УДК 621.311

Математическая модель переноса тепла в слое диэлектрика при СВЧ-облучении

В.А. Карелин, В.В. Саломатов

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mails: vad2hen@mail.ru, salomatov.vv@mail.ru

Рассматривается CBЧ-обработка снежно-ледяной массы, этапами которой являются нагрев и плавление. Поиск базовых закономерностей указанных процессов, которые лежат в основе оптимизации последних, управления, проектирования и др., предваряет построение математических моделей и их реализация аналитическими либо численными методами. В представленной работе построена нелинейная математическая модель двухфазной задачи Стефана для слоистой системы диэлектриков, позволяющая учесть зависимости диэлектрической проницаемости и других параметров среды от температуры, а также от параметров источника CBЧизлучения.

Ключевые слова: CBЧ-излучение, электромагнитный нагрев, теплоизлучение, конвекция, диэлектрик, энергозатраты.

Введение

В последние десятилетия широко развиваются и используются технологические процессы, основанные на воздействии электромагнитной энергии сверхвысокочастотного диапазона на диэлектрические материалы. Области применения энергии СВЧ расширяются с каждым годом. К ним относятся: СВЧ-сушка угля, древесины, растений и др., производство строительных материалов, стерилизация, СВЧ-снего- и -льдоплавление огромных объемов с дорог и тротуаров городов, автотрасс, взлетно-посадочных полос аэродромов и многое другое [1, 2]. Интерес к научным исследованиям объясняется рядом уникальных преимуществ СВЧ-технологий, которые реализуют экологически чистые, быстродействующие, энергоэкономичные, авторегулируемые и другие режимы обработки [3].

Серьезной проблемой наших городов является борьба со снежными заносами дорог, дворов, тротуаров, территорий рабочих производственных предприятий, взлетнопосадочных полос аэродромов, стадионов, хоккейных площадок и др. Снежно-ледовая масса, собранная с указанных площадей, либо собирается снегоуборочной техникой и отправляюся на соответствующие полигоны для сезонного хранения, либо оперативно доставляется грузовыми автомашинами на пункты снеготаяния. Важность решения указанной проблемы связана с требованиями зимнего содержания территорий городов и поселков. Обильные снегопады приводят к усложнению движения транспорта, далее к «пробкам» и дорожно-транспортным происшествиям. Для плавления снежно-ледяной массы используются самые разнообразные источники тепла: пар, горячая вода, теплый воздух, отработанные дымовые газы от горения угля, нефтемазутов, дров. Как правило, процесс осуществляется посредством горелок, а также с помощью конвективных водонагревателей, что приводит к малым скоростям плавления. Кроме того, неизбежен повышенный расход топлива из-за непроизводственных тепловых потерь в окружающую среду. Следует также отметить, что использование таких теплоисточников приводит к негативному экологическому воздействию.

В последние десятилетия внимание привлекает такой метод воздействия на снежно-ледовый массив, как плавление снежной массы за счет воздействия электромагнитного поля СВЧ-диапазона. Его преимуществом является объемный характер микроволнового облучения, отсутствие продуктов сгорания и загрязняющих веществ, возможность достижения высоких скоростей снеготаяния, мгновенное регулирование уровня мощности и момента ее подачи, реализация автоматизации процесса.

Анализ опубликованных работ по данной тематике показал, что основной проблемой, ограничивающей возможность широкого применения электромагнитной энергии CBЧ-диапазона для снего- и льдотаяния, является необходимость учета изменения диэлектрических параметров в ходе процесса с фазовыми переходами. При использовании данного метода подлежат определению такие параметры, как объем расплавленной снежно-ледяной массы, доли компонент расплавленной массы, например, воды, которая характеризуется максимальным поглощением электромагнитной энергии CBЧ-интервала. Отмеченные обстоятельства определяют актуальность разработки и исследования процесса плавления снежно-ледяного массива.

Одним из этапов СВЧ-обработки снежно-ледяной массы является её нагрев и плавление. Поиск базовых закономерностей указанных процессов, которые лежат в основе оптимизации последних, т.е. управления, проектирования и др., предваряет построение математических моделей и их реализация аналитическими либо численными методами. Наибольшую ценность представляют аналитические решения нелинейных задач плавления, относящихся к более тяжелому классу — типа задачи Стефана. Здесь следует выделить точное и, пожалуй, единственное решение классической задачи «плавление – затвердевание» мерзлого грунта, впервые полученное Ляме и Клайпероном, которое применяется как тестовое решение для подтверждения адекватности приближенно-аналитического либо численного решения. В представленной работе построена нелинейная математическая модель задачи Стефана для слоистой системы диэлектриков, позволяющая учесть зависимости диэлектрической проницаемости и других параметров среды от температуры, а также от параметров источника СВЧ-излучения.

Модель тепло- и массопереноса при СВЧ-обработке слоя льда

Формула для микроволновой мощности на единицу объема вещества имеет вид:

$$q(x, y, z, t) = \frac{1}{2} \omega \varepsilon_0 \varepsilon'' \left| E(x, y, z, t) \right|^2,$$
(1)

где ω — циклическая частота микроволн, ε_0 — электрическая постоянная, ε'' — мнимая часть диэлектрической проницаемости, E — напряженность электрического поля.

Рис. 1. Схема воздействия СВЧ-излучения на слой льда.

Модель переноса тепла строится исходя из положения, что на верхнюю границу слоя диэлектрика (лед) падает СВЧ-излучение.

Как известно, мнимая часть диэлектрической проницаемости льда при температуре –12 °C равна 0,003 [4]. Из формулы (1) видно, что в силу этого потери мощности микроволн во льду чрезвычайно малы. После того как микроволновая энергия проникает в слой льда, она воздействует непосредственно на следующую поверхность (в рассматриваемой задаче это слой воды).

Вода обладает гораздо большей мнимой частью диэлектрической проницаемости и может поглощать часть микроволновой энергии с последующим её преобразованием в тепловую энергию, что способствует дальнейшему плавлению льда на стыке между слоями воды и льда. Когда лед на стыке превращается в воду, она также может поглощать микроволновую энергию в большом количестве, что значительно ускоряет таяние льда. Схема данной задачи приведена на рис. 1.

При решении задачи был сделан ряд допущений: микроволновое излучение падает на слой льда вдоль оси X; источник тепла моделируется по закону Бугера; начальные температуры слоев льда и воды постоянны; конвективным теплообменом со стороны воды и внешней поверхностью льда пренебрегаем. При этом уравнения теплопроводности (индекс i = в или л обозначает воду или лед соответственно), начальные условия и условия на границе фазового перехода и других границах задаются следующим образом:

$$\frac{\partial T_{i}(x,t)}{\partial t} = a_{i} \frac{\partial^{2} T_{i}(x,t)}{\partial x^{2}} + \frac{q_{i}}{c_{i}\rho_{i}} e^{-\psi_{i}x},$$

$$T_{\pi}(x,0) = \varphi_{1}(x), \ 0 < x < \delta; \ T_{B}(x,0) = \varphi_{2}(x), \ \delta < x < l,$$

$$\frac{\partial \delta}{\partial t} = \frac{1}{\rho H} \left(\lambda_{B} \frac{\partial T_{B}(\delta,t)}{\partial x} - \lambda_{\pi} \frac{\partial T_{\pi}(\delta,t)}{\partial x} \right),$$

$$\frac{\partial T(0,t)}{\partial x} = 0; \frac{\partial T(\infty,t)}{\partial x} = 0,$$

$$3\pi \delta T_{B}(x,0) = 0;$$

$$Ta \delta T_{B}(x,0) = 0;$$

здесь q — объемная мощность, определенная в (1), ψ — коэффициент затухания.

Электрофизические параметры воды могут сильно меняться при нагреве (см. таблицу) [4].

Зависимости удельной теплопроводности от температуры для воды и льда можно описать следующими уравнениями [5, 6]:

$$\lambda_{\pi} = 2,2212 - 0,01058T, \lambda_{B} = 0,5621 + 0,00193T - 7,3 \cdot 10^{-6}T^{2}.$$
(3)

$\tan \delta$	É	°C
0,31	80,5	1,5
0,275	80,2	5
0,205	78,8	15
0,157	76,7	25
0,127	74,0	35
0,106	70,7	45
0,089	67,5	55
0,0765	64,0	65
0,066	60,5	75
0,0547	56,5	85
0,047	52,0	95

Зависимости удельной теплоемкости от температуры для воды и льда будут иметь вид [5, 7]:

$$c_{\pi} = 2,117 + 0,00789T,$$

 $c_{B} = 4,2849 + 0,002352T - 0,02995\sqrt{T+5}.$
(4)

Плотности воды и льда выбраны постоянными — 1 г/см³ и 0,917 г/см³ соответственно. Частота излучения составляет 2,45 ГГц, напряженность электрического поля — 7000 В/м.

Цель расчетов заключается в нахождении температурных полей в системе «вода – лед». При проведении численного моделирования после разбиения расчетной области на сетку использовалась неявная разностная схема с переводом дифференциальных уравнений задачи в систему обыкновенных дифференциальных уравнений, решаемых для каждого узла сетки. Размер элементов подбирался в результате исследований на сеточную сходимость с достижением отличия получаемых решений не более 0,1 %.

Вследствие равномерности потока СВЧ-излучения при моделировании рассматривалась одномерная задача. Заданные размеры слоя льда составляли: высота — 0,13 м, ширина — 0,04 м. Слой льда находился над слоем воды неограниченной толщины в соответствии с рис. 1.

Результаты

Результаты расчетов для момента времени t = 120 с после начала СВЧ-обработки представлены на рис. 2. Здесь приведено сравнение распределений температуры, полученных в результате вычислений, проведенных в настоящей работе, и имеющихся экспериментальных данных других исследователей [8]. Характерная граница между льдом и водой в указанный момент времени находится вблизи x = 4,5 см. При этом максимальная разница между расчетными и экспериментальными данными достигала 14 %. Вследствие низкого поглощения излучения микроволны могут достаточно легко проходить через лед, и, соответственно, граница раздела твердой и жидкой фаз нагревается быстро, что связано с высоким значением мнимой части диэлектрической проницаемости воды. В силу указанного фактора скорость плавления льда на границе достаточно высока, что сохраняется на протяжении всего времени обработки. Отметим, что, если проводить облучение с обратной стороны льда (для которой отсутствует контакт с водой), температура будет расти гораздо медленнее из-за низких коэффициентов поглощения. Поэтому скорость движения границы фазового перехода в последнем случае получится гораздо ниже. Однако при образовании слоя воды на верхней границе коэффициент поглощения СВЧ-излучения резко возрастает и становится таким же, как на нижней границе лед – вода,

что требует учета возникновения двух фронтов фазового перехода. По мере развития процесса все больший слой воды образуется над верхней поверх-

Рис. 2. Распределение температуры (°С) по слоям льда и воды в момент времени *t* = 120 с.

СВЧ-излучение падает на нижнюю границу (x = 7 см); символы — экспериментальные данные работы [8], сплошная линия результаты вычислений настоящей работы.

по слоям льда и воды в разные моменты времени. t = 60 (1), 180 (2), 360 (3) с.

Рис. 4. Зависимость КПД процесса от толщины слоя льда.

ностью льда. Это приводит к большему поглощению мощности на верхней границе и уменьшению поглощенной мощности на нижней (см. рис. 3).

По мере увеличения слоя воды на верхней поверхности льда все больше энергии расходуется на прогрев воды, а не на плавление льда. Поэтому целесообразно рассмотреть долю энергозатрат непосредственно на процесс плавления (КПД процесса):

$$\eta = \frac{Q_{\pi}}{Q_{\text{полн}}} \cdot 100 \%, \tag{5}$$

здесь Q_{π} — теплота, необходимая для нагрева и плавления льда толщиной d, $Q_{\text{полн}}$ — теплота, необходимая для плавления льда и прогрева воды.

На рис. 4 представлена зависимость КПД процесса от толщины слоя льда, которая напрямую определяет энергозатраты. При этом в расчетах принималось, что вода нагревается до 60 °C. Из рисунка видно, что при данных параметрах источника CBЧ относительно приемлемый КПД можно получить в случае толщины льда до 3 см. При дальнейшем увеличении толщины слоя льда КПД составляет порядка 2 % и значительно не падает. Следует отметить, что КПД главным образом снижается из-за повышения температуры, до которой требуется прогреть воду, а это, в свою очередь, связано с увеличением толщины льда.

Авторами также проводился расчет КПД при значениях мощности источника в диапазоне 100 – 5000 Вт, но явной зависимости выявлено не было.

Выводы

В представленной работе рассматривается СВЧ-обработка слоя льда, находящегося над слоем воды. Построена и численно решена модель нагрева и таяния слоя, учитывающая изменения электрофизических и теплофизических свойств воды и льда в зависимости от температуры, а также две границы фазового перехода. Для оценки точности полученных распределений проведено сравнение с результатами других исследователей. Результаты показали, что до появления пленки воды на верхней границе слоя льда наибольшее количество поглощенной СВЧ-мощности находится на нижней границе (лед – вода), однако после появления и по мере увеличения пленки на верхней границе все большее количество энергии расходуется на этой границе, что влияет на процесс плавления. В работе также выполнен анализ зависимости КПД процесса плавления льда от толщины слоя, позволяющий при заданных параметрах источника определить оптимальную толщину льда.

Список литературы

- Millerd F. The potential impact of climate change on Great Lakes international shipping // Climatic Change. J. 2011. Vol. 104, No. 3–4. P. 629–652.
- 2. Слепцов С.Л., Саввинова Н.А. Расчетное исследование нестационарного теплового состояния слоя льда с учетом рассеяния излучения // Теплофизика и аэромеханика. 2020. Т. 27, № 4. С. 647–654.
- 3. Horeis G., Pichler S., Stadler A., Gossler W., Kappe C.O. Microwave-assisted organic synthesis back to the roots // 5th Intern. Electronic Conf. on Synthetic Organic Chemistry (ECSOC-5). 2001. [Электронный ресурс] http://www.mdpi.org/ecsoc-5.htm.
- 4. Ratanadecho P., Aoki K., Akahori M. Experimental and numerical study of microwave drying in unsaturated porous material // Intern. Commun Heat Mass Transf. 2001. Vol. 28. P. 605–616.
- **5. Coast Guard U.S.** Chemical hazards response information system (CHRIS). 1999. [Электронный рисурс] http://www.uscg.mil/hq/nsfweb/foscr/ASTFOSCRSeminar/References/CHRISManualIntro.pdf.
- 6. Holman J.P. Heat transfer. 4th edn. New York: McGraw-Hill, 1976. 680 p.
- 7. CRC handbook of chemistry and physics / Ed. R.C. Weast, 60th edn. Boca Raton: CRC Press, 1980. 1624 p.
- Ratanadecho P. Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness) // Intern. J. Heat Mass Transfer. 2004. Vol. 47, No. 5. P. 937–945.

Статья поступила в редакцию 25 августа 2022 г., после доработки — 7 сентября 2022 г., принята к публикации 8 декабря 2022 г.