, $\gamma = 2$, $\beta = 2$ и $\xi = 1$. Видно, что амплитуда колебаний поверхностного трения увеличивается с увеличением значения ε . Рисунок 9 иллюстрируют зависимость

Puc. 5. Профиль скорости u^* для разных значений ε . $\gamma = 1, M = 2, \beta = 2$ и Pr = 0,7; $\tau = 0$ (*a*), $\pi/4$ (*b*), $\pi/2$ (*c*) и π (*d*).

405

поверхностного трения от τ для различных значений γ при M = 2, $\varepsilon = 1$, $\beta = 2$ и $\xi = 1$. Видно, что с увеличением γ значение поверхностного трения увеличивается, но колеблется с прежней амплитудой. Рис. 10 показывает изменение поверхностного трения с изменением τ для различных значений магнитного параметра M при $\gamma = 2$, $\varepsilon = 1$, $\beta = 2$ и $\xi = 1$. С увеличением значения M наблюдается периодическое увеличение поверхностного трения. Заметно также, что амплитуда колебаний поверхностного трения увеличивается с увеличением M.

Заключение

Анализируется случай нестационарного МГД ламинарного потока несжимаемой электропроводящей вязкой жидкости, натекающей наклонно на бесконечную плоскую пластину. Исследование этого явления

Рис. 10. Коэффициент поверхностного трения для разных значений М. ξ= 1. важно с точки зрения применения в металлургии, включая охлаждение металлических листов и волокон, протягиваемых через покоящуюся жидкость. Магнитное поле используется для очистки расплавленного металла от неметалллических включений, что является еще одним важным применением. Уравнения, описывающие течение и теплоперенос, преобразуются в безразмерную форму. Нелинейная система дифференциальных уравнений в частных производных затем решается численно по неявной разностной схеме (метод Келлера). Настоящее исследование позволяет заключить, что присутствие магнитного поля увеличивает скорость жидкости, но снижает импульс и толщину теплового пограничного слоя. Также отмечено, что из-за его применения местоположение точки торможения становится ближе к исходной точке. Наблюдается еще один важный эффект магнитного поля, увеличивающего поверхностное трение. Кроме того, видно также, что за счет увеличения наклона, поверхностное трение может увеличиваться. Эффекты теплопереноса показаны при $\tau = 0$, поскольку осциллирующий поток и наклонный поток не влияют на распределение температуры и скорость теплопереноса.

Авторы выражают благодарность редактору и рецензенту за ценные замечания, которые помогли улучшить рукопись.

Список литературы

- 1. Hiemenz K. Göttingen Dissertation // Dingler's Polytech. J. 1911. Vol. 326. P. 321.
- Glauert M.B. The laminar boundary layer on the oscillating plate and cylinders // J. Fluid Mech. 1956. Vol. 1, No. 1. P. 97–110.
- **3.** Stuart J.T. The viscous flow near a stagnation point when the external flow has uniform vorticity // J. Aerospace Sci. 1959. Vol. 26. P. 124–125.
- 4. Tamada K.J. Two-dimensional stagnation point flow impinging obliquely on a plane wall // J. Phys. Soc. Japan. 1979. Vol. 46. P. 310–311.
- 5. Dorrepaal J.M. An exact solution of the Navier–Stokes equation which describes non-orthogonal stagnation point flow in two dimensions // J. Fluid Mech. 1986. Vol. 163. P. 141–147.
- 6. Takemitsu N., Matunobu Y. Unsteady stagnation-point flow impinging obliquely on an oscillating flat plate // J. Phys. Soc. Japan. 1979. Vol. 47. P. 1347–1353.
- 7. Weidman P.D., Sprague M.A. Flows induced by a plate moving normal to stagnation-point flow // Acta Mech. 2011. Vol. 221, No. 3. P. 219–229.
- Mahapatra T.R., Dholey S., Gupta A.S. Oblique stagnation point flow of incompressible visco-elastic fluid towards a stretching sheet // Int. J. Non-Linear Mech. 2007. Vol. 42, No. 3. P. 484–499.
- Labropulu F., Chinichian M. Unsteady oscillatory stagnation point flow of a viscoelastic fluid // Int. J. Eng. Sci. 2004. Vol. 42, No. 7. P. 625–633.
- 10. Singh P., Tomer N.S., Kumar S., Sinha D. MHD oblique stagnation-point flow towards a stretching sheet with heat transfer // Int. J. Appl. Math. Mech. 2010. Vol. 6, No. 13. P. 94–111.
- Lok Y.Y., Ishak A., Pop I. MHD stagnation-point flow towards a shrinking sheet // Int. J. Num. Methods for Heat & Fluid Flow. 2011. Vol. 21, No. 1. P. 61–72.
- Rossow V.J. Magnetohydrodynamic analysis of heat transfer near a stagnation point // J. Aerospace Sci. 1958. Vol. 25, No. 5. P. 334–335.
- Borrelli A., Giantesio G., Patria M.C. MHD oblique stagnation-point flow of a Newtonian fluid // ZAMP. 2012. Vol. 63, No. 2. P. 271–294.
- 14. Себиси Т., Брэдшоу П. Конвективный теплообмен. Физические основы и вычислительные методы. М.: Мир, 1987. 592 с.
- 15. Ariel P.D. Hiemenz flow in hydromagnetics // Acta Mech. 1994. Vol. 103, No. 1. P. 31-43.
- Grosan T., Pop I., Revnic C., Ingham D.B. Magnetohydrodynamic oblique stagnation-point flow // Acta Mech. 2009. Vol. 44, No. 5. P. 565–572.

Статья поступила в редакцию 19 декабря 2014 г., после доработки — 28 июня 2015 г.