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В связи с ограничениями, присущими макроскопическим моделям химических реакций, основанным 

на использовании полной энергии столкновения (total collision energy, TCE) и общей энергии столкновения 

(GCE, general collision energy), реализована новая модификация алгоритма прямого статистического моделиро-

вания (ПСМ) диссоциации воздуха вдоль линии торможения вокруг типичного затупленного тела STS-2, дви-

жущегося в атмосфере с гиперзвуковой скоростью в неравновесных условиях. Приводится сравнение модифи-

цированной модели с другими используемыми моделями. Модели TCE и GCE зависят от величин эксперимен-

тально определяемых параметров (а именно от величин параметров A и B в аррениусовском выражении 

для скорости реакции), а модель квантовой кинетики QK страдает неточностью. Модифицированные версии 

моделей химических реакций, являющиеся гибридами модифицированной модели квантовой кинетики (MQK) 

и модифицированной модели энергии столкновения (MCE), не требуют обращения к экспериментальным дан-

ным для извлечения величин параметров A и B. Точность рассматриваемой прикладной модели для расчета 

характеристик поля потока оценивается путем сравнения ее результатов с результатами других методов (анали-

тических моделей и имеющихся экспериментальных данных). Результаты показывают, что сочетание модифи-

цированной гибридной модели с преимуществами использования независимых эмпирических параметров дает 

более точные результаты и обеспечивает более точное решение по сравнению с обычными методами без необ-

ходимости использования экспериментальных данных для определения постоянных A и B. 

Ключевые слова: модифицированная квантовая кинетика (MQK), полная энергия столкновения (TCE), 

общая энергия столкновения (GCE), прямое статистическое моделирование (ПСМ). 

Введение 

В динамике разреженного газа существует несколько задач, в которых газ нельзя 

считать термически равновесным и однотемпературным. К ним относятся, например, 

задачи по вхождению в атмосферу гиперзвуковых летательных аппаратов, а также зада-

чи, связанные с обработкой материалов. Неравновесные потоки газа сопровождаются 

химическими процессами, которые заметно отличаются от процессов при традиционном 

термическом равновесии [1]. 

  Закери Р., Камали-Мохадам Р., Мани М., 2024 
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Самым известным методом моделирования разреженных потоков газа является ме-

тод прямого статистического моделирования (ПСМ, англ. DSMC) [2], предназначенный 

для реактивных/нереактивных потоков разреженного газа. Метод ПСМ, основанный 

на использовании микроскопических свойств движущихся и сталкивающихся частиц газа, 

применяется для расчета свойств поля газового потока в неравновесном состоянии [3, 4]. 

Согласно уравнению Больцмана, метод ПСМ включает в себя два раздельных этапа рас-

чета потоков, соответствующих стадии движения частиц и столкновительной стадии. 

Частицы переносят свойства газа на молекулярном уровне, что базируется на их поло-

жении и векторе скорости, а также на молекулярных физических характеристиках, таких 

как диаметры частиц или их масса. На следующем этапе независимо рассчитывается 

столкновение частиц с шагом по времени, меньшим, чем среднее местное время свобод-

ного пробега частиц. При этом расчетная область дискретизируется сеткой ячеек 

для сбора частиц, которые могут участвовать в том или ином столкновении [2]. Столк-

новение является наиболее важной частью алгоритма ПСМ, для которой в работах [5 – 8] 

было предложено несколько моделей — VHS, VSS, GHS и GSS. Хотя в методе ПСМ 

обычно используется столкновительная модель VHS, однако в работе [8] была разрабо-

тана модель GSS на основе комбинации потенциалов Леннарда – Джонса, а также столк-

новительная модель VHS, появление которых связано с условием пренебрежения силами 

притяжения и неточного отношения импульса к вязкому сечению молекул. Было пока-

зано, что в рамках столкновительной модели GSS точность решения может быть значи-

тельно улучшена. Следует отметить, что различные столкновительные модели предска-

зывают разные значения поперечных сечений вязкости, что влияет на величину вязкос-

ти [2, 7]. Расчет вязкости по столкновительной модели GSS выполнялся в работе [8], и была 

продемонстрирована приемлемая точность этой модели. 

Расчеты химических реакций, протекающих при высоком значении энтальпии, 

чрезвычайно важны для расчета столкновений [9]. В методе ПСМ представлены различ-

ные модели химических реакций с присущими ими достоинствами и недостатками. 

В исследовании [2] была предложена модель полной энергии столкновения (TCE), в ко-

торой для расчета вероятностей химических реакций (диссоциации, рекомбинации 

и обмена) использовались макроскопические уравнения Аррениуса для скорости реак-

ций. Авторы [1] дали оценку точности метода TCE с учетом анализа чувствительности, 

проведенного с использованием байесовского статистического метода для чистого азота 

и диссоциации воздуха, чтобы определить, какие параметры оказывают наибольшее 

влияние на результаты моделирования. Данные этой работы могут быть использованы 

для выбора констант параметров в методе ПСМ. В более широком исследовательском 

плане (в задаче моделирования неравновесной химии) значительные усилия и внимание 

посвящались изучению совместно процессов колебательных возбуждений и диссоциа-

ции, как, например, в модели диссоциации с колебательным предпочтением (VFD, vibra-

tionally favored dissociation) [10]. Согласно методу TCE, и следуя аналогичному аналити-

ческому подходу, использованному при разработке модели VFD [11, 12], авторами этих 

работ была предложена общая модель химической реакции в ПСМ — GCE. Вероятность 

реакции в модели GCE определяется поступательной, вращательной и колебательными 

энергетическими модами, и, таким образом, указанная модель имеет больший по срав-

нению с другими моделями контроль над зависимостью поперечного сечения столкно-

вения посредством рассмотрения внутренних энергетических мод. Авторы [13] реализо-

вали метод химических реакций GCE, использовав для этого параллельный код общего 
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назначения PDSC++. Этот код имеет ряд преимуществ, таких как генерация неструкту-

рированной сетки, а также наличие параллельных вычислений, используемых для по-

вышения эффективности вычислений в целом. В работе [12] было проведено сравнение 

результатов, полученных методом PDSC ++ и с помощью модели TCE, в применении 

к моделированию сферы диаметром 1,6 м в условиях гиперзвукового потока разрежен-

ного газа. 

Несмотря на то, что исследователями было предложено значительное количество 

химических моделей для моделирования как разреженных, так и плотных потоков газа, 

однако из-за отсутствия экспериментальных данных для неравновесных условий трудно 

осуществить сравнение точности моделей [2]. Недостатком указанных химических мо-

делей является их зависисмость от экспериментальных параметров, присутствующих 

в коэффициентах аррениусовской скорости реакции. Для снятия этого ограничения 

в работе [14] Берд предложил новую модель, получившую название «квантово-кинети-

ческая» (QK, quantum-kinetic), для химических реакций, рассчитываемых посредством 

ПСМ, которая не требует информации об экспериментальных параметрах A и B в арре-

ниусовском выражении для скорости реакции. Все вероятности реакции в этой модели 

рассчитываются на основе учета колебательного состояния сталкивающихся молекул. 

Автор показал, что метод QK можно использовать для экзотермических и эндотермичес-

ких реакций без знания каких-либо параметров в выражении для скорости реакции 

в сплошной среде. Он также применил модель QK химической реакции для моделирова-

ния диссоциации воздуха и горения водородно-кислородных смесей при высоких темпе-

ратурах. Кроме того, модель QK была реализована в открытом исходном коде ПСМ, 

разработанном авторами [16]. Здесь была предложена комбинация метода QK и подхода 

TCE для нескольких тестовых случаев в условиях гиперзвукового потока. Проведенные 

исследования показали, что точность модели QK требует оценки и улучшения [16 – 18]. 

Авторы [19], например, смоделировали с использованием метода QK поле потока вокруг 

носовой части возвращаемого аппарата во время его входа в атмосферу и обнаружили 

примерно 10-процентную погрешность относительно экспериментальных данных для теп-

лового потока на поверхности. Авторами [20] была улучшена модель химической реак-

ции в методе QK путем модификации энергетического спектра гармонического осцилля-

тора. А в работе [21] для моделирования самопроизвольного горения водородно-кисло-

родной смеси в модели QK использовалась модифицированная скорость реакции реком-

бинации. В работах [16 – 18] были разработаны модифицированная модель QK (MQK) 

и модифицированная модель энергии столкновения (MCE, modified collision energy), 

которые применяются для моделирования химических реакций в различных одномер-

ных условиях и для осесимметричных потоков газа с целью повышения точности реше-

ния. Также в работе [18] авторы представили модифицированную модель энергии столкно-

вения (MCE), в которой используется аналитический или QK-метод для извлечения по-

стоянных параметров в аррениусовском выражении для скорости реакции в методах 

TCE или GCE. 

Поскольку известно, что метод ТСЕ определяет вероятность реакции с помощью 

коэффициентов скорости реакции (kf ), то последний вычисляется из соотношения Арре-

ниуса, которому требуются две важные постоянные, которые должны быть извлечены 

из эксперимента. В работе [18] было показано, что эти параметры можно извлекать 

с помощью аналитического и численнного методов ОК главным образом при решении 

задачи о гиперзвуковом обтекании затупленного тела. 

Так как каждая химическая модель обладает присущими ей достоинствами и не-

достатками, модифицированная версия моделей химических реакций была представлена 
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в виде комбинации модифицированной энергии столкновения и модифицированной 

квантовой кинетики. В настоящем исследовании оценки точности различных известных 

моделей химических реакций, включая QK, TCE и GCE, а также их модифицированных 

версий, выполнены для осесимметричных геометрий. Анализ проводится для диссоциа-

ции воздуха в неравновесных условиях. Поскольку модели TCE и GCE зависят от экспе-

риментальных параметров (а именно от величин параметров A и B а аррениусовском 

выражении для скорости реакции), то изучается влияние вариаций этих параметров, 

а также используется модифицированная версия модели, как независящая от упомяну-

тых ограничений. 

В представленной статье впервые продемонстрирован способ извлечения этих па-

раметров с помощью MQK-метода в ходе решения тестовой задачи STSS-2. Результаты 

показывают, что модифицированная версия моделей химических реакций обеспечивает 

лучшую точность результатов без необходимости знания экспериментально определен-

ных величин параметров A и B в аррениусовском выражении для скорости реакции. 

1. Описание численных методов 

Прямое статистическое моделирование, или метод Монте–Карло, является распро-

страненным численным подходом для изучения потоков разреженного газа. В методе 

ПСМ вместо большого количества реальных молекул используется некоторое количест-

во модельных частиц. Частицы движутся и сталкиваются друг с другом на отдельных 

этапах в соответствии с заданными граничными условиями. Столкновение частиц моде-

лируется статистически, а не детерминистически, что отличает метод ПСМ от метода 

молекулярной динамики. Столкновение между парами частиц происходит упруго (без об-

мена внутренней энергией) или неупруго (с обменом поступательной энергии столкно-

вения и вращательной и колебательной модами внутренней энергии). 

Моделирование методом ПСМ сильно зависит от способа моделирования сталки-

вающейся пары частиц. Кроме того, при моделировании химических реакций, в особен-

ности протекающих при высоких температурах или скорости потока, расчет вероятности 

реакции оказывает заметное влияние на точность результатов [2, 5, 9]. 

1.1. Модели химических реакций 

Как правило, реализация химической реакции при использовании метода ПСМ 

осуществляется в два этапа. На первом этапе после расчета вероятности реакции, кото-

рая зависит от поступательной, вращательной и колебательной энергий, эта вероятность 

сравнивается со случайными числами для определения того, происходит реакция или 

нет. Затем должен реализовываться механизм реакции, определяющийся принятой хи-

мической моделью, соответствующий реактивному столкновению [9]. 

1.1.1. Модель TCE химической реакции 

Согласно методу TCE, вероятность реакции определяется из коэффициента скорос-

ти химической реакции. Скорость реакции равна интегралу от функции распределения 

при микроскопическом равновесии: 

   
0

f TCE c B c c ,T g P f dk


   


                                           (1) 
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где Kf — коэффициент скорости химической реакции, который находится по формуле 

Аррениуса:  

 f aexp ,BAT E kTk                                                       (2) 

здесь fB (c) — микроскопически равновесное распределение Больцмана, k — постоянная 

Больцмана, A и B — константы, подлежащие экспериментальному определению. Нако-

нец, вероятность реакции в модели TCE рассчитывается как 

 

 
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TCE TCE
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                          (6) 

Значение  = 1 принимается для столкновений между одинаковыми частицами, а значе-

ние  = 0,5 — для столкновений между разными частицами [9, 12].  

1.1.2. Модель GCE химической реакции 

Бойд с соавторами в работе [9] представили химическую модель GCE, в рамках ко-

торой можно учитывать влияние колебательной энергии при моделировании диссоциа-

ции с учетом разных энергетических мод при расчете вероятности реакции. Коэффици-

ент скорости реакции может быть вычислен из соотношения 
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         (7) 

где tv — сумма энергии поступательного движения (t) и колебательной энергии (v). 

Вероятность реакции вычисляется как 
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2

B

v
A a

m
A

vkT k a B


  


   

 
     
 


           
 

× 

×
 

 

 

   
v

v

2 2
.

2 2 3 / 2

a B

a B

   

   

      

       
                                (9) 
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Если в уравнении (9) положить a =  =  = 0, то модель GCE преобразуется в модель 

TCE [9, 12]. 

1.1.3. Модель QK химической реакции 

В отличие от предыдущих макроскопических моделей, в химических моделях QK 

используются микроскопические данные о молекулах газа и их квантованного колеба-

тельного спектра. Когда система имеет энтальпию, достаточную для диссоциации, коле-

бательные моды молекул газа обычно являются активными. Чтобы рассчитать потенци-

альное столкновение для диссоциации, следует сравнивать обратное колебательное чис-

ло столкновения с нормализованным равномерно случайным числом. Наконец, вероят-

ность осуществления диссоциации PQK рассчитывается как [14]: 

3/ 2

ν
QK

c

1 ,
k

i
E

P






 
  
 

                                                (10) 

где число i* выбирается случайным образом из интервала от 0 до номера максимального 

колебательного уровня. В случае воздуха рекомбинация и обмен возникают в условиях 

высокого значения энтальпии в процессах, протекающих с участием различных частиц, 

таких как N, O, NO, N2 и O2. Способ расчета вероятностей этих процессов был указан 

авторами настоящей работы в публикациях [16, 17]. Как видно из уравнения (10), наибо-

лее существенный аспект метода QK состоит в том, что функция вероятности зависит 

от микроскопических данных молекул, при этом отсутствует необходимость в наличии 

экспериментальных констант A и B в аррениусовском выражении для скорости реакции 

(см. (2)) [14, 16]. 

1.2.4. Модифицированные модели химической реакции: 

Ввиду отсутствия приемлемой точности у метода QK [11], в работе (16) была пред-

ставлена модификация метода QK, получившая название MQK. Детальное описание это-

го метода приведено в публикациях [16, 17]. Также следует отметить необходимость 

повышения точности и надежности методов TCE и GCE. Один из недостатков микро-

скопических моделей химических реакций, например, GCE или TCE, состоит в том, что 

эти методы формулируются на основе труднодоступных экспериментальных значений 

параметров A и B. Для решения этой проблемы разработана модифицированная версия 

метода макроскопической химической реакции, в которой эти параметры извлекаются 

из двух уравнений, а именно: из уравнения для коэффициента скорости реакций 

и из уравнения для функции вероятности реакции. Для этого посредством расчета ско-

рости реакций и функции вероятности реакций (например, в методе QK) и приравнива-

ния полученных значений химическим отношениям и функции вероятности микроско-

пических моделей реакций можно определить постоянные параметры в уравнениях (2) 

и (9) с использованием аналитических и численных методов [18]. Этот метод может 

быть реализован для каждой макроскопической модели реакции. 

Для расчета функции вероятности модифицированной квантовой кинетики (MQK), 

которая применяется для определения констант макроскопической химической реакции, 

используется процедура MQK: 

Mac MQK
,r rkk                                                        (11) 

Mac MQK
.r rPP                                                        (12) 
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В настоящей работе постоянные параметры извлекаются из скорости реакции 

и функции вероятности метода MQK. Причина выбора метода MQK для извлечения зна-

чений аррениусовских параметров заключается в том, что этот метод обеспечивает более 

высокую точность за счет использования столкновительной модели GSS и функции по-

тенциала Морзе, а также модифицированных характеристик. Указанные преимущества 

оказывают влияние на способ извлечения постоянных параметров на основе процедуры 

MCE [18]. Отметим, что метод MQK использует столкновительную модель GSS, в то 

время как другие методы — столкновительную модель VHS. В настоящем методе, осно-

ванном на методах TCE и GCE, применяется столкновительная модель VHS, но нахож-

дение двух постоянных из аррениусовской скорости реакции базируется на методе 

MQK, в котором используется столкновительная модель GSS. Таким образом, в рас-

сматриваемой в настоящей работе модификации метода TCE или GCE непосредственно 

применяется столкновительная модель VHS и косвенно используются преимущества 

столкновительной модели GSS. 

2. Результаты и их обсуждение 

В настоящей работе исследуется точность решения, полученного для разреженных 

потоков газа в разных тестовых случаях с использованием метода ПСМ и четырех моде-

лей химических реакций: QK, MQK, TCE и GCE. Как уже упоминалось, одно из ограни-

чений моделей TCE и GCE в численном моделировании заключается в трудности зада-

ния правильных значений постоянных параметров A и B в аррениусовском выражении 

для скорости реакции для получения точных результатов. Эти параметры рассчитывают-

ся на основе экспериментальных данных и условий испытаний, которые имеют разные 

значения в разных опубликованных работах [2]. Точность численного решения, полу-

ченного по моделям TCE и GCE, сильно зависит от принятых значений этих параметров. 

Поскольку в моделях QK и MQK отсутствует зависимость от экспериментальных пара-

метров A и B в аррениусовском выражении для скорости реакции (см. (2)) и модели де-

монстрируют одинаковое поведение для всех химических условий, влияние параметров 

исследуется посредством моделирования коэффициента скорости реакции для неравно-

весных условий протекания химических реакций в воздухе вокруг осесимметричного 

затупленного тела STS-2.  

2.1. Оценка точности моделей для расчета коэффициента 

       скорости реакции в неравновесных условиях 

Моделирование нестационарных химических процессов позволяет описывать дис-

социацию частиц после протекания реакций в неравновесных условиях. В представлен-

ном исследовании приводится сравнение скоростей неравновесных нестационарных хи-

мических реакций (с зависящей от времени концентрацией частиц при диссоциации воз-

духа, включая атомы и молекулы азота, кислорода и оксида азота), полученных с ис-

пользованием различных методов расчета. Кроме того, результаты сравниваются с ана-

литическими решениями, полученными путем интегрирования уравнений для скорости 

реакции [1, 22]. Из-за протекания в случае воздуха нескольких химических реакций 

в настоящей работе выбранные измененные значения параметров A и B ограничены зна-

чениями, представленными в таблице. При использовании методов MQK и QK для моде-

лирования вероятности диссоциации, рекомбинации и обменных химических реакций необ-

ходимы данные о некоторых микроскопических константах, которые были приведены 
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для воздуха в работе [13]. На рис. 1 для сравнения представлены результаты, получен-

ные методами MQK и QK, модифицированными методами TCE и GCE, а также анали-

тическим методом, которые использовались для увеличения во времени отношения кон-

центраций компонентов, включая молекулярные азот и кислород (nN , nO), атомарные 

азот и кислород ((nN2
, nO2

), оксид азота (nNO). Вследствие диссоциации молекул воздуха 

концентрация продуктов реакций увеличивается, в то время как концентрация реагентов 

со временем уменьшается. В целом тенденция всех химических моделей одинакова. 

Данные по концентрации реагентов показывают, что модель TCE демонстрирует не-

большие отличия от других моделей. Для концентраций продуктов реакции модель 

MQK дает более точные результаты по сравнению с другими моделями реакций благо-

даря аналитическим данным. Это может быть следствием более высокой точности рас-

чета сечений и использованной модели MQK химической реакции. Таким образом, мо-

дифицированные модели химических реакций дают несколько более точные результаты 

по сравнению с методом QK. Отметим, что и в методе QK, и в модифицированной вер-

сии метода TCE (GCE), и в методе MQK не требуется знаний экспериментальных дан-

ных о величинах параметров A и B для конкретных условий. 

2.2. Оценка точности моделей 

       для осесимметричного затупленного тела STS-2  

В данном разделе приводится оценка точности указанных выше моделей для осе-

симметричного затупленного тела с носовой частью STS-2 [23]. Условия испытаний 

и геометрия были описаны авторами в публикации [17]. На рис. 2 показаны линии тока 

и изолинии полной температуры в окрестности затупленного тела, рассчитанные мето-

дом MQK. Как и ожидалось, имеет место повышение температуры и диссоциация воздуха 

на линии торможения. Следующие результаты получены с помощью моделей TCE и GCE. 

Изначально постоянные параметры A и B в аррениусовском выражении для скорости 

Таблица 

Модификация значений параметров A и B в химических моделях TCE и GCE 

для условий тестов затупленного тела 

Реакции A-TCE B-TCE 
Модифицированное 

значение 

B-модифи-

цированный 

N2 + N2  N + N + N2 6,1710
–9

 –1,6 9,823310
–9

 –1,6013 

N2 + O2  N + N + O2 6,1710
–9

 –1,6 9,823310
–9

 –1,6013 

N2 + N  N + N + N 1,8510
–8

 –1,6 3,277810
–8

 –1,6096 

N2 + O  N + N + O 1,8510
–8

 –1,6 3,277810
–8

 –1,6096 

N2 + NO  N + N + NO 6,1710
–9

 –1,6 9,321510
–8

 –1,6096 

O2 + N2  O + O + N2 4,5810
–11

 –1 1,205910
–9

 –1,50825 

O2 + O2  O + O + O2 4,5810
–11

 –1 1,205910
–9

 1,50825 

O2 + N  O + O + N 1,3810
–10

 –1 1,206810
–8

 –1,50825 

O2 + O  O + O + O 1,3810
–10

 –1 1,206810
–8

 –1,50825 

O2 + NO  O + O + NO 4,5810
–11

 –1 1,205910
–9

 –1,50825 

NO + N  O + N2 3,8310
–13

 –0,5 4,91510
–9

 –0,02188 

NO + O2  O + O + NO 3,8310
–13

 –0,5 4,915010
–15

 –0,02188 

NO + N  N + O + N 7,6610
–13

 –0,5 4,915010
–15

 –0,02188 

NO + O  N + O + O 7,6610
–13

 –0,5 4,915010
–15

 –0,02188 

NO + N  O + N + N 3,8310
–13

 –0,5 4,915010
–15

 –0,02188 
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реакции задаются как значения по умолчанию из таблицы, а данные модифицированной 

версии модели представлены в этой таблице как результат применения методов MCE 

и MQK. В модификации химических реакций, основанной на методах TCE и GCE, 

используется процедура MCE, а для 

расчета параметров A и B применяется 

метод MQK, описанный в разделе 2.2. 

В итоге получены более точные дан-

ные, близкие к результатам модели 

MQK и экспериментальным данным. 

Рисунок 3 позволяет сравнить из-

менения различных температур, вклю-

чая поступательную, вращательную, ко-

лебательную и полную температуру 
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Рис. 1. Сравнение мольных долей компонент воздуха, рассчитанных методами MQK (1) и QK (2), 

модифицированными методами ТСE (3) и GCE (4), 

а также полученных аналитическим методом (5). 

Мольные доли: a — nN2 /n0  и  nO2 /n0,  b — nN /n0,  c — nO /n0,  d — nNO /n0. 
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Рис. 2. Изолинии полной температуры 

и линии тока в окрестности  

затупленного тела. 
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вдоль линии торможения, смоделированные с помощью предложенных моделей TCE 

и GCE, с результатами, полученными методами QK, MQK, TCE и GCE. Видно, что реа-

лизация различных механизмов химических реакций приводит к некоторому изменению 

результатов, причем тенденция изменения температуры близка во всех моделях химиче-

ских реакций. Как уже отмечалось, точный расчет вероятности химической реакции за-

висит от точных значений экспериментальных постоянных параметров в моделях TCE 

и GCE. Модифицированные модели химических реакций могут обеспечить результаты, 

более близкие к результатам метода MQK, по сравнению с методами TCE и GCE при 

использовании параметров по умолчанию, представленных в таблице. Модель TCE 

и даже GCE не учитывает физическую связь между колебательным возбуждением и дис-

социацией, в то время как модели QK и MQK это учитывают без необходимости исполь-

зования экспериментальных данных. Метод MQK с его акцентом на модификацию 

столкновений пар частиц и их относительной скорости, а также с использованием по-

тенциальной функции Морзе, дает более близкие результаты по отношению к данным, 

полученным с помощью модифицированных методов TCE и GCE. Как показывают ре-

зультаты, метод сплошной среды, такой как метод вязкого ударного слоя (Viscous Shock-

Layer, VSL) [24], не способен адекватно предсказать свойства газа вследствие отсут-

ствия учета непрерывности разреженного поля потока. 

–1,30

8000

7 008

7 006

7 004

–1,8 –1,8 –1,7 –1,7 –1,6 –1,6 –1,5 –1,5 –1,4 –1,4 X, м X, м

30000

25000

20000

15000

10000

5000

0

25500

25000

2 0045

00240

00235

00230

02250

П
о

ст
у
п

ат
ел

ьн
ая

 т
ем

п
ер

ат
у
р
а,

 K
К

ол
еб

ат
ел

ь
н
ая

 т
ем

п
ер

ат
у

р
а,

 K

В
р

ащ
ат

ел
ьн

а
я 

те
м

п
ер

ат
у
р
а,

 K
П

о
л
н

ая
 т

ем
п
е

р
ат

у
р
а,

 K

–1,48 –1,46 –1,44

16000

14000

12000

10000

8000

6000

4000

2000

0

.

140 00

135 00

13 000

125 00

–1,4 –1,35 –1,3

10000

8000

6000

4000

2000

0

20000

15000

10000

5000

0

22000

21000

20000

19000

18000
–1,5 –1,4 –1,3

a b

c
d

2
3
4
5
6
7

1

 
 

Рис. 3. Профили температур торможения в окрестности затупленного тела STS2, 

полученные с помощью моделей MQK (1), QK (2), VSL (3), TCE (4), GCE (5) 

и модифицированных моделей TCE (6) и GCE (7). 

Изменения поступательной (а), вращательной (b), колебательной (с) и полной (d) 

температур по линии торможения. 
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Для высоких значений энтальпии газа вдоль линии торможения на рис. 4 приведе-

ны для сравнения профили химического состава, включая таковые для реагентов O2, N2 

и продуктов N, O, NO, для методов TCE и GCE (параметры по умолчанию и модифици-

рованные), а также QK и MQK. При использовании всех методов расчета концентрация 

реагентов уменьшается, а концентрация продуктов реакций увеличивается при прибли-

жении к области головной ударной волны, где протекают химические реакции, такие как 

реакции диссоциации и обмена. Как и ожидалось, при использовании модифицирован-

ных постоянных, основанных на скорости реакций MQK, вероятности реакции в мето-

дах TCE и GCE изменяются, и результаты этих моделей приближаются к результатам 

метода MQK. Напротив, метод VSL в сочетании с методом сплошной среды дает очень 

неточные результаты. Графики рис. 4 позволяют определить точность модифицирован-

ных методов TCE и GCE, а именно выяснить, лежат ли их кривые ближе к кривым моде-

лей QK, VSL с низкой точностью или к кривым более точных моделей, таких как MQK, 

GCE и TCE. Видно, что модифицированные модели показывают результаты, более близ-

кие к результатам более точных моделей. Предлагаемый метод, демонстрируя точность 

(см. рисунок), примерно равную точности более точных методов, имеет то преимуще-

ство, что для него не требуется знания экспериментальных параметров. 

Для изучения влияния модифицированных параметров на результаты химических 

моделей TCE и GCE на рис. 5 приведено сравнение поверхностных тепловых потоков 

как важных параметров при проектировании гиперзвуковых аппаратов, оцененных 
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Рис. 4. Распределения мольных долей вдоль линии торможения затупленного тела STS2, 

полученные с помощью моделей MQK (1), QK (2), VSL (3), TCE (4), GCE (5) 

и модифицированных моделей TCE (6) и GCE (7). 
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с применением разных методов. Пока-

зано, что модифицированные методы 

TCE и GCE обеспечивают несколько 

более точные результаты, близкие к ре-

зультатам модели MQK и к экспери-

ментальным данным, по сравнению 

с методом TCE, в котором применяются параметры по умолчанию, или с методом GCE 

из-за более точного моделирования вероятности реакции. Следует отметить, что при 

использовании метода MQK, не требующего знания постоянных значений эксперимен-

тальных параметров аррениусовской скорости реакции, могут быть выбраны постоян-

ные экспериментальные параметры, полученные методами TCE и GCE, которые обеспе-

чивают более высокую точность модифицированных методов TCE и GCE.  

Также нужно учитывать, что в методе ПСМ в приложении к различным моделям 

химических реакций проблемой являются затраты на вычисления. Эти затраты анализи-

руются для области вокруг тупого тела на рис. 6. Исходя из полученных результатов 

можно сделать вывод, что затраты времени на расчеты по модифицированным и стандарт-

ным моделям TCE, GCE и QK примерно одинаковы, но, как было показано в статье [17], 

модель MQK обеспечивает заметное сокращение вычислений — примерно на 10 %. Это 

связано с тем, что в методе MQK используется столкновительная модель GSS и некото-

рые модификации процедуры столкно-

вения, которые обеспечивают меньшее 

время вычислений при комплектации 

компьютера, включающей для этих 

расчетов процессор i5 – 3.3 ГГц, 4 ГБ 

оперативной памяти, 64 бит. 

Выводы 

Проведено численное исследование различных моделей химических реакций, в том 

числе моделей MQK, QK, TCE и GCE (модифицированной и стандартных), для диссоци-

ации воздуха в неравновесных условиях, а также на линии торможения вокруг типично-

го осесимметричного гиперзвукового затупленного тела. Так как модели TCE и GCE 

требуют знания некоторых экспериментальных параметров, использовался модифици-

рованный метод для химических реакций, представляющий собой комбинацию методов 

0,25 0,30

67000

66000

65000

64000

63000

62000

120000

110000

100000

90000

80000

70000

60000

50000

40000

Т
еп

л
о

во
й

 п
о
то

к,
 В

т
м/

2

0 0,5 1,0 1,5 2,0 X, м

1
2
3
4
5
6
7

 
 

Число 
столкновений

Ч
и

сл
о
 с

то
л
кн

о
ве

н
и

й
, 

×
1
0

8

Число интераций

0 2000 4000 6000 8000 10000

8

6

4

2

0

8

6

4

2

В
р

ем
я 

р
аб

о
ты

 п
р

о
ц

ес
со

р
а,

 
1

0
c 

∙ 
5 1

2
3
4

 
 

Рис. 5. Распределения коэффициентов 

тепловых потоков на поверхности 

затупленного тела STS2, полученные 

с помощью моделей MQK (1), QK (2), 

TCE (3), GCE (4) и модифицированных 

моделей TCE (5), GCE (6), 

а также экспериментально (7). 

 

Рис. 6. Число столкновений и время работы 

центрального процессора (ЦП) 

в зависимости от числа итераций 

для различных моделей химических реакций 

в случае затупленного тела STS2. 

Расчет по моделям MQK (1), QK (2) и  

модифицированным моделям TCE (3), GCE (4). 
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MQK и MCE. Точность и способность модифицированных химических моделей полу-

чать характеристики поля течения, включая скорость реакции, температуры различных 

типов, мольную долю и тепловой поток на поверхности тела, оцениваются путем срав-

нения их результатов с имеющимися аналитическими и экспериментальными данными. 

Также установлено, что в целом модель химических реакций MQK демонстрирует более 

точные результаты по сравнению с моделью химических реакций QK, при этом ограни-

чения, присущие моделям GCE и TCE, отсутствуют. Более того, модифицированные 

варианты методов TCE и GCE увеличивают точность решения и приближают их резуль-

таты к результатам модели MQK. Использование химической модели MQK снижает вы-

числительные затраты примерно на 10 % по сравнению с другими моделями. 

Обозначения 

ATCE — константа в уравнении (6), 

AGCE — константа в уравнении (9), 

A, B — постоянные параметры в аррениусовской 

             скорости реакции, 

Et — переходная энергия, Дж, 

Ec — полная энергия, Дж, 

Ed — энергия диссоциации, Дж, 

Ea — энергии активации, Дж, 

Er — теплота реакции, Дж, 

fB (c) — микроскопически равновесное 

               распределение Больцмана, 

imax — верхний колебательный уровень, 

i* — колебательный уровень, 

k — постоянная Больцмана, ДжK
–1

, 

kt — скорость реакции, м
3
·молекула

–1
/с

–1
, 

mr — приведенная масса, кг, 

N — счетная плотность, м
–3

, 

PQK — вероятность диссоциации в методе квантовой 

             кинетики, 

PTCE — вероятность диссоциации в методе полной 

              энергии столкновения, 

Pc (с ) — полная функция вероятности, 

Pv (v) — колебательная функция вероятности, 

Pr (r) — вращательная функция вероятности, 

Pt (t) — переходная функция вероятности, 

Rf  — cлучайная функция на интервале от 0 до 1, 

Δt — шаг по времени, с, 

T — температура, K, 

Tref — опорная температура, K, 

Zv — колебательное столкновительное число. 

Сокращения 

VHS —переменная твердая сфера, 

VSS — переменная мягкая сфера, 

GHS — обобщенная твердая сфера, 

GSS — обобщенная мягкая сфера, 

TCE — полная энергия столкновений, 

GCE — общая энергия столкновений, 

T — полное сечение, 

c — полная энергия столкновений, 

 — среднее число вращательных и колебательных 

        степеней свободы двух сталкивающихся частиц, 

 — константы модели VSS, 

ref — постоянное стандартное сечение, 

mr — приведенная масса столкновения, 

v — полное число колебательных степеней свободы 

         диссоциирующей молекулы, 

v — колебательная энергия, Дж, 

r — вращательная энергия. 
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