УДК 532.529+541.126

МОДЕЛИРОВАНИЕ ЯЧЕИСТОЙ ДЕТОНАЦИИ В ГАЗОВЗВЕСЯХ СУБМИКРОННЫХ ЧАСТИЦ АЛЮМИНИЯ С РАЗЛИЧНЫМИ РАСПРЕДЕЛЕНИЯМИ КОНЦЕНТРАЦИИ

Т. А. Хмель, С. А. Лаврук

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск khmel@itam.nsc.ru

Представлены данные численного моделирования двумерных течений ячеистой детонации в плоских каналах в газовзвесях частиц алюминия субмикронных размеров (0.6 и 0.3 мкм) в кислороде. Рассмотрены однородные и неоднородные по концентрациям смеси. Использована развитая ранее модель приведенной кинетики, верифицированная по зависимости скорости детонации от концентрации частиц и расширенная на описание неоднородных взвесей. Установлены зависимости размера и характера детонационных ячеек от размера и концентрации частиц. Рассмотрены задачи о распространении детонации в каналах с поперечными градиентами концентрации и перемежающимися распределениями концентраций.

Ключевые слова: газовзвесь алюминия, ячеистая детонация, неоднородная смесь, численное моделирование.

DOI 10.15372/FGV20220301

ВВЕДЕНИЕ

Исследование взрывных и детонационных явлений в ультрадисперсных газовзвесях частиц алюминия представляет интерес ввиду широких перспектив использования нанопорошков алюминия в промышленности и технологиях, например, в составе топливных смесей в устройствах детонационного сгорания. Теоретические и численные исследования ячеистой детонации в газовзвесях алюминия проводились во многих работах (см., например, [1-13]) с использованием различных моделей приведенной кинетики для описания горения частиц. Основными факторами, сдерживающими разработку детальных кинетических моделей, являются трудности их реализации, в частности, из-за наличия физических особенностей (конечный размер частиц, наличие оксидной пленки), которые не позволяют использовать эти модели напрямую. Например, модель детальной кинетики горения наночастиц алюминия представлена в [14], но ее использование ограничено размерами частиц до $20 \div 40$ нм.

Одной из проблем моделирования детона-

© Хмель Т. А., Лаврук С. А., 2022.

ционного горения алюминия является неопределенность состава продуктов детонационного горения, которые, кроме оксида, могут содержать и субоксиды [15]. Достоверных экспериментальных данных о составе продуктов детонации при различных начальных концентрациях частиц в газовзвеси нет, а термодинамические расчеты противоречивы и не согласуются с данными экспериментов по скорости детонации [6]. Поэтому в численных исследованиях рассматриваются, как правило, бедные смеси (с избыточным количеством кислорода), для которых оправдано предположение о присутствии в продуктах детонации только оксида алюминия, и можно использовать в расчетах максимальное значение теплового эффекта реакции [1]. В модели [16] учитывается процесс декомпозиции Al₂O₃ на газообразные субоксиды при определенной температуре, протекающий с поглощением тепла. В [17] на основе параметрических исследований показано существенное влияние температуры декомпозиции на результаты моделирования детонации.

В модели А. В. Федорова [18, 19], используемой в [2–4, 8–13], предполагается одновременное образование Al₂O₃ и субоксидов алюминия (образование субоксидов непосредственно за ударной волной отмечено в экспериментах [20]), а тепловой эффект определяется из данных о скорости нормальной детонации [21].

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 20-08-00295) и в рамках государственного задания (номер гос. регистрации 121030500163-4).

На основе приведенной в [22] зависимости скорости детонации в кислородных взвесях частиц алюминия от их загрузки в [23] построена модель для описания детонации в неоднородной по концентрациям смеси. Описание модели и данные расчетов ячеистой детонации при различных концентрациях микроразмерных частиц алюминия, а также при продольных или поперечных градиентах концентрации представлены в [12].

Переход к рассмотрению ультрадисперсных частиц (субмикронных и нанометровых размеров) представляет интерес, так как при этом меняется кинетика горения частиц [24], что связано с переходом от диффузионнолимитированного горения к кинетическому режиму горения. В [11] показано, что в ячеистой детонации стехиометрических смесей это проявляется в нерегулярности поперечных волн и укрупнении ячеек по мере распространения фронта.

В настоящей работе исследуются течения ячеистой детонации в плоских каналах в однородных и неоднородных по концентрациям взвесях субмикронных (0.6 и 0.3 мкм) частиц алюминия. Целью работы является анализ зависимости характера ячеистой детонации и размера ячеек от размера частиц, от начальной концентрации в однородных смесях и от распределения концентраций в неоднородных смесях.

1. ФИЗИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, ПОСТАНОВКА ЗАДАЧИ И ЧИСЛЕННЫЙ МЕТОД ИССЛЕДОВАНИЯ

Двумерные течения ячеистой детонации описываются уравнениями механики сплошной среды, вытекающими из законов сохранения массы, импульса и энергии. Основные уравнения представлены в работах [2, 12, 13]. Для неоднородных по концентрациям взвесей включено дополнительное уравнение типа лагранжева переноса для параметра концентрации

$$\frac{\partial(\rho_2\zeta)}{\partial t} + \frac{\partial(\rho_2 u_2\zeta)}{\partial x} + \frac{\partial(\rho_2 u_2\zeta)}{\partial y} = -J\zeta$$

с начальными условиями $\zeta|_{t=0} = \xi_0(x, y)$, где $\xi_0(x, y)$ — начальная массовая концентрация частиц в смеси, ρ_2 — плотность частиц, u, v — компоненты скорости, J — интенсивность массообмена при горении частиц. Горение суб-

микронных частиц инициируется при достижении температуры плавления алюминия $T_{ign} = T_{melt} = 930$ К [24] (другие подходы к описанию воспламенения наноразмерных частиц обсуждаются в [25]). В рамках приведенной кинетики горение описывается уравнением аррениусовского типа

$$J = \frac{\rho_2}{\tau_0} \left(\frac{d}{d_0}\right)^{-0.3} \exp\left(-\frac{E_a}{RT_1}\right) \left(\frac{p}{p_*}\right)^m [\xi - \xi_k(\zeta)].$$

Здесь параметры реакции зависят от размера частиц [13] (учитывается переходный режим горения): $m = -0.25 \ln d$, $E_a = 0.5 \{E_{micro}(2 + \ln d) - E_{nano} \ln d\}$, $E_{micro} = 32 \text{ кДж/моль [2]}$, $E_{nano} = 60 \text{ кДж/моль [18]}$, p — давление, d — размер частиц, мкм, τ_0 — константа времени горения ($\tau_0 = 0.202$ мкс при d = 1 мкм).

Калорическое уравнение состояния для частиц имеет вид $E_2 = 0.5(u_2^2 + v_2^2) + c_{v2}T_2 + Q(\zeta)$, где c_{v2} — удельная теплоемкость частиц, тепловой эффект реакции $Q(\zeta)$ определен в [23] в соответствии с представленными в [22] данными по зависимости скорости нормальной детонации от концентрации частиц в кислородной взвеси. Параметр ξ_k , отражающий долю несгоревших частиц, также зависит от параметра концентрации. Таким образом, в достехиометрическом интервале при $\xi_0 \leq 0.55$: $Q = 20.3 \exp(-3.17\xi_0)$ [МДж/кг], $\xi_k = 0.1\xi_0$; в застехиометрическом при $\xi_0 > 0.55$: Q = 3.52 МДж/кг, $\xi_k = 0.1\xi_0+3.3(\xi_0-0.55)(\xi_0-0.4)$.

Замыкающие соотношения, выражающие законы сопротивления и теплообмена частиц в потоке газа, представлены в [2, 12]. В соответствии с данными [11], в описании данных процессов для частиц размером от 300 нм можно пренебречь эффектами свободномолекулярного обтекания и теплообмена. Другие подходы к описанию взаимодействия газа и частиц в газовзвесях при ударно-волновых и детонационных процессах обсуждаются в обзоре [26].

Постановка задачи аналогична [2, 11, 12] и отвечает задаче инициирования плоской детонации в облаке частиц в плоском канале с последующим развитием малых возмущений, усилением поперечных волн и формированием развитой ячеистой детонации. Ширина канала *Y* принималась равной 6 см, в некоторых расчетах — 12 см.

Численный метод основан на применении TVD-схемы Хартена — Лакса для газа и монотонизирующей схемы Джентри — Мартина — Дэйли для частиц. Метод тестировался на ряде

Рис. 1. Ячеистая детонация в однородных взвесях частиц размером d = 0.6 мкм в среднем диапазоне концентраций (истории максимального давления): $\xi_0 = 0.25$ (a), 0.4 (b), 0.6 (e), 0.75 (c)

задач. Некоторые результаты тестовых расчетов детонации субмикронных взвесей представлены в [12].

2. ДЕТОНАЦИЯ В ОДНОРОДНЫХ ВЗВЕСЯХ СУБМИКРОННЫХ ЧАСТИЦ АЛЮМИНИЯ РАЗЛИЧНЫХ КОНЦЕНТРАЦИЙ

Ячеистая детонация в газовзвесях частиц алюминия размером 1 и 2 мкм в широком диапазоне концентраций анализировалась в [12], где выявлены следующие особенности. Зависимость средней скорости детонации от концентрации в соответствии с данными [22] является немонотонной. Максимальное значение 1.8 км/с соответствует бедной смеси (массовой концентрации 0.2), в точке стехиометрии (0.55) скорость детонации составляет примерно 1.6 км/с. В среднем диапазоне концентраций $(0.2 \div 0.7)$ размеры формирующихся ячеек в микродисперсных взвесях очень слабо зависят от концентрации. При этом как средние значения давления в тройных точках, так и максимальные при их столкновении напрямую коррелируют со степенью загрузки частиц. Ячеистые структуры в канале шириной 6 см в смесях с размером частиц 1 или 2 мкм, как правило, регулярны. При приближении к верхнему (0.85) или нижнему (0.07) концентрационному пределу детонации наблюдалось сокращение числа поперечных волн до формирования структур с одной волной.

Для частиц диаметром d = 0.6 мкм расчеты показали аналогичные особенности распространения ячеистой детонации и ее зависимости от концентрационного состава смеси. В диапазоне концентраций $\xi_0 = 0.25 \div 0.6$ в канале шириной Y = 6 см формируется $6 \div 7$ ячеек (рис. 1). Как видно из рис. 1, ячеистые структуры почти везде регулярны. При $\xi_0 = 0.75$ наблюдается некоторая тенденция к неравномерности и укрупнению ячеек, однако их число сохраняется (6 ячеек).

При этом такие параметры, как средняя скорость детонации (определенная по положению фронта на нижней стенке в интервале до 0.08 мс) и среднее давление в точках химпика, существенно зависят от начальной концентра-

Концентрация	Число ячеек	Максимальное давление, атм	Среднее давление в тройных точках, атм	Средняя скорость фронта, км/с
0.1	1÷4 (н/р)	132	35	1.39
0.15	$4 \div 5$	128	42	1.58
0.25	6	140	50	1.71
0.4	6.5	168	60	1.67
0.6	7	215	72	1.56
0.75	6	311	83	1.29
0.85	$0.5 \div 2 (\mu/p)$	499	95	0.9

Параметры детонационных течений в смеси частиц диаметром 0.6 мкм

Рис. 2. Распространение детонации с постепенным укрупнением ячейки, d = 0.6 мкм, $\xi_0 = 0.15$

ции частиц (см. таблицу). Различие по средним и пиковым давлениям при различных концентрациях можно видеть также из сравнения насыщенности цвета на фрагментах рис. 1, которые построены в единой цветовой шкале.

При увеличении или уменьшении концентрации за пределами диапазона $\xi_0 = 0.2 \div 0.7$ размер ячеек увеличивается. На рис. 2 показаны структуры в канале длиной 1.6 м при $\xi_0 =$ 0.15. Здесь из малых возмущений формируется $8 \div 9$ ячеек на ширину канала, а по мере распространения фронта число поперечных волн уменьшается: к x = 0.8 м число ячеек сокращается до $5 \div 6$, а к x = 1.4 м их уже 4. В данном случае укрупнение ячейки происходит монотонно, и можно ожидать, что сформированная к x = 1.3 м структура далее существенно не поменяется.

При значениях вблизи концентрационных пределов детонации (для частиц диаметром 1 мкм определены как 0.07 и 0.9 [12]) ячейки становятся неравномерными или нерегулярны-

ми. На рис. 3 показаны результаты при $\xi_0 =$ 0.1 — траектории тройных точек и некоторые параметры мгновенной картины течения в момент времени 1 мс. Здесь число сформированных из малых возмущений поперечных волн по мере распространения детонации уменьшается, ячейки укрупняются (примерно до x = 0.8 м). Далее можно видеть нерегулярные структуры с увеличением или уменьшением числа ячеек и соответствующим изменением их размера по мере распространения фронта. Мгновенные картины течения характерны для ячеистой детонации с неравномерным или нерегулярным распределением поперечных волн. Участок выпуклого фронта около x = 1.48 м, y = 0.04 м на рис. 3, 6-г отвечает фазе пересжатой детонации между расходящимися поперечными волнами. Участок фронта около x = 1.48 м, y = 0.02 м на тех же фрагментах отвечает волне между сходящимися поперечными волнами, где за ослабленным лидирующим ударным скачком имеется протя-

у, м 0.04

a

Рис. 5. Детонация в смесях частиц размером d = 0.3 мкм при средних концентрациях 0.2 (a), 0.4 (b), 0.6 (c)

женная зона задержки воспламенения частиц, плотность которых высока (рис. 3, c), а давление газа меньше, чем в остальных областях за лидирующим фронтом (рис. 3, e).

На рис. 4 показаны соответствующие картины для насыщенной взвеси с $\xi_0 = 0.85$. В этом случае уже изначально формируются более крупные ячейки (рис. 4,a), а по мере распространения фронта число поперечных волн регулярно изменяется. Подобное изменение числа поперечных волн при распространении нерегулярной ячеистой детонации в очень длинных каналах с демонстрацией повторяемости получено в расчетах газовой детонации в [27]. Мгновенные картины течения характерны для детонации с неравномерными ячейками. В момент времени 1.3 мс выпуклый и вогнутый участки фронта отвечают волнам небольшой степени пересжатия и ослабления. Плотность дискретной фазы при $\xi_0 = 0.85$ (см. рис. 4,*г*) значительно выше, чем при $\xi_0 = 0.1$ (см. рис. 3,г), не только в невозмущенной области, но и за фронтом детонации, так как в силу недостатка кислорода здесь имеет место значительное недогорание частиц. Соответственно, скорость детонации меньше (см. таблицу).

Аналогичные свойства ячеистой детонации прослеживаются и для взвесей с размером частиц d = 0.3 мкм, при этом немонотонная зависимость размера ячейки от концентрации в среднем интервале проявляется более явно (рис. 5). Так, при $\xi_0 = 0.2$ имеется 3.5 ячейки, при $\xi_0 = 0.4 - 6.5$ неравномерных ячеек, а при $\xi_0 = 0.6 - 4.5$ неравномерных ячеек. Тенденция к укрупнению ячейки по мере распространения детонации аналогична случаю d = 0.6 мкм, $\xi_0 = 0.15$ (см. рис. 2). Здесь видно, что на последних участках протяженностью $0.15 \div 0.2$ м число ячеек не меняется. Имеется прямая зависимость пиковых и средних давлений от концентрации (на рис. 5 все картины построены в идентичной теневой шкале).

Так же, как и при d = 0.6 мкм, в очень бедных и, напротив, насыщенных взвесях с размером частиц d = 0.3 мкм наблюдаются сокращение числа поперечных волн, укрупнение и тенденция к нерегулярности ячеек (рис. 6, 7). На мгновенных картинах течения видно, что при $\xi_0 = 0.1$ и 0.8 число поперечных волн примерно одинаково, однако скорость детонации и пиковые и средние значения таких параметров, как давление и плотность частиц, различаются существенно.

3. ДЕТОНАЦИЯ В КАНАЛАХ С НЕОДНОРОДНЫМ РАСПРЕДЕЛЕНИЕМ КОНЦЕНТРАЦИЙ

Особенности распространения детонации в каналах с продольными градиентами концен-

Рис. 6. Детонация в смеси частиц размером d=0.3мкм при $\xi_0=0.1$: a— истории максимального давления; мгновенные картины течения, t=1мс: б— численное шлиренизображение, b— давление газа, z— плотность частиц

Рис. 8. Детонация в смеси частиц размером d = 0.6 мкм в каналах с поперечными градиентами концентрации (истории максимального давления):

a-Y=6 см, $0.2\leqslant\xi_0\leqslant0.7;~{\it d}-Y=12$ см, $0.25\leqslant\xi_0\leqslant0.7$

трации микроразмерных частиц алюминия подробно обсуждались в [12]. Поскольку для субмикронных частиц характерное свойство слабой зависимости размера ячеек от концентрации в диапазоне средних ее значений сохраняется, то и характер распространения детонации остается прежним. Средняя скорость распространения фронта детонации также увеличивается или уменьшается соответственно ее зависимости от концентрации частиц. В диапазоне концентраций $0.2 \div 0.7$ фронт ускоряется при отрицательном градиенте концентрации вдоль канала и замедляется при положительном.

Распространение детонации в каналах с поперечными градиентами концентрации характеризуется нарушением симметрии ячеек и наклоном лидирующего фронта (что было отмечено и для микроразмерных взвесей в [12], и для газовых смесей с неоднородным распределением концентраций в [28]). Это особенно проявляется в диапазоне изменения концентрации от 0.2 (отвечающего максимальной скорости детонации) до 0.75 (наименьшей скорости детонации при сохранении достаточного числа поперечных волн).

Примеры ячеистой детонации в каналах с поперечными градиентами концентрации представлены на рис. 8–10. При инициировании детонации в неоднородном в поперечном направлении облаке сразу возникает первичная поперечная волна, которая порождает вторичные поперечные волны. В интервале изменения концентрации от 0.2 (или 0.25) до 0.7 (рис. 8, 9) зависимость скорости детонации от концентрации представляет собой убывающую функцию (примерно от 1.7 до 1.2 км/с). Характерным является неравномерное расположение поперечных волн в верхней и нижней частях канала (см. рис. 8, 9). В области меньших концентраций ячейка крупная, в области высоких концентраций расстояние между поперечными волнами минимально. В средней части ячейки вытянуты и несимметричны (не являются ромбовидными). Форма лидирующего фронта при этом наклонная, а скорость его распространения отвечает некоторому среднему значению концентрации.

На рис. 10 представлены картины детонации в бедных смесях с поперечными градиентами концентрации (здесь зависимость скорости детонации от концентрации является возрастающей функцией). В этих случаях наклонность лидирующего фронта слабо выражена, ячейка является более крупной, чем на рис. 8, 9. Отметим, что частично смесь находится за пределами детонационных концентраций ($\xi_0 <$ 0.07) [12], однако детонация распространяется устойчиво и ячеистая структура формируется с несколькими поперечными волнами. Другой предельный случай частичного выхода за концентрационные пределы $0.3 \leq \xi_0 \leq 0.85$ представлен на рис. 11. Здесь в смеси с размером частиц d = 0.6 мкм некоторое время распространяется структура с единичной поперечной волной, которая затем диссипирует в пристеночном слое высоких концентраций (рис. 11, a). На рис. 11, δ при d = 0.3 мкм можно видеть

Рис. 9. Детонация в смеси частиц размером d = 0.3 мкм в канале с поперечным градиентом концентрации $0.2 \leq \xi_0 \leq 0.7$:

а — истории максимального давления; мгновенные картины течения, t = 0.44 мс: б — численное шлиренизображение, в — давление газа, г — плотность частиц

несколько поперечных волн, из которых в основной области одна сильная и несколько слабых, а в пристеночном слое высоких концентраций число поперечных волн периодически меняется от одной до трех.

Распространение детонации в каналах с перемежающимися градиентами концентрации исследовалось на примере распределения, задаваемого следующей формулой:

$$\xi_0(x, y) = 0.5[(\xi_{\max} + \xi_{\min}) + \cos(\beta x)(1 - 2y/Y)(\xi_{\max} - \xi_{\min})].$$

Картины истории максимального давления представлены на рис. 12. Как видно, ячеистая детонация характеризуется перемежающимися перераспределениями поперечных волн в соответствии с высокими и низкими значениями концентраций. Так же, как и в смеси

Рис. 10. Детонация в бедных смесях частиц размером d = 0.6 (*a*, *b*) и 0.3 мкм ($\delta, z-w$) с поперечными градиентами концентрации $0.05 \leq \xi_0 \leq 0.25$ (*a*, δ), $0.01 \leq \xi_0 \leq 0.2$ *b*, z-w) (начало рисунка):

a-г — истории максимального давления; мгновенные картины течения, t = 0.44 мс: ∂ — численное шлирен-изображение, e — давление газа, ω — плотность частиц

Рис. 10. Детонация в бедных смесях частиц размером d = 0.6 (*a*, *b*) и 0.3 мкм (δ ,*z*- \mathscr{H}) с поперечными градиентами концентрации $0.05 \leq \xi_0 \leq 0.25$ (*a*, δ) и $0.01 \leq \xi_0 \leq 0.2$ *в*- \mathscr{H}) (окончание рисунка):

ж — плотность частиц

с поперечным градиентом концентрации, сгущение поперечных волн имеет место в областях наибольшей загрузки частиц, а наиболее крупная ячейка формируется в областях наименьшей их загрузки. Поскольку форма фронта по мере его распространения периодически меняет наклон, то вытянутые и несимметричные ячейки перемежаются с разноразмерными симметричными ячейками. При превышении максимальной концентрацией значения 0.8 число поперечных волн значительно сокращается, структуры являются нерегулярными (рис. 12, δ).

Таким образом, результаты расчетов показывают, что при неоднородном в поперечном направлении распределении концентраций частиц в канале формируются ячеистые структуры различного вида с неравномерным расположением поперечных волн. Расстояния между поперечными волнами минимальны в областях максимальных концентраций. Отличие от аналогичных течений в газовзвесях микроразмерных частиц состоит в увеличении числа поперечных волн и тенденции к нерегулярности ячеек при уменьшении размера частиц.

ЗАКЛЮЧЕНИЕ

Методами численного моделирования двумерных течений исследованы процессы распространения детонации в каналах, заполненных газовзвесью субмикронных частиц алюминия в кислороде с однородными и неоднородными распределениями концентраций. Установлены следующие свойства ячеистой детонации. 1. В однородных смесях в диапазоне массовых концентраций частиц 0.2 ÷ 0.7 размер детонационной ячейки слабо (для частиц диаметром 0.3 мкм) и очень слабо (для 0.6 мкм) зависит от концентрации. Вне этого диапазона наблюдается укрупнение ячейки и нарушение регулярности ячеистых структур.

2. В каналах с поперечными градиентами концентрации $0.2 \div 0.7$ формируются структуры с наклонным фронтом и несимметричными ячейками. Сгущение поперечных волн имеет место в области повышенных концентраций частиц. При наличии слоев с концентрациями выше 0.8 число поперечных волн сокращается, ячеистые структуры перестают быть регулярными. При градиентах концентрации $0.05 \div 0.25$ (бедные смеси) ячеистые структуры близки к регулярным, наклонность фронта и сгущение поперечных волн у одной из стенок выражены слабо.

3. В каналах с продольно-поперечными неоднородностями (перемежающимися градиентами концентрации) в обоих рассмотренных интервалах ($0.2 \div 0.7$ и $0.3 \div 0.85$) наблюдается попеременное сгущение поперечных волн у верхней или нижней стенки соответственно максимальным значениям концентрации частиц.

Полученные результаты указывают на возможность управления детонационными процессами и оптимизации структур в течениях гетерогенной детонации газовзвесей за счет неравномерного распределения частиц в пространстве.

Рис. 11. Детонация в смесях частиц размером d = 0.6 (*a*) и 0.3 мкм (δ -d) с поперечным градиентом концентрации $0.3 \leq \xi_0 \leq 0.85$:

 $a,\, б$ — истории максимального давления, b— численное шлирен-изображение, c— давление газа,d— плотность частиц

Рис. 12. Распространение детонации в смеси частиц размером d = 0.6 мкм в каналах с перемежающимися градиентами концентрации $0.25 \leq \xi_0 \leq 0.7$ (*a*), $0.3 \leq \xi_0 \leq 0.85$ (*б*) (истории максимального давления)

ЛИТЕРАТУРА

- Benkiewicz K., Hayashi K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement // Shock Waves. — 2003. — V. 12, N 5. — P. 385–402. — DOI: 10.1007/s00193-002-0169-7.
- Федоров А. В., Хмель Т. А. Численное моделирование формирования ячеистой гетерогенной детонации частиц алюминия в кислороде // Физика горения и взрыва. — 2005. — Т. 41, № 4. — С.84–98.
- Fedorov A. V., Khmel T. A. Cellular detonations in bidispersed gas-particle mixtures // Shock Waves. — 2008. — V. 18, N 4. — P. 277–280.
- Fedorov A. V., Khmel T. A., Kratova Y. V. Cellular detonation diffraction in gas-particle mixtures // Shock Waves. — 2010. — V. 20, N 6. — P. 509–519. — DOI: 10.1007/s00193-010-0290-y.
- Briand A., Veyssiere B., Khasainov B. A. Modelling of detonation cellular structure in aluminium suspensions // Shock Waves. — V. 20, N 6. — P. 521–529. — DOI: 10.1007/s00193-010-0288-5.
- Hosoda H., Hayashi A. K., Yamada E. Numerical analysis on combustion characteristics of nano aluminum particle-oxygen two-phase detonation // Sci. Technol. Energ. Mater. 2013. V. 74, N 2. P. 34–39.
- 7. Khasainov B. A., Virot F., Veyssiere B. Three-dimensional cellular structure of detonations in suspensions of aluminum particles //

Shock Waves. — 2013. — V. 23, N 3. — P. 271– 282. — DOI: 10.1007/s00193-012-0425-4.

- Fedorov A. V., Kratova Y. V. Analysis of the influence of inert particles on the propagation of a cellular heterogeneous detonation // Shock Waves. — 2015. — V. 25, N 3. — P. 255–265. — DOI: 10.1007/s00193-015-0560-9.
- Федоров А. В., Хмель Т. А., Лаврук С. А. Выход волны гетерогенной детонации в канал с линейным расширением. П. Критические условия распространения // Физика горения и взрыва. — 2018. — Т. 54, № 1. — С. 81–90. — DOI: 10.15372/FGV20180111.
- Lavruk S. A., Fedorov A. V., Khmel T. A. Cellular detonation propagation and degeneration in bi-disperse gas suspensions of micron- and nano-sized aluminum particles // Shock Waves. — 2020. — V. 30, N 3. — P. 273–286. — DOI: 10.1007/s00193-020-00943-2.
- Хмель Т. А. Моделирование ячеистой детонации в газовзвесях субмикронных и наноразмерных частиц алюминия // Физика горения и взрыва. — 2019. — Т. 55, № 5. — С. 73–82. — DOI: 10.15372/FGV20190509.
- Khmel T., Lavruk S. Detonation flows in aluminium particle gas suspensions, inhomogeneous in concentrations // J. Loss Prev. Process Ind. — 2021. — V. 72. — 104522. — DOI: 10.1016/j.jlp.2021.104522.
- 13. Lavruk S., Khmel T. Regimes and critical conditions of detonation propagation in expanding channels in gas suspensions of ultra-

fine aluminum particles // J. Loss Prev. Process Ind. -2021. - V. 71. - 104476. - DOI: 10.1016/j.jlp.2021.104476.

- Старик А. М., Савельев А. М., Титова Н. С. Особенности воспламенения и горения композитных топлив, содержащих наночастицы алюминия (обзор) // Физика горения и взрыва. — 2015. — Т. 51, № 2. — С. 64–91.
- Васильев В. М., Вольперт А. И., Клычников Л. В., Петров Ю. М., Салакатова Л. С. Расчет параметров детонации смесей горючих веществ с воздухом // Физика горения и взрыва. 1980. Т. 16, № 3. С. 127–134.
- 16. Veyssiere B., Khasainov B. A. A model for steady, plane, double-front detonations (DFD) in gaseous explosive mixtures with aluminum particles in suspension // Combust. Flame. — 1991. — V. 85, N 1-2. — P. 241–253. — DOI: 10.1016/0010-2180(91)90191-D.
- Benkiewicz K., Hayashi A. K. Parametric studies of aluminum combustion model for simulations of detonation waves // AIAA J. — 2006. — V. 44, N 3. — DOI: 10.2514/1.20412.
- Хмель Т. А., Федоров А. В. Моделирование плоских волн детонации в газовзвеси наноразмерных частиц алюминия // Физика горения и взрыва. — 2018. — Т. 54, № 2. — С. 71–81. — DOI: 10.15372/FGV20180208.
- Fedorov A. V., Khmel' T. A., Fomin V. M. Non-equilibrium model of steady detonations in aluminum particles — oxygen suspensions // Shock Waves. — 1999. — V. 9, N 5. — P. 313– 318. — DOI: 10.1007/s001930050191.
- Schlöffel G., Eichhorn A., Albers H., Mundt Ch., Seiler F., Zhang F. The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube // Combust. Flame. — 2010. — V. 157, N 3. — 446–454.
- Strauss W. A. Investigation of the detonation of aluminum powder-oxygen mixtures // AIAA J. — 1968. — V. 6, N 9. — P. 1753–1761.

- Veyssiere B., Khasainov B. A., Briand A. Investigation of detonation initiation in aluminum suspensions // Shock Waves. — 2008. — V. 18, N 4. — P. 307–315. — DOI: 10.1007/s00193-008-0136-z.
- Khmel T. A., Tolkacheva S. I. Model of reduced kinetics for describing heterogeneous detonation in gas particle mixtures with non-uniform concentration distribution // J. Phys.: Conf. Ser. 2019. V. 1382. 012102.
- 24. Сандарам Д., Янг В., Зарко В. Е. Горение наночастиц алюминия (обзор) // Физика горения и взрыва. — 2015. — Т. 51, № 2. — С. 37–63.
- 25. Федоров А. В., Хмель Т. А. Проблемы замыкания моделей при описании детонации ультрадисперсных газовзвесей алюминия (обзор) // Физика горения и взрыва. — 2019. — Т. 55, № 1. — С. 3–20. — DOI: 10.15372/FGV20190101.
- 26. Хмель Т. А. Моделирование динамических процессов в слабозапыленных и насыщенных газовзвесях (обзор)// Физика горения и взрыва. 2021. Т. 57, № 3. С. 3–17. DOI: 10.15372/FGV20210301.
- Hemeryck L., Lefebre M. N., Van Tiggelen P. J. Numerical investigation of transient detonation waves // High-Speed Deflagration and Detonation. Fundamental and Control / G. Roy et al. (Eds). — Moscow: ELEX-KM Publ., 2001. — P. 81–96.
- Fomin P. A., Kash T., Trotsyuk A. V., Hieronymus H. Modeling of film and surface detonation. Internal Flows // Proc. 5th Int. Symp. on Experimental and Computational Aerothermodynamics of Internal Flows, Gdansk, Poland, 2001, September 4–7 / P. Doerffer (Ed.). Gdansk: IFFM Publ. V. 2. P. 935–943.

Поступила в редакцию 02.08.2021. Принята к публикации 26.08.2021.