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Исследованы структурные и коллоидные свойства собирателя — солянокислого амина, об-
работанного ультразвуком, при сильвиновой флотации. На основании вязкостно-
температурных зависимостей рассчитана свободная энергия Гиббса вязкого течения рас-
твора солянокислого амина, необработанного и обработанного ультразвуком. Установлено, 
что амины, обработанные ультразвуком и добавленные в насыщенные водные растворы 
солей, более устойчивы к коагуляции. Исходя из результатов синхронного термического 
анализа, ИК-спектроскопии и рентгенофазового анализа, сделано заключение, что УЗ-обработка 
солянокислого амина незначительно увеличивает степень кристалличности амина. Резуль-
таты работы расширяют представление о влиянии ультразвуковой обработки на изменения 
структурных и коллоидных свойств собирателя, которые важны при оптимизации процес-
сов флотации, а также для эффективности и устойчивости флотационного производства 
хлорида калия. 
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Получение калийных удобрений на основе обогащения сильвинитовых руд осуществляется 
галургическим и флотационным методами, последний из которых занял ведущее место 
в отечественной и зарубежной практике обогащения калийных солей [1 – 3]. Наиболее эффек-
тивными и распространенными реагентами-собирателями для флотации калийных солей явля-
ются катионоактивные реагенты — соли высших алифатических аминов с длиной углеводо-
родной цепи C12 – C20 [4]. Флотационная активность и избирательность действия аминов харак-
теризуются склонностью к мицеллообразованию и зависят от их дисперсности, что в итоге 
определяет адсорбционную активность собирателя и равномерность покрытия им поверхности 
минералов сильвина [5, 6]. С повышением дисперсности собирателя возрастают гидрофобизи-
рующие и собирательные свойства, а также селективность реагента [7 – 10]. Кроме того, соби-
ратель в виде крупных мицелл менее доступен для адсорбции на твердой поверхности мине-
ральной частицы, что приводит к повышенному его расходу. Следовательно, эффективность 
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гидрофобизации солевых минералов солями аминов зависит от их поверхностной активности 
и агрегатного состояния в растворе. Применение для флотации растворимых солей в качестве 
жидкой фазы насыщенных солевых растворов способствует интенсивному мицеллообразова-
нию собирателей, их коагуляции и высаливанию, что оказывает значительное влияние на ад-
сорбционную и флотационную активность собирателя, приводит к нерациональному использо-
ванию дорогостоящих реагентов [11 – 14]. В этой связи важны исследования и разработка пу-
тей уменьшения мицеллоборазования, коагуляции и высаливания аминов в солевых растворах.  

Диспергирование и улучшение коллоидных свойств растворов собирателей сильвиновой 
флотации может осуществляться следующими физико-химическими методами [15, 16]: ис-
пользованием более разбавленных исходных растворов, применением различных составов 
фракций собирателя, изменением размера гидрофобного радикала амина, повышением темпе-
ратуры как насыщенного по NaCl – KCl водного раствора, так и исходного раствора собира-
тельной смеси реагентов, интенсивным механическим диспергированием, введением полярно-
аполярных органических соединений, например реагентов-вспенивателей и др. 

Ультразвуковая обработка (УЗ) — перспективный метод изменения структурных свойств 
и дисперсного состояния коллоидных растворов флотационных реагентов [17], который 
в настоящее время используется во многих отраслях промышленности [18 – 21]. Малоэнерго-
емкая и безопасная для человека [22], ультразвуковая обработка способна изменять физико-
химические свойства поверхностно активного солянокислого амина: электрокинетический по-
тенциал, адсорбционные и пенообразующие свойства, поверхностное натяжение и др. Это ве-
дет к изменениям технологических показателей основной сильвиновой флотации. При опти-
мально подобранных режимах УЗ-воздействия повышается качество и выход пенного продук-
та, увеличивается извлечение хлорида калия в пенный продукт [7, 23, 24]. К настоящему вре-
мени имеется мало сведений о влиянии ультразвука на структурные свойства и коллоидное со-
стояние реагента-собирателя, изучение которого важно для оптимизации процессов флотации 
хлорида калия. Кроме того, исследование воздействия ультразвука на структурные и коллоид-
ные свойства солянокислого амина актуальны не только в контексте сильвиновой флотации, 
но и в более широком понимании процесса флотации минеральных руд, где в качестве реаген-
та-собирателя используются поверхностно-активные вещества. 

Цель настоящей работы — исследование влияния УЗ-обработки солянокислого амина 
на его структурные свойства и коллоидное состояние. 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 

Приготовление раствора солянокислого амина. Для приготовления раствора солянокисло-
го амина (СКА) применяли амины первичные (дистиллированные) гранулированные, фракции 
C17 – C20 (марка C, тип “летний”, массовое соотношение аминов фракции C18 : C16 = 3.0). Раствор 
СКА готовили следующим образом: в дистиллированную воду вносили предварительно из-
мельченный в ступке, твердый дистиллированный стеариламин с концентрацией в растворе 
0.8 масс. %, и химически чистую соляную кислоту в количестве на 15 % превышающем необ-
ходимую для нейтрализации стеариламина. Полученный раствор при постоянном перемешива-
нии термостатировали. Температура составляла 70 °С в течение 90 мин, далее ее доводили 
до рабочей, равной 60 °С. 

Ультразвуковая обработка. Ультразвуковую обработку раствора СКА проводили с помо-
щью лабораторной ультразвуковой установки, представленной на рис. 1. 
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Рис. 1. Схема лабораторной установки для ультразвуковой обработки раствора солянокислого 
амина: 1 — излучательный элемент; 2 — ультразвуковой генератор; 3 — термостат; 4 — реак-
тор с рубашкой; 5 — штатив 

Установка модели УЗТА-0.8/22-ОМУ серии “Волна”, ООО “Центр ультразвуковых техно-
логий” (Россия) имеет номинальную рабочую частоту 22 ± 1.65 кГц. Электронный генератор 
с таймером и регулятором мощности (40 – 100 %). При ультразвуковом воздействии полная по-
требляемая мощность составляет примерно 1600 Вт, активная — 650 Вт, в среду объемом 
500 см3 вводится акустическая мощность 420 Вт (удельная акустическая мощность при данных 
условиях составляет 0.85 Вт/см3). 

Измерение вязкостно-температурных свойств. Для измерения динамической вязкости 
и температуры растворов флотационных реагентов использовали вибровискозиметр SV-10, 
A&D (Япония). Прибор включает в себя сенсор температуры, предназначенный для опреде-
ления температуры образца. Чтобы получить динамическую вязкость (мПа·с), отображенное 
значение на дисплее прибора необходимо разделить на плотность образца (г/см3). Плотность 
образцов измеряли ареометрами общего назначения по ГОСТ 1300-74 при заданных темпе-
ратурах. 

Синхронный термический анализ, ИК-спектроскопия и рентгенофазовый анализ. Для про-
ведения синхронного термического анализа солянокислых аминов, обработанных и необрабо-
танных ультразвуком, использовали прибор STA 449C, Jupiter (Германия) при скорости нагрева 
образцов 10 °С/мин.  

С целью проведения ИК-спектроскопии СКА, обработанных и необработанных ультразву-
ком, использовали прибор TENSOR 27, Bruker (США) с приставкой НПВО (спектроскопия 
нарушенного полного внутреннего отражения) ATR MIRacle, Pike Technologies (США). После 
получения спектра фона пробу помещали на кристалл приставки НПВО ИК-спектрометра 
и производили съемку спектров в диапазоне волновых чисел от 4000 до 630 см–1 в течение 
5 мин, усредненный спектр обрабатывали при помощи программного обеспечения OPUS. 

Исследование фазового состава образцов проводили с использованием рентгеновского ди-
фрактометра XRD-7000, Shimadzu (Япония) методом дифракции рентгеновских лучей. 

Обработанный и необработанный ультразвуком растворы СКА высушивали при 80 °С 
до постоянной массы, которые затем использовали в качестве измеряемых образцов. 

Вычисление энергии активации Гиббса вязкого течения растворов флотационных реаген-
тов. Для характеристики структурных изменений, происходящих в растворах солей аминов, 
на основании температурной зависимости вязкости растворов рассчитана кажущаяся энергия 
активации вязкого течения растворов ( Gη

≠Δ ) солянокислого амина, обработанного и необрабо-
танного ультразвуком. 
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На основе теории Эйринга [25] кажущаяся энергия активации вязкого течения растворов 
Gη

≠Δ  определяется следующим образом: 

 
0

ln( )G RTη
η
η

≠Δ = , (1) 

где 

 0
AN h
M

ρη = . (2) 

Здесь ρ — плотность раствора, г/см3; R = 8.314 Дж/(моль·К) — газовая постоянная; 
NA = 6.022·1023 моль–1— число Авогадро; h = 6.626·10–34 Дж·с — постоянная Планка; M — мо-
лярная масса раствора, г/моль; η — динамическая вязкость раствора при данной температуре, Па·с; 
T — температура раствора, К; Gη

≠Δ  — энергия активации Гиббса вязкого течения, кДж/моль. 
В формулу (1) подставлялись измеренные значения η, T и ρ, после чего проводился расчет Gη

≠Δ .  
Измерение динамики коагуляции аминов в солевых растворах. Степень коагуляции высших 

алифатических аминов определялась по изменению оптической плотности солевого раствора 
с помощью фотоколориметра КФК-2-УХЛ 4.2 (СССР). Длина волны при измерении составляла 
400 нм, толщина кюветы — 50.070 мм. В качестве сравнения использовался насыщенный 
по NaCl и KCl водный раствор (температура 22 °С, плотность 1.235 г/см3), который изготавли-
вался из солей KCl и NaCl марки “ХЧ”. Далее солевой раствор фильтровался на вакуум-фильтре. 
Обработанный и необработанный ультразвуком собиратель вводился в насыщенный солевой 
раствор в виде водного раствора 0.8 %. Концентрация реагентов в солевом растворе составляла 
1.2·10–4 моль/л. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Результаты синхронного термического анализа, ИК-спектроскопии и рентгенофазового 
анализа образцов СКА, обработанных и необработанных ультразвуком. С целью определения 
изменений термического поведения (температуры и энтальпии химических реакций в процессе 
окисления воздухом) образцов солянокислого амина, необработанных и обработанных ультра-
звуком с максимально возможной удельной акустической мощностью 0.85 Вт/см3 и продолжи-
тельностью 150 с, проведен синхронный термический анализ. Результаты наблюдений при 
синхронном анализе температур плавления солянокислого амина, необработанного и обрабо-
танного ультразвуком, представлены в табл. 1. 

ТАБЛИЦА 1. Температуры плавления солянокислого амина, необработанного и обработанного 
ультразвуком 

Обработка 
солянокислого амина Температуры плавления, °С 

Без УЗ-обработки — 82.0 104.0 163.9 193.5 
УЗ-обработка 62.7 71.7 104.1 164.2 193.8 

 
Вместо эндотермического эффекта при температуре 82.0 °С (без УЗ-обработки) появились 

два эндотермических при температурах 62.7 и 71.7 °С (после УЗ-обработки). Ультразвуковая 
обработка вызывает разрушение или изменение структуры молекул солянокислого амина, что 
в свою очередь влияет на его термические свойства. Появление дополнительных эндотермиче-
ских эффектов при более низких температурах также может указывать на изменение кристал-
лической структуры солянокислого амина после обработки ультразвуком. 
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После УЗ-обработки раствора СКА удельной акустической мощностью 0.85 Вт/см3 и про-
должительностью воздействия 150 с для проверки изменения структурных свойств в высу-
шенном амине проведена ИК-спектроскопия. До и после УЗ-обработки корреляция спектров 
составила 98.77 %, что свидетельствует о том, что основной состав солянокислого амина 
в обоих образцах остался идентичным. Следовательно, ультразвуковая обработка не привела 
к значительным изменениям в молекулярной структуре или появлению новых функциональ-
ных групп в солянокислом амине. Полученные результаты ИК-спектроскопии показывают, 
что изменения в термических свойствах, выявленные с помощью синхронного термического 
анализа (ДСК), могут быть связаны с изменениями в кристаллической структуре или морфо-
логии солянокислого амина после ультразвуковой обработки раствора СКА, 
но не с химическим составом. 

Проведенный рентгенофазовый анализ образцов, представленный на рис. 2, показал, что их 
дифрактограммы идентичны. Однако после ультразвуковой обработки интенсивность пиков 
(площадь пиков) выше примерно на 44 %. Ультразвуковая обработка солянокислого амина 
акустической мощностью до 0.85 Вт/см3 длительностью воздействия 150 с не приводит к хими-
ческим изменениям в составе молекулы, но оказывает влияние на его кристаллическую струк-
туру и термические свойства. Вероятно, ультразвуковая обработка увеличивает степень кри-
сталличности молекул солянокислого амина, что отразилось на увеличении интенсивности ди-
фракционных пиков и появлении дополнительных эндотермических эффектов плавления при 
более низких температурах (см. табл. 1). 

 
Рис. 2. Дифрактограммы рентгенофазового анализа образца СКА, необработанного (a) и обрабо-
танного ультразвуком (б) 

Изменение вязкостно-температурных свойств и энергии активации вязкого течения вод-
ных растворов солянокислого амина. В табл. 2 представлены результаты измерений динамиче-
ской вязкости и плотности при разных температурах для растворов СКА, обработанных 
и необработанных ультразвуком. При максимальной удельной акустической мощности облу-
чения температура раствора повышается на 6 °С в сравнении с СКА, необработанным ультра-
звуком. Динамическая вязкость растворов СКА понижается при максимальной удельной аку-
стической мощности 0.85 Вт/см3 и достигает 0.69 мПа·с, что почти в 9 раз ниже, чем вязкость 
раствора СКА, необработанного ультразвуком. 
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ТАБЛИЦА 2. Динамическая вязкость и плотность растворов СКА, необработанных 
и обработанных ультразвуком длительностью 150 с, при разных температурах 

Удельная акустическая мощ-
ность УЗ-обработки, Вт/см3 Температура, °С Динамическая 

вязкость, мПа·с 
Плотность, 

г/см3 

Без УЗ-обработки 60 5.95 0.985 

0.34 62 2.64 0.983 

0.51 63 0.85 0.982 

0.68 65 0.77 0.980 

0.85 66 0.69 0.979 

Без УЗ-обработки 

62 5.46 0.983 

63 5.31 0.982 

65 5.00 0.980 

66 4.85 0.979 
 
При действии ультразвука на жидкие среды происходит повышение температуры раствора 

и диспергирование вещества [26], в данном случае — мицелл амина. Чтобы оценить влияние 
каждого эффекта, проведены дополнительные исследования по влиянию повышения темпера-
туры раствора СКА на динамическую вязкость (табл. 2). Растворы изучались при тех же темпе-
ратурах, которые фиксировались при различных интенсивностях УЗ-обработки. Данные свиде-
тельствуют о том, что повышение температуры незначительно снижает динамическую вязкость 
растворов реагентов, т. е. наибольший вклад в изменение вязкости вносит ультразвуковая ка-
витация. 

Для характеристики структурных изменений, происходящих в растворах солей аминов под 
действием УЗ-обработки, на основании температурной зависимости измеренной динамической 
вязкости рассчитана кажущаяся энергия активации вязкого течения растворов СКА (энергия, 
требуемая для перехода 1 моля молекул жидкости из начального состояния в текучее состоя-
ние при данных давлении и температуре). Как видно из рис. 3, использование УЗ-обработки 
раствора СКА при разной удельной мощности понижает свободную энергию Гиббса вязкого 
течения. Если максимальная удельная мощность составляет 0.85 Вт/см3, энергия активации 
близка к значениям дистиллированной воды при 60 °С. 

 
Рис. 3. Энергия активации Гиббса вязкого течения растворов СКА: 1 — дистиллированная вода 
при 60 °С; 2 — УЗ-обработка раствора СКА 
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В растворах ПАВ возможно присутствие разнообразных мицеллярных структур, которые об-
разуются в тех или иных условиях [27, 28]. Установлено и подтверждено данными рентгено-
структурного анализа существование двух типов мицелл — сферического и пластинчатого [29]. 
Форма и размер мицелл зависят от молекулярной природы ПАВ, его концентрации в растворе, 
температуры раствора, характера межмолекулярных сил, различного рода добавок и т. д. [30]. 
Образуемые сложные мицеллы (цилиндрической или пластинчатой формы) первичных длин-
ноцепочечных аминов обладают меньшим зарядом, чем сферические и сфероидальные. Скорее 
всего, такие мицеллы ориентируются параллельно друг другу, причем соседние частицы обра-
щены одна к другой своими гидратированными ионогенными группами. В результате такого 
расположения в водном растворе могут образоваться сплошные мицеллярные слои или сетча-
тые структуры, состоящие из большого числа нитеобразных пластинчатых агрегатов, что при-
водит к резкому возрастанию их мутности и вязкости, а также к потере флотационной активно-
сти собирателя. Высокие значения 2 в сравнении с 1 (рис. 3) свидетельствуют о сложном стро-
ении мицеллярной структуры аминов. Вместе с тем ультразвуковая обработка растворов СКА 
сопровождается снижением энергии активации Гиббса, что указывает на переход от сложной 
мицеллярной структуры аминов к более простой. 

Изменение динамики коагуляции амина. Проведенными ранее исследованиями установлено, 
что с увеличением удельной акустической мощности УЗ-обработки раствора СКА уменьшаются 
размеры мицелл амина, наблюдаются изменения в объеме и удельной поверхности мицелл: объ-
ем частиц уменьшается, тогда как удельная поверхность мицелл существенно возрастает [7]. 
Косвенно это свидетельствует о том, что повышается сорбционная и флотационная активность 
мицелл амина, которые значительно влияют на показатели флотации. Исходя из этого можно 
предположить, что меньший размер мицелл будет способствовать снижению скорости коагу-
ляции мицелл амина в насыщенном солевом растворе NaCl – KCl – H2O. 

На рис. 4 показано влияние УЗ-обработки солянокислого амина на динамику коагуляции 
аминов, оцениваемую по изменению оптической плотности насыщенного солевого раствора 
NaCl – KCl – H2O. 

 
Рис. 4. Влияние УЗ-обработки раствора СКА на оптическую плотность, отражающую динамику коа-
гуляции амина в насыщенном солевом растворе NaCl – KCl – H2O: 1 — без УЗ-обработки; 2, 3 — 
УЗ-обработка соответственно 0.34 и 0.85 Вт/см3 длительностью 150 с 

Для раствора СКА, необработанного ультразвуком, наблюдается снижение оптической 
плотности с течением времени, что указывает на эффект коагуляции мицелл амина в насыщен-
ном солевом растворе NaCl – KCl – H2O. Введение раствора солянокислого амина, обработан-
ного ультразвуком с различной удельной акустической мощностью, в насыщенный солевой 
раствор NaCl – KCl – H2O увеличивает оптическую плотность солевого раствора. Кроме того, 
при УЗ-обработке раствора СКА с более высокими удельными акустическими мощностями 
мицеллы амина, добавленные в насыщенный солевой раствор NaCl – KCl – H2O, находятся в те-
чение длительного времени в более устойчивом к коагуляции состоянии. 
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Приведенные ранее лабораторные исследования по флотационному разделению компонен-
тов сильвинита (KCl и NaCl) с применением УЗ-обработки раствора СКА указывают на то, 
что при увеличении акустической мощности до 0.68 Вт/см3 и различной длительности воздей-
ствия (30, 60 и 150 с) извлечение KCl в пенный продукт флотации возрастает относительно 
контрольных экспериментов, где УЗ-обработка не применялась [7]. Однако при более высокой 
акустической мощности (0.85 Вт/см3) наблюдалось небольшое понижение извлечения, которое 
оставалось выше контрольных показателей. Увеличение эффективности флотации за счет при-
менения УЗ-обработки раствора СКА коррелирует с приведенными данными. 

Таким образом, под действием УЗ-обработки раствора СКА меняются структурные свой-
ства и коллоидное состояние ключевого реагента-собирателя основной сильвиновой флотации, 
что приводит к повышению извлечения KCl в пенный продукт флотации. В перспективе УЗ-
обработка собирателя может быть использована для повышения технологических показателей 
флотации сильвинитовых руд. 

ВЫВОДЫ 

Исследовано влияние ультразвуковой обработки раствора солянокислого амина, применя-
емого в качестве собирателя при сильвиновой флотации, на коллоидные и дисперсные свойства 
раствора собирателя. Выявлено, что при увеличении удельной акустической мощности ультра-
звукового воздействия повышается температура и снижается динамическая вязкость раствора 
реагента. Установлено: ультразвуковая обработка растворов солянокислого амина сопровожда-
ется снижением энергии активации Гиббса, что указывает на разрушение сложной мицелляр-
ной структуры аминов до более простой; амины, обработанные ультразвуком, добавленные 
в насыщенные водные растворы солей NaCl – KCl, более устойчивы к коагуляции; ультразву-
ковая обработка солянокислого амина акустической мощностью 0.85 Вт/см3 и длительностью 
воздействия 150 с незначительно повышает степень кристалличности амина, что отражается 
на увеличении интенсивности дифракционных пиков на рентгенограмме и появлении дополни-
тельных эндотермических эффектов плавления в области температур ниже 100 °С. 

Применение ультразвуковой обработки раствора солянокислого амина с акустической 
мощностью до 0.68 Вт/см3 позволяет увеличить извлечение KCl в пенный продукт относитель-
но контрольных экспериментов. 

Приведенные результаты исследований могут найти применение при флотационном обо-
гащении сильвинитовых руд, расширяя представление о влиянии ультразвука на поверхностно-
активное вещество — раствор солянокислого амина. 
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