УДК 536.46

Горение газовзвеси частиц бора в воздухе

А.П. Шпара, Д.А. Ягодников, А.В. Сухов

Московский государственный технический университет им. Н.Э. Баумана

E-mail: daj@bmstu.ru

Выполнены моделирование распространения и расчет нормальной скорости фронта пламени по аэровзвеси частиц бора в зависимости от давления, коэффициента избытка окислителя и размера частиц с учетом изменения механизмов переноса тепла и массы при уменьшении размеров частиц от микро- до нанодиапазона. С использованием модели распространения фронта пламени по аэровзвеси частиц бора с учетом молекулярнокинетического режима тепломассообмена проанализировано влияние и установлены зависимости нормальной скорости пламени от начального размера частиц бора, коэффициента избытка окислителя и давления. Выявлены условия и приведено обоснование наличия экстремумов и монотонных зависимостей, обусловленных сменой режима тепломассообмена в условиях сплошной среды на свободномолекулярный режим.

Ключевые слова: аэровзвесь, наночастицы, бор, распространение пламени.

Введение

Бор является одним из наиболее высокоэффективных горючих при использовании его в качестве компонента топлива в различных типах реактивных и ракетных двигателей. Важнейшими параметрами, определяющими возможность реализации сжигания порошкообразного бора при заданных скоростях воздушного потока, являются нормальная скорость распространения пламени $U_{\rm n}$ и полное время преобразования $\tau_{\rm b}$, включающее время горения частицы $\tau_{\rm b}^{\Sigma}$ и время ее прогрева $\tau_{\rm b}^{\Sigma}$. Поэтому представляет интерес создание методики расчета этих величин на базе физических моделей, учитывающих основные факторы, оказывающие влияние на процесс сжигания бора в диапазоне размеров частиц от микронов до нанометров, и позволяющих получить конечные расчетные зависимости в явном виде при использовании минимального количества параметров, подлежащих определению или уточнению на базе экспериментальных исследований. Использование указанной методики после минимальной корректировки в практической работе может существенно снизить затраты и сократить сроки на стадии проектирования различных схем камер сгорания. Такой подход применяется в ряде прикладных направлений и, в частности, при проектировании камер сгорания воздушно-реактивных двигателей [1], где описание происходящих в них процессов основано на уравнениях переноса тепла и массы, записанных в явном виде, а входящие в них коэффициенты и параметры

© Шпара А.П., Ягодников Д.А., Сухов А.В., 2022

и есть предмет научного исследования и уточнения. Поскольку большой практический интерес представляют данные по зависимости нормальной скорости пламени в аэровзвеси частиц горючего от их размера, давления и соотношения окислитель – горючее, проведены многопараметрические расчеты в широких диапазонах изменения определяющих параметров, которые могут быть реализованы в различных энергетических установках.

1. Схема горения и механизм распространения пламени газовзвеси частиц бора

Настоящая работа является развитием метода исследования процессов горения одиночных частиц бора, предложенного в работе [2], применительно к горению аэровзвеси частиц. При этом в основу схемы расчета U_n положен так называемый «эстафетный» механизм передачи тепла по аэровзвеси частиц [3, 4], позволяющий существенно упростить расчетные соотношения и записать их в явном виде. В соответствии с этим механизмом рассмотрим совокупность одиночных частиц бора сферической формы с начальным радиусом $r_{\rm B0}$. Воспламенение и горение каждой частицы имеет место в со-

ответствии с одностадийной химической брутто-реакцией $B + \frac{3}{4}O_2 \rightarrow \frac{1}{2}B_2O_3$ в индиви-

дуальном (условном) сферическом объеме начальным радиусом *r*_{y0}, который с учетом действительного соотношения компонентов определяется следующим образом:

$$\alpha K_{\rm m0} m_{\rm B} = g_{\rm O_2}^0 m \quad \text{или} \quad \frac{4}{3} \pi r_{\rm B0}^3 \rho_{\rm B} \alpha K_{\rm m0} = \frac{4}{3} \pi g_{\rm O_2}^0 \rho_0 \left(r_{y0}^3 - r_{\rm B0}^3 \right).$$

Отсюда получаем:

$$r_{y0} = r_{\rm B0} \psi_0, \tag{1}$$

где

$$\psi_0 = \sqrt[3]{\frac{aK_{\rm m0}\rho_{\rm B}}{\rho_0 g_{\rm O_2}^0} + 1}.$$
(2)

В выражениях (1), (2) *m*, $m_{\rm B}$ — масса воздуха и бора в аэровзвеси, α — коэффициент избытка окислителя, $g_{0_2}^0 = 0,23$ — начальная массовая доля кислорода в воздухе, $\rho_{\rm B}$, ρ_0 — плотность бора и воздуха (при начальной температуре воздуха T_0), $K_{\rm m0} = 2,22$ — массовый стехиометрический коэффициент реакции.

2. Схема горения аэровзвеси и переноса тепла

На рис. 1 приведена принятая в представленной работе схема горения аэровзвези (газовзвеси) частиц бора, в соответствии с которой предполагается, что исходная смесь горючего и окислителя представляет собой совокупность частиц и условных объемов газа, центры которых расположены в вершинах кубов с ребрами длиной $2r_{y0}$, двигающихся со скоростью U_n и отделенных от зоны с продуктами сгорания неподвижной границей F – F (фронт пламени). Тогда в рассматриваемой постановке величина U_n соответствует нормальной скорости пламени и обусловливает неизменное положение границы F – F. При этом полагаем также, что процессы переноса тепла и массы будут иметь место только в тех условных объемах, центры которых в данный момент находятся на границе F – F. В начальный момент времени температуры частиц и газа приняты равными и соответствуют условию: $T_{B0} = T_0 = 293$ K $< T^*$, где T^* — адиабатическая температура горения при заданных значениях α и давлении среды p.

Рис. 1. Схема горения аэровзвеси и переноса тепла.

Будем полагать, что выделяющееся при горении частицы тепло $Q_{ch} = H_{fB_2O_3} = 58,113\cdot10^6$ Дж/кг [5] затрачивается только на испарение бора и нагрев газовой среды в условном объеме от начальной температуры газа T_0 до адиабатической температуры горения T^* . Считаем, что перенос тепла происходит следующим образом. В начальный момент времени в условный объем *a* с центром, лежащим на границе F – F (I), от внешнего источника поступает тепло Q_{ex} , за счет которого температура газа в этом объеме возрастает мгновенно от начальной температуры T_0 до T^* (II), радиус объема *a* за счет теплового расширения продуктов сгорания увеличивается до значения r_{ye} , частица нагревается до температуры плавления бора $T_B^{mel} = 2348$ K, после чего воспламеняется и сгорает в газовой фазе.

Поскольку в рамках принятой модели в условном объеме температура не может быть больше T^* , то горение протекает при постоянном значении T^* , а тепло $Q = Q_{ex} = Q_{ch} - L$, где L — удельная теплота испарения бора, будет аккумулироваться в некотором «виртуальном» объеме v. После прекращения горения частицы будут иметь место три события, происходящих одновременно (III): объем a переместится вправо в зону продуктов сгорания, его место займет объем b и в него поступит тепло Q, аккумулированное в виртуальном объеме v. Далее после сгорания частицы в объеме b и его замещения объемом c процесс будет повторяться аналогичным образом для всех последующих объемов, поступающих в зону горения.

При указанной схеме теплопереноса уравнение для расчета скорости распространения пламени, которая в рассматриваемой постановке тождественна нормальной скорости пламени, с учетом выражения (1) можно записать в следующем виде:

$$U_{\rm n} = \frac{2r_{y0}}{\tau_{\rm b}} = \frac{2\psi_0 r_{\rm B0}}{r_{\rm b}^{\Sigma} + \tau_{\rm h}^{\Sigma}}.$$
(3)

В представленной работе при разработке расчетной модели, описывающей перенос тепла и массы, применен подход, предложенный в работе [2], в рамках которого механизм передачи тепла и массы может определяться закономерностями, имеющими место при использовании допущения сплошной среды (СС), где длина свободного пробега молекул газа много меньше размера частиц, свободно-молекулярного течения газа (СМР), где длина свободного пробега молекул газа соизмерима либо больше размера частиц, и переходного режима (ПР), при котором будут иметь место механизмы, характерные для режимов СС и СМР.

Как показал анализ работ по исследованию разреженных газов, общепринятым является допущение сплошной среды для расчетов потоков тепла и массы при значении числа Кнудсена Kn < 0,01. Однако по величине числа Kn, при которой в расчетах потоков тепла и массы следует использовать закономерности, имеющие место при свободномолекулярном течении газа, нет однозначных рекомендаций. Так, в работе [6] предполагалось, что CMP реализуется при Kn > 10; в работе [7] был указан диапазон Kn = $0,33 \div 1$, в работах [3, 8, 9] — Kn = 1, в [10] — Kn = $1 \div 1,5$. Поэтому примем среднее значение числа Kn = 1 и будем полагать, что при Kn > 1 механизм передачи тепла и массы определяется закономерностями, действующими для свободномолекулярного режима. И наконец, если число Кнудсена лежит в диапазоне 0,01 < Kn < 1, реализуется переходный режим. Значения размеров частиц r_{B1} и r_{B2} , при которых будет происходить переход режимов от CC к ПР и от ПР к CMP соответственно, определялись по соотношению [6]

$$\mathrm{Kn} = \frac{kT^*}{2\sqrt{2}\pi r_{\mathrm{B1,2}}d_\mathrm{m}^2 p}$$

и приведены в таблице. Здесь $d_{\rm m} = 0,31 \cdot 10^{-9}$ м — средний размер молекул кислорода и азота, $k = 1,38 \cdot 10^{-23}$ Дж/К — постоянная Больцмана.

Тогда в соответствии с результатами работы [2] трем диапазонам размеров частиц соответствуют следующие выражения для определения времени их горения и прогрева:

a)
$$r_{B0} < r_{B1} : \tau_b^{\Sigma} = \tau_b^{CC} + \tau_b^{IIP} + \tau_b^{CMP}, \ \tau_h^{\Sigma} = \tau_h^{CC} + \tau_h^{IIP} + \tau_h^{CMP};$$

6) $r_{B2} < r_{B0} \le r_{B1}: \ \tau_b^{\Sigma} = \tau_b^{IIP} + \tau_b^{CMP}, \ \tau_h^{\Sigma} = \tau_h^{IIP} + \tau_h^{CMP};$
B) $r_{B0} \le r_{B2}: \ \tau_b^{\Sigma} = \tau_b^{CMP}, \ \tau_h^{\Sigma} = \tau_h^{CMP}.$
(4)

Надстрочные индексы Σ соответствуют полному времени горения и прогрева, остальные временам горения и прогрева на режимах тепломассообмена СС, ПР и СМР соответственно. Рассмотрим далее модели макрокинетического взаимодействия отдельных частиц бора с окислительной средой на различных режимах тепломассообмена, обусловленных изменением размеров частиц.

Таблица

p, МПа		0,1			1			4	
α	0,5	1,0	1,3	0,5	1,0	1,3	0,5	1,0	1,3
<i>T</i> *, K	2608	2865	2474	2798	2995	2515	2905	3052	2548
<i>r</i> _{B1} , мкм	42,2	46,3	40	4,52	4,84	4,07	1,17	1,23	1,03
<i>r</i> _{B2} , мкм	0,422	0,463	0,4	0,0452	0,0484	0,0407	0,0117	0,0123	0,0103

Границы режимов тепломассообмена по размеру частиц

2.1. Приближение сплошной среды

Примем основные допущения при горении отдельной частицы бора (рис. 2) для моделирования режима сплошной среды:

 процессы воспламенения и горения частиц бора осуществляются в неподвижной воздушной среде;

— горение бора реализуется в газофазном режиме на сферической поверхности частицы, имеющей радиус r_b и температуру T_b ;

— температура окислительной среды принимается равной адиабатической температуре горения T^* ;

теплообмен излучением и перенос тепла Стефановым потоком не учитываются;

— температура горения вокруг частицы $T_{\rm b}$ и температура самой частицы $T_{\rm B}$ в процессе горения постоянны;

 — влиянием наличия либо отсутствия окисной пленки на поверхности частицы бора на процессы ее воспламенения и горения при указанных выше условиях можно пренебречь [11].

Основное отличие механизмов горения одиночной частицы и аэровзвеси частиц заключается в изменении концентрации кислорода g_{O_2} в воздухе в процессе горения бора, что будет оказывать влияние на время горения частицы и, соответственно, на скорость пламени. Будем полагать, что g_{O_2} — линейная функция от времени и зависимость $g_{O_2} = f(\tau)$ можно представить следующим образом:

при
$$\alpha \ge 1$$
: $g_{O_2} = g_{O_2}^0 \left(1 - \frac{\tau}{\alpha \tau_b} \right)$,
при $\alpha < 1$: $g_{O_2} = g_{O_2}^0 \left(1 - \frac{\tau}{\tau_b} \right)$.

Оценим текущий радиус r в зоне между частицей и внешней границей условного объема r_{ye} . По аналогии с соотношениями (1) и (2) для расчета r_{ye} можно получить сле-

дующее выражение: $r_{ye} = r_{B0}^{3} \sqrt{\frac{\alpha \overline{K_{m0}} \rho_{B}}{\rho g_{O_{2}}^{0}} + 1}$, где ρ — плотность воздуха при температуре T^{*} .

В принятом диапазоне изменений давления — 0,1÷4 МПа (адиабатические температуры горения $T^* \sim 2600 \div 3100 \text{ K}$) — отношение r_{ye} / r_B будет лежать в диапазоне ~ 70÷400, а поскольку текущий радиус r можно рассматривать как некоторый средний радиус между r_{ye} и r_B , будем считать, что $r_{ye} >> r_B$.

Так как толщина окисной пленки на поверхности частицы много меньше величины *r*_{B0}, а удельная теплота плавления окисной

Рис. 2. Распределение температуры в частице и вокруг нее в процессе ее горения.

пленки (0,35·10⁶ Дж/кг [12]) и испарения (5,08·10⁶ Дж/кг [13]) много меньше удельной теплоты испарения бора $L = 49,847 \cdot 10^6$ Дж/кг [5], то затраты тепла на плавление окисной пленки и ее испарение не учитываем.

В соответствии с вышеизложенным систему исходных уравнений можно записать следующим образом. Удельный массовый поток бора l_{B1} в зоне между поверхностью частицы (r_B) и зоной горения (r_b) определяется уравнением

$$l_{\rm B1} = -4\pi r^2 \rho D_{\rm in} \frac{dg_{\rm B}^{\rm v}}{dr},\tag{5}$$

удельный массовый поток кислорода к зоне горения $I_{\rm O_2}$ записывается в виде

$$I_{\rm O_2} = -4\pi r^2 \rho D_{\rm ex} \, \frac{dg_{\rm O_2}}{dr},\tag{6}$$

здесь $g_{\rm B}^{\rm v}$ — текущие значения массовой доли паров бора, $D_{\rm in}$ — коэффициент диффузии бора между зоной горения и поверхностью частицы, $D_{\rm ex}$ — коэффициент диффузии кислорода в условном объеме к зоне горения при температуре T^* .

Дифференцируя выражение массы частицы бора по времени, получим уравнение для расчета времени горения частицы бора в режиме СС:

$$-4\pi r_{\rm B}^2 \rho_{\rm B} \frac{dr_{\rm B}}{d\tau} = I_{\rm B1}.\tag{7}$$

Будем считать, что тепловой поток к поверхности частицы от зоны горения, обеспечивающий испарение бора, и тепловой поток от нее в окружающую среду определяются соответственно следующими выражениями:

$$-4\pi r^2 \lambda \frac{dT}{dr} = I_{\rm B1}L,\tag{8}$$

$$-4\pi r^2 \lambda \frac{dT}{dr} = I_{\rm B1}(Q_{\rm ch} - L), \qquad (9)$$

где λ — коэффициент теплопроводности газа при температуре T^* .

Допуская, что в рассматриваемом случае газовую смесь можно считать идеальной, выразим массовую долю паров бора $g_{\rm B}^{\rm v}$ через полное давление *p* и парциальное давление паров бора $p_{\rm B}^{\rm v}$ в следующем виде: $g_{\rm B}^{\rm v} = \frac{p_{\rm B}^{\rm v}}{p} \cdot \frac{\mu_{\rm B}}{\mu_{\rm O_2}}$.

При $\alpha \ge 1$ радиус частицы в процессе ее горения изменяется от $r_{\rm B0}$ до 0.

Пределы интегрирования при $\alpha < 1$ определим, используя следующее соотношение в соответствии со схемой горения газовзвеси (рис. 1):

$$K_{\rm m0} \frac{4\pi}{3} \rho_{\rm B} \left(r_{\rm B0}^3 - r_{\rm B\kappa}^3 \right) = \frac{4\pi}{3} g_{\rm O_2}^0 \rho_0 \left(r_{y0}^3 - r_{\rm B0}^3 \right).$$

Тогда с учетом соотношения (2) конечное значение радиуса частиц бора $r_{\rm Bk}$ определяется как

$$r_{\rm BK} = (1 - \alpha)^{1/3} r_{\rm B0} = \omega r_{\rm B0}.$$

840

После интегрирования уравнений (5)–(9) и преобразований можно получить следующие соотношения для расчета плотности потока бора:

$$I_{\rm B1} = \frac{4\pi\rho \left(g_{\rm O_2} D_{\rm ex} + K_{\rm m0} g_{\rm B}^{\rm v} D_{\rm in}\right) r_{\rm B}}{K_{\rm m0}},\tag{10}$$

где g_{O_2} — текущее значение при радиусе r_B .

При избытке окислителя ($\alpha \ge 1$):

$$T_{\rm b} = T^* + \frac{\rho D_{\rm ex} g_{\rm O_2}^0 \left(2\alpha - 1\right) \left(Q_{\rm ch} - L\right)}{2\alpha K_{\rm m0}\lambda};\tag{11}$$

при избытке горючего $\alpha < 1$:

$$T_{\rm b} = T^{*} + \frac{\rho D_{\rm ex} g_{\rm O_{2}}^{0} \left(Q_{\rm ch} - L \right)}{2K_{\rm m0}\lambda};$$

$$p_{\rm B}^{\rm v} = \frac{p\mu\lambda \left(T_{\rm b} - T_{\rm B} \right)}{\rho D_{\rm in}\mu_{\rm B}L}.$$
(12)

Интегрируя соотношение (7), выразим время горения частиц бора в режиме СС для бедных аэровзвесей ($\alpha \ge 1$) в виде

$$\tau_{\rm b}^{\rm CC} = A^* r_{\rm B0}^2,$$

$$A = \frac{K_{\rm m0} \rho_{\rm B}}{\rho \left(\frac{(2\alpha - 1)g_{\rm O_2}^0 D_{\rm ex}}{\alpha} + 2K_{\rm m0} g_{\rm B}^{\rm v} D_{\rm in} \right)};$$
(13)

для переобогащенных смесей ($0 < \alpha \leq 1$) получим

$$\tau_{\rm b}^{\rm CC} = A^* r_{\rm B0}^2, \tag{14}$$
$$A^* = \frac{K_{\rm m0} \rho_{\rm B} (1 - \omega^2)}{\rho \left(g_{\rm O_2}^0 D_{\rm ex} + 2K_{\rm m0} g_{\rm B}^{\rm v} D_{\rm in} \right)}.$$

Замыкая систему уравнений и полагая, что $p_{\rm B}^{\rm v}$ равно давлению насыщенного пара бора, используем зависимость давления насыщенного пара от температуры:

$$\lg p_{\rm B}^{\rm v} = A_p - \frac{B_p}{T_{\rm B}^n},\tag{15}$$

здесь A_p, B_p, n — коэффициенты, зависящие от давления окислительной среды.

Рассмотрим далее методику расчета времени прогрева частицы τ_h^{CC} до температуры плавления, в основе которой принято уравнение теплового баланса частицы в следующем виде:

$$\frac{4}{3}\pi r_{\rm B0}^3 \rho_{\rm B} c_{\rm B} \frac{dT_{\rm B}}{d\tau} = 4\pi r_{\rm B0}^2 \alpha_{\rm t} \left(T^* - T_{\rm B}\right),\tag{16}$$

841

здесь $\alpha_{\rm t}$ — коэффициент теплоотдачи от газа к поверхности частицы, $c_{\rm B}$ — удельная теплоемкость бора. Полагая $\alpha_{\rm t} = \frac{{\rm Nu}\lambda}{2r_{\rm B0}}$, где Nu — число Нуссельта, и интегрируя уравнение (16) с верхними пределами по параметрам плавления бора, получаем выражение для расчета $\tau_{\rm h}^{\rm CC}$ частицы бора в данном режиме:

$$\tau_{\rm h}^{\rm CC} = \frac{2\rho_{\rm B}c_{\rm B}}{3{\rm Nu}\lambda} \ln \left| \frac{T^* - T_{\rm B0}}{T^* - T_{\rm B}^{\rm mel}} \right| r_{\rm B0}^2 = A_{\rm l} r_{\rm B0}^2.$$
(17)

Расчет характеристик процесса распространения пламени в аэровзвеси частиц бора в режимах СС, ПР и СМР в настоящей работе сделан для трех значений давления среды: 0,1, 1 и 4 МПа и трех значений коэффициента избытка окислителя α : 0,5, 1 и 1,5. Исходные значения термокинетических параметров воспламенения и горения бора, а также теплофизических параметров аэровзвеси были приняты на основании работ [5, 14]. Адиабатические температуры T^* при вышеуказанных давлениях рассчитывались с помощью программы «ТЕРРА» [15].

Величины коэффициентов A_p и B_p в уравнении (15) для давления 0,1 МПа приняты по данным работы [5], а при давлениях 1 и 4 МПа рассчитаны исходя из предположения, что температура плавления бора и $\lg p_{\rm B}^{\rm v}$ при $T_{\rm B}^{\rm mel}$ не зависят от давления. Показатель степени *n* в уравнении (15) в соответствии с работой [5] принят равным 1,16 для всех трех значений *p*. При этом зависимость температуры кипения бора от давления рассчитывалась в предположении постоянства теплоты испарения бора *L* в диапазоне давлений 0,1 ÷ 4 МПа по зависимости [8]:

$$T_{\rm Bp}^{\rm v} = \left(\frac{1}{T_{\rm B0}^{\rm v}} - \frac{R_{\mu}\ln(p/p_0)}{L\mu_{\rm B}}\right)^{-1},$$

здесь T_{B0}^{v} и T_{Bp}^{v} — температура кипения бора при начальном (нормальном) давлении $p_0 = 0,1$ МПа и текущем давлении соответственно.

Коэффициент диффузии в воздухе, определяющий массовый поток кислорода к зоне горения, рассчитывался по выражению [15]

$$D_{\rm ex} = 0.185 \cdot 10^{-4} \, \frac{p_0}{p} \left(\frac{T}{T_0}\right)^{1.92}$$

Для расчета коэффициента диффузии бора было использовано выражение $D_{\rm in} = 0.26 \, 10^{-4} \, P_0 \left(T \right)^{1.75}$ коэффициента расчета сирексирация на семерении сириса

 $= 0,26 \cdot 10^{-4} \frac{p_0}{p} \left(\frac{T}{T_0}\right)^{1,75}$, коэффициенты в котором определялись на основании анализа

зависимости коэффициентов диффузии различных газов в воздухе от их молекулярных масс, температуры и давления [16, 17].

2.2. Приближение свободно-молекулярного режима процессов переноса

В соответствии с работой [2] будем полагать, что при горении в режиме СМР $T_{\rm B}^{\rm CMP} = T_{\rm B}^{\rm CMP} = T_{\rm B}^{\rm CC}$. Удельный массовый поток бора $I_{\rm B2}$ при свободно-молекулярном режиме определен с использованием уравнений, приведенных в работах [5, 18], с учетом

изменения концентрации кислорода в процессе горения аэровзвеси частиц бора в соответствии с брутто-реакцией взаимодействия бора с кислородом и ее стехиометрией:

$$I_{\rm B2} = \frac{4\pi r_{\rm B}^2 g_{\rm O_2} p_{\rm B}^{\rm v}}{g_{\rm O_2}^0} \sqrt{\frac{\mu_{\rm B}}{2\pi R_{\mu} T_{\rm B}}},\tag{18}$$

здесь $R_{\mu} = 8,314 \, \text{Дж/(моль-K)}$ — универсальная газовая постоянная.

Время горения частицы бора в данном режиме определим интегрированием уравнения (7) с учетом (18) следующим образом:

— для бедной аэровзвеси ($\alpha \ge 1$):

$$\tau_{\rm b}^{\rm CMP} = \frac{2\alpha\rho_{\rm B}}{(2\alpha - 1)\,p_{\rm B}^{\rm v}} \sqrt{\frac{2\pi R_{\mu}T_{\rm B}}{\mu_{\rm B}}} r_{\rm B0} = Br_{\rm B0};$$
(19)

— для переобогащенной аэровзвеси ($\alpha < 1$):

$$\tau_{\rm b}^{\rm CMP} = \frac{2\rho_{\rm B}}{p_{\rm B}^{\rm v}} \sqrt{\frac{2\pi R_{\mu} T_{\rm B}}{\mu_{\rm B}}} \left(1 - \omega\right) = B^* r_{\rm B0}.$$
 (20)

Выполним оценку времени прогрева частицы $\tau_{\rm h}^{\rm CMP}$ до температуры плавления, используя для расчета теплового потока к частице уравнение теплового баланса [5]:

$$\frac{4}{3}\pi r_{\rm B0}^3 \rho_{\rm B} c_{\rm B} \frac{dT_{\rm B}}{d\tau} = 4\pi r_{\rm B0}^2 \frac{p}{8} \sqrt{\frac{8R_{\mu}T^*}{\pi\mu} \frac{(\gamma+1)\left(T^*-T_{\rm B}\right)}{(\gamma-1)}} \frac{T^*}{T^*},$$
(21)

где μ и γ — молекулярная масса и показатель адиабаты воздуха соответственно.

После интегрирования уравнения (21) получим следующее выражение:

$$\tau_{\rm h}^{\rm CMP} = \frac{\rho_{\rm B} c_{\rm B}}{3p} \frac{\gamma - 1}{\gamma + 1} \sqrt{\frac{8\pi\mu}{R_{\mu}} T^*} \ln \left| \frac{T^* - T_{\rm B0}}{T^* - T_{\rm B}^{\rm mel}} \right| r_{\rm B0} = B_1 r_{\rm B0}.$$
(22)

2.3. Переходный режим процессов переноса тепла и массы

Расчетные соотношения для определения времен горения и прогрева частицы, а также нормальной скорости распространения пламени в переходном режиме составим аналогично тому, как это было сделано в работе [2]. Будем полагать, что суммарные потоки тепла и массы определяются механизмами, имеющими место как при режиме СС, так и при режиме СМР, а удельный вес каждого из таких механизмов в общих потоках тепла и массы определяется только размером частицы. Исходя из этого предположения уравнение изменения массы частицы запишем следующим образом:

$$-\frac{dm_{\rm B}}{dt} = I_{\rm B3} = I_{\rm B1}^0 \frac{r_{\rm B} - r_{\rm B2}}{r_{\rm B1} - r_{\rm B2}} + I_{\rm B2}^0 \frac{r_{\rm B1} - r_{\rm B}}{r_{\rm B1} - r_{\rm B2}},$$
(23)

здесь I_{B1}^0 и I_{B2}^0 — массовые потоки бора при горении на режимах СС и СМР, определенные при значениях $r_{\rm B} = r_{\rm B1}$ и $r_{\rm B} = r_{\rm B2}$ соответственно. Принимая во внимание выра-

жения (10) и (18) для расчета I_{B1} и I_{B2} и полагая в этих выражениях $r_B = r_{B1}$, перепишем (23) в следующем виде:

$$-r_{\rm B}^2 \rho_{\rm B} (r_{\rm B1} - r_{\rm B2}) \frac{dr_{\rm B}}{dt} = g_{\rm O_2} \left(a + br_{\rm B} \right), \tag{24}$$

где

$$a = \frac{p_{\rm B}^{\rm v}}{g_{\rm O_2}^0} \sqrt{\frac{\mu_{\rm B}}{2\pi R_{\mu} T_{\rm B}}} r_{\rm B1} r_{\rm B2}^2 - \frac{\rho}{K_{\rm m0}} (D_{\rm ex} + \frac{K_{\rm m0} g_{\rm B}^{\rm v}}{\overline{g}_{\rm O_2}} D_{\rm in}) r_{\rm B1} r_{\rm B2},$$

$$b = \frac{\rho}{K_{\rm m0}} (D_{\rm ex} + \frac{K_{\rm m0} g_{\rm B}^{\rm v}}{\overline{g}_{\rm O_2}} D_{\rm in}) r_{\rm B1} - \frac{p_{\rm B}^{\rm v}}{g_{\rm O_2}^0} \sqrt{\frac{\mu_{\rm B}}{2\pi R_{\mu} T_{\rm B}}} r_{\rm B2}^2.$$

Интегрируя уравнение (24) в интервале $r_{B2} < r_{B0} < r_{B1}$, получим выражения для расчета времени горения частицы бора в переходном режиме:

— для бедных смесей ($\alpha \ge 1$):

$$\tau_{\rm b}^{\rm IIP} = \frac{2a\rho_{\rm B}(r_{\rm B1} - r_{\rm B2})}{(2a - 1)bg_{\rm O_2}^0} \left[\frac{r_{\rm B0}^2 - r_{\rm B2}^2}{2} - \frac{a}{b}(r_{\rm B0} - r_{\rm B2}) + \left(\frac{a}{b}\right)^2 \ln \left|\frac{a + br_{\rm B0}}{a + br_{\rm B2}}\right| \right];$$
(25)

— для переобогащенных смесей ($\alpha \ge 1$):

$$\begin{aligned} \tau_{\rm b}^{\rm IIP} &= \frac{2\rho_{\rm B}(r_{\rm B1} - r_{\rm B2})}{bg_{\rm O_2}^0} \Bigg[\frac{(r_{\rm B0}^2 - r_{\rm B2}^2 / \omega^2)}{2} - \frac{a}{b} (r_{\rm B0} - r_{\rm B2} / \omega) + \left(\frac{a}{b}\right)^2 \ln \left|\frac{a + br_{\rm B0}}{a + br_{\rm B2} / \omega}\right| \Bigg]; \quad (26) \\ \text{при } \alpha < 1 \quad \overline{g}_{\rm O_2} &= \frac{g_{\rm O_2}^0}{2}, \text{ при } \alpha \ge 1 \quad \overline{g}_{\rm O_2} = \frac{(2\alpha - 1)g_{\rm O_2}^0}{2\alpha}. \end{aligned}$$

Для расчета времени прогрева частицы в переходном режиме используем аналогичный рассмотренному ранее подход и запишем уравнение теплового баланса частицы в следующем виде:

$$m_{\rm B}c_{\rm B}\frac{dT_{\rm B}}{dt} = q_{\rm IIP}^{\rm CC} + q_{\rm IIP}^{\rm CMP},\tag{27}$$

где

здесь

 $q_{\Pi P}^{CC} = 4\pi r_{B0}^2 \frac{\lambda Nu(T^* - T_B)}{2r_{B0}} \frac{(r_{B0} - r_{B2})}{(r_{B1} - r_{B2})},$

После интегрирования и разделения переменных получим соотношение для расчета времени прогрева в режиме ПР:

$$\tau_{\rm h}^{\rm IIP} = \frac{c_{\rm B}Q_{\rm B}r_{\rm B0}}{3\left[\frac{{\rm Nu}\lambda r_{\rm B0} - r_{\rm B2}}{2r_{\rm B0}r_{\rm B1} - r_{\rm B2}} + p\frac{\gamma + 1}{\gamma - 1}\left(\frac{R_{\mu}}{8\pi\mu T^*}\right)^{1/2}\frac{r_{\rm B1} - r_{\rm B0}}{r_{\rm B1} - r_{\rm B2}}\right]\ln\left|\frac{T^* - T_{\rm B0}}{T^* - T_{\rm B}^{\rm mel}}\right|.$$
 (28)

844

3. Анализ влияния давления и соотношения компонентов

В рамках рассматриваемой модели доли механизмов тепломассообмена в режимах СС и СМР, формирующих суммарные потоки тепла и массы в режиме ПР, определяют «положение» текущего радиуса частицы относительно r_{B1} и r_{B2} . Это является основной причиной того, что вид расчетных зависимостей $U_n = f(a)$ и $U_n = f(p)$, приведенных на рис. 3 и 4, а также абсолютные значения U_n зависят как от r_{B0} , так и от r_{B1} и r_{B2} . А именно: при данном значении r_{B0} изменение α и p приводит к изменению границ реализации переходного режима r_{B1} и r_{B2} , что ведет к «смещению» положения частицы относительно границ ПР. Аналогичная ситуация наблюдается при изменении r_{B0} при постоянных α и p.

При $r_{B2} \le r_{B0} \le r_{B1}$ нормальная скорость пламени имеет максимум (рис. 5), наличие которого также определяется указанными выше причинами, что является следствием уменьшения времени горения частиц (рис. 6). Причем с ростом начального давления значение нормальной скорости увеличивается и положение экстремума смещается в сторону меньших размеров частиц.

Для бора реализация устойчивого газофазного горения газовзвеси его частиц в воздухе в связи с очень низкими значениями и $p_{\rm B}^{\rm v}$, определяющего положение зоны горения, и $U_{\rm n}$, представляет собой сложную задачу. Несмотря на большое количество работ,

посвященных исследованию процессов воспламенения и горения бора, надежных экспериментальных данных по скорости распространения пламени в боровоздушной смеси мало. Как отмечалось в работе [19], при нормальных условиях даже «...инициировать процесс в боровоздушных смесях не удается

Рис. 5. Зависимость $U_n = f(r_{B0})$ при $\alpha = 1$. p = 4 (1, 4), 1 (2, 5), 0, 1 (3, 6) МПа; штриховые линии — расчет для режима СС по зависимости $\tau_b^{CC} = Ar_{B0}^2$; сплошные линии расчет по представленной модели.

при различных размерах частиц при $\alpha = 1$. Штриховые линии — расчет для режима СС по зависимости $r_b^{CC} = A r_{B0}^2$; $r_{B0} = 0,01 \ (1), 0,1 \ (2), 1 \ (3), 5 \ (4), 10 \ (5)$ мкм; сплошные линии — расчет по представленной модели.

вплоть до массовой концентрации горючего $g_{\rm B} \approx 400$ г/м³…». Только при использовании в качестве окислителя чистого кислорода в указанной работе удалось стабилизировать пламя и получить значения нормальной скорости пламени $U_{\rm n}$, составляющие величину порядка 0,08 м/с для частиц бора диаметром около 6 мкм.

На рис. 7 приведены результаты расчета U_n по предложенной методике при горении частиц бора диаметром 6 мкм в кислороде с массовой концентрацией $g_B = 200 \div 400 \text{ г/m}^3$ при p = 0,1 МПа и температуре среды, равной адиабатической T^* (кривая *I*), и экспериментальные данные, полученные в работе [19].

Расчетные значения T^* в диапазоне изменения g_B , рассмотренном в работе [19], составляют величины порядка 3054÷3583 К. Однако этот уровень температур не мог быть получен в работе [19] в силу особенностей конструкции экспериментальной установки, не позволяющей исключить потери тепла от зоны горения частиц (прозрачная стеклянная труба, открытая с одного конца). Поскольку измерение температур кислорода в зоне горения в работе [19] не проводилось, а надежных экспериментальных данных по измерению температуры продуктов сгорания бора в кислороде авторами не найдено, то оценка U_n сделана на основании результатов измерения температур продуктов сгорания различными методами при горении частиц Mg и Al в кислороде и расчетных значениях адиабатических температур их продуктов сгорания, представленных в работе [20], из которых следует, что измеренная температура в зависимости от способа ее определения меньше адиабатической температуры сгорания на 150÷600 К. Исходя из этого была сделана оценка U_n еще для трех вариантов температур окислительной среды

Рис. 7. Зависимость $U_{\rm n} = f(g_{\rm B})$.

Кривая 1 — расчет по предложенной методике, кривые 2-4 — расчет по предложенной методике при температурах продуктов сгорания 2600, 2400 и 2000 К соответственно; маркеры — экспериментальные данные [19].

в зависимости от адиабатической температуры сгорания при различных $g_{\rm B}$, результаты которой показаны на рис. 7 (кривые 2, 3 и 4). Как видно из представленных результатов, качественное изменение экспериментальных и расчетных зависимостей $U_{\rm n} = f(g_{\rm B})$ практически идентично. Тем не менее, о количественном соответствии расчетных и экспериментальных значений $U_{\rm n}$ свидетельствовать весьма сложно, поскольку, как уже указывалось выше, для этого нужно знать реальную температуру газа в зоне горения, а ее определение существующими на сегодня методами (цветовым, яркостным, обращением линий и др.) дает весьма различные значения [20].

Заключение

1. На основе модели изменения механизмов переноса тепла и массы при уменьшении размеров частиц разработана расчетная методика, позволяющая в явном виде для аэровзвеси частиц бора, имеющих температуру в воздухе выше температуры плавления бора, рассчитать времена прогрева и горения частиц, массовые потоки бора и нормальную скорость распространения пламени по аэровзвеси частиц бора в зависимости от давления, коэффициента избытка окислителя при изменении размеров частиц в диапазоне от микро- до нанометров.

2. Установлена экстремальная зависимость нормальной скорости пламени от начального радиуса частиц бора, обусловленная сменой механизмов тепломассообмена, и положением максимума, смещающегося в сторону меньших размеров частиц при увеличении начального давления.

 Предложенная методика в силу отсутствия необходимости использования сложного математического аппарата может быть применима на стадии предпроектных и проектных работ для расчета перспективных конструкций энергосиловых установок, использующих в качестве горючего бор.

Список литературы

- 1. Лефевр А. Процессы в камерах сгорания ГТД. М.: Мир, 1986. 566 с.
- 2. Шпара А.П., Ягодников Д.А., Сухов А.В. К вопросу о влиянии размера частиц на механизм горения бора в воздухе // Физика горения и взрыва. 2020. Т. 56, № 4. С. 112–120.
- 3. Кудрявцев В.М., Сухов А.В., Воронецкий А.В., Шпара А.П. Горение газовзвесей металлических порошков (трехзонная модель) // Физика горения и взрыва. 1981. Т. 17, № 6. С. 49–55.
- Рахматулина И.Х. Определение нижнего концентрационного предела распространения пламени в газовзвеси унитарного топлива // Физика горения и взрыва. 1982. Т. 18, № 4. С. 50–56.
- Энергоемкие горючие для авиационных и ракетных двигателей. Справочник / Под ред. Л.С. Яновского. М.: Физматлит, 2008. 400 с.
- 6. Сандарам Д., Янг В., Зарко В.Е. Горение наночастиц алюминия (обзор) // Физика горения и взрыва. 2015. Т. 51, № 2. С. 37–63.
- 7. Иванов В.И. Вакуумная техника: Учеб. пособие. СПб.: Изд-во ИТМО, 2016. 129 с.
- 8. Сивухин Д.В. Общий курс физики. Термодинамика и молекулярная физика. Т. П. М.: Наука, 1990. 591 с.
- 9. Розанов Л.Н. Вакуумная техника. М.: Высшая школа, 1990. 320 с.
- 10. Ворона Н.А., Гавриков А.В. Современные средства получения и измерения вакуума. М.: МФТИ, Лабораторная работа № 2.3.1А, 2018. 62 с.
- Shpara A.P., Yagodnikov D.A., Suckhov A.V., Iryanov N.Ya., Krylov V.I. On the modeling of ignition processes of boron in the air // AIP Conference Proceedings. 2021. Vol. 2318. P. 030003-1–030003-9.
- 12. Альмяшев В.И., Кириллова С.А. Диаграммы состояния научная основа физико-химического конструирования новых материалов: учеб. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2018. 78 с.
- 13. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1978. 391 с.
- 14. Варгафтик Н.Б. Справочник по теплофизическим параметрам газов и жидкостей. М.: Наука, 1972. 720 с.

- 15. Трусов Б.Г. Программная система моделирования фазовых и химических равновесий при высоких температурах // Инж. журн.: Наука и инновации. 2012. № 1. С. 21–30.
- 16. Новый справочник химика и технолога. Электродные процессы. Химическая кинетика и диффузия. Коллоидная химия. СПб.: Профессионал, 2004. 838 с.
- 17. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1975. 488 с.
- **18. Кусов А.Л.** Моделирование процессов испарения и сублимации материалов в неравновесных высокотемпературных средах с использованием метода прямого статистического моделирования Монте-Карло: дисс. канд. физ.-мат. наук. М., 2013. 172 с.
- 19. Бойчук Л.В., Шевчук В.Г., Швец А.И. Распространение пламени в двухкомпонентных составах газовзвесей алюминия и бора // Физика горения и взрыва. 2002. Т. 38, № 6. С. 51–54.
- **20. Кукин П.П., Юшин В.В., Емельянов С.Г.** Теория горения и взрыва: учеб. пособие для ВУЗов. М.: Юрайт, 2014. 435 с.

Статья поступила в редакцию 29 октября 2021 г., после доработки — 17 мая 2022 г., принята к публикации 17 июня 2022 г.