2016. Том 57, № 1

Январь – февраль

C. 171 – 178

УДК 541.49:548.73

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И НЕКОТОРЫЕ СВОЙСТВА КАТЕНА-{ТРИС(1,3-ДИЭТИЛ-2-ТИОБАРБИТУРАТА) ЕВРОПИЯ(III)}

Н.Н. Головнёв¹, М.С. Молокеев^{2,3}, С.Н. Верещагин⁴

 ¹Сибирский федеральный университет, Красноярск, Россия E-mail: ngolovnev@sfu-kras.ru
²Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
³Дальневосточный государственный университет путей сообщения, Хабаровск, Россия
⁴Институт химии и химической технологии СО РАН, Красноярск, Россия

Статья поступила 10 февраля 2015 г.

Синтезирован комплекс [Eu(DETBA)₃]_n (I), HDETBA — 1,3-диэтил-2-тиобарбитуровая кислота (C₈H₁₂N₂O₂S), и методом PCA определена его структура. Кристаллы I триклинные: a = 11,0205(2), b = 11,8811(3), c = 12,7312(2) Å, $\alpha = 100,933(1)$, $\beta = 109,704(1)$, $\gamma = 101,161(1)^\circ$, V = 1479,88(5) Å³, пр. гр. *P*-1, Z = 2. Каждый из трех независимых ионов DETBA⁻ является мостиковым μ_2 -O,O'-координированным лигандом. Координационный полиэдр Eu(III) представляет искаженный октаэдр. Мостиковые DETBA⁻ объединяют октаэдры в бесконечный двумерный слой. В структуре есть внутримолекулярные водородные связи, но отсутствуют межмолекулярные водородные связи и π — π взаимодействие. Результаты ИК спектроскопии и фотолюминесценции согласуются с данными PCA. Основным продуктом термического разложения I при 900 °C является оксисульфат Eu₂O₂SO₄.

DOI: 10.15372/JSC20160120

Ключевые слова: кристаллическая структура, комплекс, европий(III), 1,3-диэтил-2-тиобарбитуровая кислота, термический анализ, ИК спектроскопия, фотолюминесценция.

Металлорганические гибридные материалы на основе лантаноидов обладают высокой монохроматичностью люминесцентного излучения, что находит применение в клинической диагностике и биотехнологии [1, 2] и ряде высокотехнологичных устройств [3—5]. Так, оксид европия широко используется в трубках цветных телевизоров как активатор люминесценции красного фосфора (Eu^{3+} :YVO₄), а в последние годы в качестве красного фосфора выступают оксид Y₂O₃ или оксисульфид Y₂O₂S допированные Eu. Соединения европия также применяются в мониторах компьютеров, в рентгеновских экранах, ртутных лампах, нейтронных сцинтилляторах, детекторах заряженных частиц [4, 5].

Ранее нами [6] синтезирован комплекс Eu(III) с 2-тиобарбитуровой кислотой (H₂TBA) и установлена его структура. В данной работе с целью изучения влияния заместителей в H₂TBA на молекулярное и супрамолекулярное строение комплексов Eu(III) изучены структура и некоторые свойства нового комплекса Eu(III) с N,N'-замещенным производным H₂TBA — 1,3диэтил-2-тиобарбитуровой кислотой (C₈H₁₂N₂O₂S, HDETBA). В настоящее время отсутствуют данные о структуре комплексов металлов с HDETBA [7], помимо (Li, Na, K)DETBA [8]. Некоторые тиобарбитуровые кислоты используются в медицине под торговыми названиями

[©] Головнёв Н.Н., Молокеев М.С., Верещагин С.Н., 2016

тиопентал натрия, тиобарбитал и тиобутабарбитал [9—11]. Тиобарбитуровые кислоты являются β-дикетонами, комплексы которых с Eu(III) обладают высоким квантовым выходом фотолюминесценции и высокой термической стабильностью, что делает их перспективными материалами, например при производстве светоизлучающих диодов [2, 12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали 1,3-диэтил-2-тиобарбитуровую кислоту (Sigma-Aldrich, CAS No. 110871-86-8, основного вещества \geq 98 %), Eu(CH₃COO)₃·3H₂O (XЧ), NaOH (XЧ), KBr (XЧ).

Синтез Eu(DETBA)₃ (I). 0,15 г (0,33 ммоль) Eu(CH₃COO)₃·3H₂O растворяли в 10 мл воды, добавляли 0,20 г (1,0 ммоль) твердой HDETBA и 1М раствором NaOH доводили pH смеси до 4,5—5,0. После интенсивного перемешивания и измельчения комков HDETBA смесь оставляли на сутки, затем образовавшийся желтый кристаллический осадок отфильтровывали, промывали ацетоном и сушили на воздухе. Монокристаллы выделялись при медленном испарении фильтрата при комнатной температуре. Результаты элементного анализа для I (найдено/вычислено, мас.%): С 39,1/38,45, H 4,62/4,44, N 11,0/11,21, S 12,57/12,83. Выход продукта 95 мас.%.

РСА. Интенсивности рентгеновских отражений от кристалла размерами $0,2 \times 0,2 \times 0,2$ мм измерены при 296 К с помощью монокристального дифрактометра SMART APEX II с ССD детектором (Bruker AXS), Мо K_{α} -излучение, $\lambda = 0,7106$ Å. Матрица ориентации и параметры ячейки определены и уточнены по 7161 отражениям. Ячейка соответствовала триклинной сингонии. Пространственная группа *P*-1 была определена из анализа статистики интенсивностей всех отражений. Учет поглощения рентгеновских лучей кристаллом введен из анализа интенсивностей эквивалентных рефлексов. После этого интенсивности эквивалентных рефлексов были усреднены и в дальнейшем использовались только независимые рефлексы.

Поиск модели проводился с помощью комплекса программ SHELX-2014 [13] прямыми методами. В результате найдены координаты всех неводородных атомов. В независимой части ячейки находились ион Eu^{3+} в общей позиции 2*i*, три иона DETBA⁻ в общей позиции 2*i*. Полученная структура уточнена методом наименьших квадратов с помощью SHELX-2014. Тепловые параметры всех неводородных атомов уточнялись в анизотропном приближении. Координаты атомов водорода иона DETBA⁻ были идеализированы. Анализ структуры на наличие дополнительных пропущенных элементов симметрии и возможных пустот при помощи программы PLATON [14] не выявил таковых.

Порошковая рентгенограмма продукта разложения кристаллов I отснята при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, используя линейный детектор VANTEC и Cu K_{α} -излучение. Почти все рефлексы были проиндицированы моноклинной ячей-кой (*C*2/*c*) с параметрами, близкими к Eu₂O₂SO₄ [15]. Таким образом, ее структура была использована в качестве стартовой модели уточнения Ритвельда. Уточнение реализовано при помощи программы TOPAS 4.2 [16], шло стабильно и дало низкие факторы недостоверности: $R_{wp} = 4,72$ %, $R_p = 3,74$ %, $\chi^2 = 1,11$, $R_B = 1,08$ % (рис. 1).

Синхронный термический анализ проводили на приборе Netzsch STA Jupiter 449С, который был сопряжен с масс-спектральным анализатором Aeolos QMS 403С. Эксперименты проводились в потоке смеси 20 % O₂—Ar в платиновых тиглях с перфорированными крышками, масса навески 4 мг. Температурная программа включала сегмент стабилизации температуры при 40 °C 30 мин, за которым следовал нагрев до 900 °C со скоростью 10 град./мин. Качественный состав отходящих газов оценивали по изменению интенсивности ионов с m/z = 18 (H₂O), 28 (N₂, CO), 30(NO), 32 (O₂), 44 (CO₂), 60 (COS) и 64(SO₂, SO₃).

Спектры фотолюминесценции (ФЛ) воздушно-сухих образцов I сняты на спектрофлуориметре СДЛ-2 (ЛОМО, Россия) при 77 К. ИК спектры веществ в КВг регистрировали в диапазоне 400—4000 см⁻¹ на спектрометре FTIR Nicolet 6700.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристаллографические характеристики и параметры эксперимента даны в табл. 1.

172

Рис. 1. Экспериментальная (точки), теоретическая (линия) и разностная (линия внизу) рентгенограммы результата уточнения Ритвельда продукта разложения кристалла I

Кристаллографические данные Брутто формула C24H33EuN6O6S3 749.70 $M_{\rm r}$ Пространственная группа; Z P-1: 2 a, b, c, Å 11,0205(2), 11,8811(3), 12,7312(2) 100,933(1), 109,704(1), 101,161(1) α, β, γ, град. $V, Å^3$ 1479,88(5) D_x , г/см³ 1,682 2,379 μ , MM^{-1} Параметры сбора данных Число измер. / независ. рефлексов N₁ 18798 / 7161 6275 Число рефлексов с $I > 2\sigma(I)$, N_2 Учет поглощения Мультисканирование 0,0279 $R_{\rm int}$ $2\theta_{max}$, град. 56,61 h, k, l $-14 \rightarrow 11, -15 \rightarrow 15, -13 \rightarrow 16$ Результаты уточнения $R / wR(F^2)$ (по N₁ рефлексам) 0,0353 / 0,0673 $R / wR(F^2)$ (по N₂ рефлексам) 0,0269 / 0,0633 S 0,999 $w = 1/[\sigma^2(F_0^2) + (0,0325P)^2 + 1,2197P]$, где $P = \max(F_0^2 + 2F_c^2)/3$ Весовая схема <0,028 $(\Delta/\sigma)_{\rm max}$ $\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e/Å^3$ 0,777 / -0,799

Графическое представление всех кристаллических структур и молекул построено в программе DIAMOND [17]. Структура I депонирована в Кембриджском банке структурных данных и имеет номер 1047007. Данные могут быть получены через сайт www.ccdc.cam.ac.uk/ data request/cif.

Таблица 1

Основные кристаллографические характеристики I и параметры эксперимента

Рис. 2. Независимая часть ячейки **I**. Внутримолекулярные водородные связи показаны штриховыми линиями

Независимая часть ячейки комплекса I содержит катион Eu³⁺ и три аниона DETBA⁻ (рис. 2), два из которых имеют *цис*-, а один *транс*-конформацию. Эти обозначения разных конформаций использованы ранее в работе [8]. Все ионы DETBA⁻ координируются к Eu³⁺ через атомы кислорода, в итоге Eu³⁺ окружен шестью атомами кислорода (диапазон длин связей 2,207(2)—2,249(3) Å) с образованием октаэдра. Октаэдры не соприкасаются между собой непосредственно, однако они объединяются в бесконечный двумерный слой в плоскости *ас* μ_2 -O,O' мостиковыми ионами DETBA⁻ (рис. 3).

Рис. 3. Строение слоя в плоскости *ас*, образованного октаэдрами EuO₆ за счет мостиковых DETBA⁻.

Для упрощения рисунка убраны группы — CH₂—CH₃ у ионов DETBA⁻. Выделены циклические структуры, они обозначены буквой *r*, а в скобках приведена их размерность. Буквами *A*, *B*, *C* обозначены три независимых иона DETBA⁻

Таблица 2

Водородные связи D—Н···А (Å, град.) в структуре I

D—Н…А	D—H	Н…А	D····A	∠D—H…A	
C7 <i>A</i> —H71 <i>A</i> ····O2 <i>A</i>	0,97	2,376(3)	2,643(5)	96,4(3)	
C7A—H72A⋯S1	0,97	2,540(1)	3,006(4)	109,5(3)	
C9A—H91A…S1	0,97	2,5980(12)	2,982(5)	103,8(3)	
С9А—Н92А…О1А	0,97	2,381(3)	2,704(6)	98,7(2)	
C7 <i>B</i> —H72 <i>B</i> ····O2 <i>B</i>	0,97	2,362(3)	2,690(6)	98,9(3)	
C7 <i>B</i> —H71 <i>B</i> ····S2	0,97	2,5700(14)	2,985(5)	105,9(3)	
C9 <i>B</i> —H92 <i>B</i> ····S2	0,97	2,5926(13)	2,987(5)	104,5(2)	
C9 <i>B</i> —H91 <i>B</i> ⋯O1 <i>B</i>	0,97	2,318(3)	2,654(5)	99,3(2)	
C7C—H72 <i>C</i> ···O2 <i>C</i>	0,97	2,330(3)	2,679(6)	100,3(3)	
C7C—H71 <i>C</i> ···S3	0,97	2,5843(15)	2,986(5)	105,0(2)	
С9С—H91 <i>С</i> …S3	0,97	2,5535(11)	2,991(4)	107,4(2)	
C9C—H92 <i>C</i> ···O1 <i>C</i>	0,97	2,354(3)	2,685(5)	99,2(3)	

Межмолекулярные водородные связи в структуре не обнаружены. Также отсутствуют π—π взаимодействия, так как минимальное расстояние между центрами колец DETBA⁻ равно 5,635(2) Å. Однако существуют слабые внутримолекулярные водородные связи [18, с. 52] (табл. 2), как и в соединениях HDETBA [17, 18] и (Li, Na, K)DETBA [8].

Сравнение структур I и HDETBA с (Li, Na, K)DETBA показало, что в (Li, Na, K)DETBA длина связи C2—S заметно больше (1,684—1,694 Å), чем в соединениях I и HDETBA (1,661—1,664 Å) (табл. 3). Это может быть объяснено тем, что в (Li, Na, K)DETBA лиганд координирован к иону металла через атом S, а в других соединениях такого взаимодействия нет. В свою

Таблица З

Основные геометрические характеристики: длины связей (Å), валентные и торсионные углы (град.) в MDETBA (M = H, Li, Na, K) и I

Параметр	H^{+}	Li ⁺	Na ⁺	Eu ³⁺			1Z ⁺
				A	В	С	ĸ
S—C2	1,661	1,684(3)	1,685(3)	1,661(4)	1,664(4)	1,659(4)	1,693(2)
O1—C4	1,264	1,248(3)	1,240(3)	1,278(5)	1,269(5)	1,281(4)	1,254(3)
O2—C6	1,312	1,270(3)	1,258(4)	1,273(3)	1,269(5)	1,273(5)	1,249(2)
N1—C2	1,377	1,373(3)	1,367(4)	1,379(3)	1,376(5)	1,385(5)	1,367(3)
N1—C6	1,375	1,404(3)	1,416(4)	1,387(5)	1,392(5)	1,383(5)	1,425(3)
N3—C2	1,389	1,369(3)	1,354(3)	1,376(5)	1,380(5)	1,380(4)	1,366(3)
N3—C4	1,383	1,416(4)	1,421(4)	1,391(5)	1,388(5)	1,385(5)	1,430(3)
C4—C5	1,399	1,385(4)	1,369(4)	1,367(4)	1,384(5)	1,370(6)	1,380(3)
C5—C6	1,365	1,377(4)	1,381(3)	1,374(5)	1,383(6)	1,377(4)	1,390(3)
S—C2—N1	122,6	121,4(2)	120,7(2)	122,2(3)	122,1(3)	121,7(3)	122,2(1)
S-C2-N3	122,0	121,6(2)	122,1(2)	121,7(3)	121,6(3)	122,0(3)	120,4(1)
N1—C2—N3	115,4	116,9(2)	117,3(2)	116,1(3)	116,2(3)	116,3(3)	117,4(2)
C4—C5—C6	119,4	122,9(2)	123,1(2)	121,7(4)	121,2(3)	121,8(3)	123,3(2)
C2—N1—C7—C8	-87,0	-84,9(3)	-88,8(3)	-96,1(5)	-90,5(4)	88,5(4)	89,5(2)
C2—N3—C9—C10	88,2	84,8(3)	88,2(4)	89,4(4)	89,3(4)	90,4(5)	88,0(2)
Конформация	цис	цис	цис	цис	цис	транс	транс
Список литературы	[19,20]	[8]	[8]	[Наст. работа]	[Наст. работа]	[Наст. работа]	[8]

Рис. 4. ТГ (1) и ДСК (2) кривые для процесса окислительного разложения I

очередь, длины связей C4—O1 и C6—O2 в I (1,269— 1,281 Å) превышают таковые в (Li, Na, K)DETBA (1,248—1,270 Å), что можно отнести за счет большего формального заряда иона Eu^{3+} и, как следствие, большего поляризующего воздействия его на связи С—O по сравнению с однозарядными ионами Li⁺, Na⁺ и K⁺. Следует отметить, что длины связей C4—O1 и C6—O2 в HDETBA с тиомонокарбониль-

ной структурой существенно отличаются друг от друга [19, 20], но при образовании соединений (Li, Na, K)DETBA и I происходит замещение протона в HDETBA на ион металла и µ₂-O,O'координация DETBA⁻, которые приводят к выравниванию электронной плотности в молекулярном фрагменте O1—C4—C5(H)—C6—O2. Ранее это наблюдали для 2-тиобарбитуратных комплексов металлов [21].

По данным термического анализа в окислительной атмосфере комплекс I устойчив до 250—280 °С. При более высоких температурах на кривых ТГ и ДСК термического разложения можно выделить три температурные области превращения (рис. 4), отличающиеся по знаку теплового эффекта и составу продуктов.

На первом этапе, который начинался около 280 °C и протекал со значительным выделением тепла, снижение массы сопровождалось появлением в масс-спектре ионов с m/z 18, 30, 44, 60 и 64 (рис. 5). Наиболее вероятно, что в этом температурном интервале происходит окислительное разложение органического компонента соли с образованием газообразных продуктов окисления (CO₂, H₂O, NO, COS, SO₂) и карбонизация непрореагировавшей части; потеря массы на этом участке составляет около 51 %.

На втором также экзотермическом этапе при 450—750 °C происходит дополнительное окисление карбонизированного остатка, который содержит значительные количества серы и азота, но практически не содержит водорода (см. рис. 5, A и B). Снижение массы на последнем эндотермическом этапе превращения сопровождается увеличением интенсивности иона m/z = 64 (см. рис. 4, 5, B). Выделение на нем SO₂ при 750—900 °C, скорее всего, соответствует разложению сульфата Eu(III) (уравнение 1), протекающему около 800 °C [22]. Общая потеря массы (Δm) при нагревании I до 900 °C составляет 71,21 %, что хорошо соответствует теоретическому значению для процесса (2)

$$\operatorname{Eu}_2(\operatorname{SO}_4)_3 \to \operatorname{Eu}_2\operatorname{O}_2\operatorname{SO}_4 + 2\operatorname{SO}_2 + \operatorname{O}_2,\tag{1}$$

$$Eu(DETBA)_3 \rightarrow 1/2Eu_2O_2SO_4 \cdot \Delta m = 71,19\%.$$
 (2)

Рис. 5. Масс-спектральные интенсивности ионов с *m/z* 18, 30, 44, 60 и 64 для процесса окислительного разложения **I**

Рис. 7. Обзорные ИК спектры HDETBA (1) и I (2)

Оксисульфаты $Ln_2O_2SO_4$ обладают большой емкостью по атомам кислорода [22] и перспективны в качестве устойчивых к отравлению серой катализаторов реакции получения водорода из СО и H_2O [23]. Термическое разложение I представляет новый способ получения $Eu_2O_2SO_4$.

На рис. 6 приведены спектры ФЛ при 77 К воздушно-сухих I и продукта его термического разложения Eu₂O₂SO₄, полученные возбуждением при 273 нм (наиболее интенсивная полоса в спектре возбуждения). При комнатной температуре люминесценции образцов не наблюдается. Спектры ФЛ обусловлены *f*—*f*-люминесценцией Eu(III). Наблюдается полное совпадение наблюдаемых полос для I и Eu₂O₂SO₄ в диапазоне 500—750 нм. Интенсивная линия при 620 нм относится к электродипольному переходу ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ [3, 24]. Малоинтенсивные полосы при 710 и 600 нм отнесены к переходам ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ и ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ соответственно. Отсутствие полосы электродипольного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ при 577—581 нм согласуется с установленной РСА высокой симметрией O_{h} комплекса Eu(III). Интенсивность полосы перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, т.е. ион Eu³⁺ не находится в центре инверсии. Следует отметить, что люминесцентное излучение, соответствующее упомянутым выше переходам, применимо в светотехнике, в качественном и количественном анализе, при получении люминесцентных изображений [3, 5].

В ИК спектре кристаллической HDETBA (рис. 7) интенсивная полоса при 1646 см⁻¹ ранее отнесена к колебанию v(C=O) [17]. Наряду с ней, в ИК спектре I в области колебаний v(C=O) появились три интенсивные полосы при 1667, 1587 и 1563 см⁻¹, которые указывают на координацию лиганда через атом кислорода. Сильную полосу в ИК спектре HDETBA и I при 1160 см⁻¹, как и в случае 2-тиобарбитуровой кислоты [25], можно отнести к колебаниям v(C=S). Неизменность положения и интенсивности этой полосы согласуется с отсутствием координации DETBA⁻ через атомы S. Таким образом, результаты ИК спектроскопии косвенно подтверждают рентгеноструктурные данные.

Работа выполнена в рамках государственного задания Минобрнауки России на выполнение НИР Сибирскому федеральному университету в 2015 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Heffen M.C., Matosziuk L.M., Meade T.J. // Chem. Rev. 2014. 114, N 8. P. 4496 4539.
- 2. Yang Y., Zhao Q., Feng W., Li F. // Chem. Rev. 2013. 113, N 1. P. 192 270.
- 3. Cotton S. Lanthanide and Actinide Chemistry. UK, Uppingham, Rutland: Wiley, 2006.
- 4. Rocha J., Carlos L.D., Paz F.A.A., Ananias D. // Chem. Soc. Rev. 2011. 40. P. 926 940.
- 5. Binnemans K. // Chem. Rev. 2009. 109, N 9. P. 4283 4374.
- 6. Головнев Н.Н., Молокеев М.С. // Координац. химия. 2014. 40, № 9. С. 564 568.
- 7. Cambridge Structural Database. Version 5.35. University of Cambridge, UK, November, 2013.
- 8. Golovnev N.N., Molokeev M.S., Vereshchagin S.N. et al. // Polyhedron. 2015. 85. P. 493 498.
- 9. Машковский М.Д. Лекарственные средства: пособие для врачей. М.: РИА Новая волна, 2008.
- 10. Справочник биохимика: Пер. с англ. / Р. Досон, Д. Элиот, У. Элиот, К. Джонс. М.: Мир, 1991.

- 11. Bamanie F.H., Shehata A.S., Moustafa M.A., Mashaly M.M. // J. Amer. Sci. 2012. 8, N 1. P. 481 485.
- 12. *Tian H., Tang R., Zhao M.* // ECS J. Solid State Sci. Technol. 2013. **2**, N 3. P. 33 38.
- 13. Sheldrick G.M. // Acta. Cryst. 2008. A64, N 1. P. 112 122.
- 14. PLATON-A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands, 2008.
- Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany, 2008.
- 16. Hartenbach I., Schleid T. // Z. Anorg. Allg. Chem. 2002. 628. P. 2171.
- 17. Brandenburg K., Berndt M. // DIAMOND Visual Crystal Structure Information System CRYSTAL IMPACT, Postfach 1251, D-53002 Bonn.
- 18. Стид Дж.В., Этвуд Дж.Л. Супрамолекулярная химия. Ч. 1-2. М.: ИКЦ "Академкнига", 2007.
- 19. Bideau J.P., Huong P.V., Toure S. // Acta Cryst. 1976. B32, N 2. P. 481 482.
- 20. Bideau J.P., Huong P.V., Toure S. // Acta Cryst. 1977. B33, N 12. P. 3847 3849.
- 21. Головнев Н.Н., Молокееев М.С. 2-Тиобарбитуровая кислота и ее комплексы с металлами: синтез, структура и свойства. Красноярск: Сиб. федер. ун-т, 2014.
- 22. Machida M., Kawamura K., Ito K., Ikeue K. // Chem. Mater. 2005. 17, N 6. P. 1487 1492.
- 23. Valsamakis I., Flytzani-Stephanopoulos M. // Appl. Catal. 2011. B106. P. 255 263.
- Буквецкий Б.В., Мирочник А.Г., Жихарева П.А., Карасев В.Е. // Журн. структур. химии. 2010. 51, № 6. – С. 1200 – 1205.
- 25. Mendez E., Cerda M.F., Gancheff J.S. et al. // J. Phys. Chem. 2007. C111, N 8. P. 3369 3383.