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ПРИ УДАРНО-ВОЛНОВОМ НАГРУЖЕНИИ

И ИЗОЭНТРОПИЧЕСКОЙ РАЗГРУЗКЕ
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Приведены результаты экспериментального исследования пыления и диспергирования свинцово-
го образца в вакуум после ударно-волнового нагружения и изоэнтропической разгрузки с исполь-
зованием электронно-оптической микроскопической методики и методики PDV. Исследовались
динамика и спектр преимущественно диспергированных частиц. Для обеспечения оптической
визуализации из диспергированного облака при помощи диафрагмы со щелью «вырезался» тон-
кий поток (шириной 0.5 мм). Эксперименты проводились в герметичной бронекамере. Обра-
зец толщиной 1 или 2.5 мм нагружался твердым взрывчатым веществом через металлическую
подложку толщиной 1 и 2 мм. Интенсивность ударной волны варьировалась примерно от 23
до 38 ГПа, градиент давления за фронтом волны — от 80 до 157 ГПа/см. После нагружения
свинец находился либо в жидкой фазе, либо в твердой фазе, либо в смеси жидкой и твердой фаз.
Показано, что при разном фазовом состоянии распределения частиц диспергированного свинца
по размерам различны.
Ключевые слова: диспергирование, ударно-волновые процессы, спектр частиц, изоэнтропиче-

ская разгрузка.

DOI 10.15372/FGV2024.9461
EDN UXBPUX

ВВЕДЕНИЕ

Известно, что при ударно-волновом нагру-
жении конденсированного вещества с его сво-
бодной поверхности (СП) выбрасываются мел-
кие частицы материала. Этот процесс называ-
ют ударно-волновым пылением вещества (см.,
например, [1–3]). Затем при разгрузке из-за
откольных процессов вещество начинает дро-
биться. Этот процесс называют диспергирова-
нием вещества. И пыление, и диспергирование
могут существенно влиять на работу мишеней

инерциального термоядерного синтеза. Поэто-
му необходимы подробные экспериментальные

исследования этих явлений для получения ба-
зовых данных, использующихся при тестиро-
вании численных методик.

Для тестирования расчетных методик

важно иметь экспериментальную информацию

по размерам фрагментов разрушенного метал-
ла и их скоростям. В этой работе такие дан-
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ные получены путем оптической микроскопи-
ческой видеорегистрации течения [4] и по мето-
дике PDV [5] в тонком слое (≈0.5 мм) дисперги-
рованного свинца, сформированного при помо-
щи танталовой диафрагмы. Диафрагма уста-
навливалась на расстоянии 100 мм от началь-
ного положения образца свинца. Ее примене-
ние обусловлено тем, что поток диспергирован-
ных частиц является оптически непрозрачным,
а при прохождении через узкую щель диафраг-
мы его оптическая толщина примерно на два

порядка уменьшается.
В работе представлены спектры и скоро-

сти частиц диспергированного свинца при раз-
личном его фазовом состоянии после прохож-
дения ударной волны (УВ) и при различных
градиентах давления за фронтом отраженной

от СП волны.

1. РАСЧЕТНО-ТЕОРЕТИЧЕСКОЕ
ОБОСНОВАНИЕ СХЕМ ЭКСПЕРИМЕНТОВ

Расчеты нагружающего устройства для

исследования диспергирования свинца прово-
дились по двумерной газодинамической про-
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Рис. 1. Принципиальная схема постановки

экспериментов (расчетная схема — осевая

симметрия)

грамме [6]. Принципиальная схема нагружаю-
щего устройства представлена на рис. 1. Для
вариации интенсивности УВ и градиента дав-
ления за ее фронтом изменялись толщина свин-
цового образца, толщина и материал подлож-
ки, а также масса взрывчатого вещества (ВВ)
(табл. 1).

На рис. 2 приведены расчетные профи-
ли давления УВ, выходящих на СП свинца,
в опытах 3, 9, 8, 12. Градиент давления за
фронтом УВ определялся по начальной линей-
ной части зависимостей в диапазоне x = 0 ÷
−0.6 мм. Предполагалось, что эта часть явля-
ется определяющей в процессе диспергирова-
ния свинца.Отметим, что по данным расчетно-
теоретической работы [7] для полного плавле-

Та блиц а 1

Некоторые условия проведения экспериментов

Номер

опыта
Подложка δ,

мм
ВВ L,

мм

Наличие

диафрагмы

pв,
атм

p,
ГПа

∆p/∆x,
ГПа/см

3 Сталь

h = 1 мм
1 ∅15 × 20 мм 111 + 0.01 38 157

8 Сталь

h = 2 мм
2.5 ∅15 × 25 мм 112 − 0.025 31 80

9 Сталь

h = 1 мм
1 ∅15 × 20 мм 111.8 + 0.015 38 157

11 Сталь

h = 2 мм
2.5 ∅15 × 10 мм 112 − 0.025 23 107

12 Титан

h = 2 мм
2.5 ∅15 × 25 мм 107 + 0.01 36 86

Прим е ч а н и я. h — толщина подложки, δ — толщина образца из свинца, L — рас-
стояние от СП до торца репера, pв — давление воздуха в бронекамере, p — расчетное

давление за фронтом УВ, ∆p/∆x — градиент давления за фронтом УВ.

Рис. 2. Профиль УВ, выходящей на СП свин-
ца:

линия 1 — опыты 3 и 9, линия 2 — опыт 8, ли-
ния 3 — опыт 12 (см. табл. 1)

ния свинца в волне разгрузки достаточно дав-
ления на фронте УВ p ≈ 36 ГПа, начало плав-
ления — p ≈ 26 ГПа. По данным работы [8]
свинец жидкий и при p ≈ 34 ГПа, при этом на-
чало плавления согласно работе [5] составляет
p ≈ 25 ГПа.

2. ТЕХНИКА ЭКСПЕРИМЕНТОВ

Эксперименты проводились с использо-
ванием герметичной бронекамеры по схеме,
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Рис. 3. Схема проведения экспериментов

представленной на рис. 3. Внутри бронекаме-
ры монтировалась капсула с образцом свинца

диаметром 30 мм. Шероховатость СП образ-
цов составляла Ra ≈ 43 ÷ 91 нм (зеркало). Об-
разцы нагружались ударной волной, создавае-
мой при помощи заряда твердого ВВ через ме-
таллическую подложку диаметром 36 мм. Над
образцом монтировалась диафрагма со щелью

шириной 0.5 мм, конструкция которой подби-
ралась на основании численного моделирова-
ния для минимального воздействия на поток

частиц. Над ней на дополнительных стойках
устанавливался диск из оргстекла. В диске за-
креплялись два датчика PDV и репер из опто-
волокна (рис. 4). В опытах 8 и 11 диафрагма
отсутствовала. Бронекамера вакуумировалась
до давления воздуха pв ≈ 0.01 ÷ 0.25 атм.

Регистрация течения проводилась в

проходящем излучении по микроскопической

электронно-оптической методике [4] при ко-
эффициенте оптического увеличения k = 10
и по методике PDV [5]. Для подсветки ис-
пользовался лазер с длиной волны 532 нм и

Рис. 4. Внешний вид капсулы с диафрагмой и зоны диагностики датчиков PDV:

1 — диафрагма, 2 — репер, 3 — датчики PDV, 4 — образец свинца

энергией 180 мДж, работающий в трехим-
пульсном режиме, длительность импульса 7 нс.
В опытах регистрировалось по три видеокадра

в различные моменты времени. В статье

представлено по одному видеокадру. Глубина
оптической резкости составляла ≈0.2 мм, по-
этому частицы, взаимодействующие с краями
диафрагмы (вне фокуса), микроскопической

методикой регистрировались размытыми и не

учитывались при обработке.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На рис. 5, 6 представлены видеокадры дис-
пергирования свинца, полученные видеосъем-
кой, и данные, полученные по методике PDV.
На рисунках время t отсчитывается от пода-
чи электроимпульса на детонатор, инициирую-
щий ВВ. По видеокадрам видно, что изначаль-
но с СП вылетают мелкие частицы (идет про-
цесс пыления свинца). Затем образец разруша-
ется на относительно крупные струи и части-
цы, которые хорошо видны в опытах 8, 9, 12.
Эти струи и частицы образовались в резуль-
тате диспергирования свинца. Поток частиц в
опыте 8 более оптически прозрачный, чем в

опыте 9, где свинец после ударно-волнового на-
гружения был расплавлен (см. рис. 5). Отно-
сительно высокая прозрачность потока в опы-
те 8 характерна для дробления свинца не пол-
ностью расплавленного.

Поэтому можно утверждать, что в опы-
те 8 свинец был в смеси жидкой и твердой фаз.
В опыте 11 наблюдаются отколы свинца, что
характерно для твердой фазы; в опыте 12, как
и в опытах 3 и 9, разрешаются диспергирован-
ные частицы свинца, находящиеся в жидкой
фазе.
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Рис. 5. Диспергирование свинца:

1 — репер диаметром 0.23 мм, 2 — вакуум, 3 —
направление движения УВ, 4 — пылевое облако,
5 — диспергированный свинец; поле 12.8×12.8 мм;
а — опыт 9, t = 63.7 мкс, p = 38 ГПа; б — опыт 8,
t = 76.2 мкс, p = 31 ГПа

Рис. 6. Диспергирование свинца:

1 — репер диаметром 0.23 мм, 2 — вакуум, 3 —
направление движения УВ, 4 — струи дисперги-
рованного свинца (микроотколы в опыте 11), 5 —
диспергированный свинец; а — опыт 12 с диа-
фрагмой, t = 65.5 мкс, p = 36 ГПа, размер по-
ля 11.5 × 11.5 мм; б — опыт 11 без диафрагмы,
t = 85 мкс, p = 23 ГПа, размер поля 12 × 12 мм
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Рис. 7. Спектрограммы PDV:

1 — частицы «пыли» свинца, 2 — частицы диспергированного свинца, 3 — микроотколы; а — опыт 9;
б — опыт 12; в — опыт 8; г — опыт 11

На рис. 7 приведены характерные спек-
трограммы скоростей СП свинцового образца и

пылевых потоков, зарегистрированных в опы-
тах. На всех спектрограммах фиксируются на-
чальный момент выхода УВ на поверхность

свинцового образца, скорость ее движения и
максимальная скорость пылевого потока.

На спектрограмме опыта 11 со свинцом

в твердом состоянии (см. рис. 7,г) изменение
скорости СП видно на протяжении всей запи-
си, что свидетельствует о сравнительно низ-
кой плотности пылевого потока. Для образца
в состоянии плавления (опыты 9 и 12) высокая
плотность пылевых потоков практически сразу

перекрывает отражение зондирующего излуче-
ния от поверхности образца, позже при про-
хождении через диафрагму поток становится

более прозрачным, что приводит к зондирова-
нию частиц, лежащих ниже условной СП (см.
рис. 7,а,б при t = 58 ÷ 64 мкс).

Наблюдаемое на рис. 7 торможение частиц
пыли связано с недостаточно высоким вакуу-
мом в бронекамере. Интенсивность сигналов

на спектрограммах не дает возможности про-
водить сравнительную оценку реальной плот-
ности пылевых потоков, что в первую очередь
связано с интенсивностью полезного сигнала на

фоне шума паразитной засветки.
Размер диспергированных частиц (диа-

метр d) определялся, как и в [3], по специаль-
ной математической программе: сначала опре-
делялась площадь изображения частицы, а по
площади — эффективный диаметр d. Части-
цы пыли свинца в этих опытах были относи-
тельно малы (из-за низкой шероховатости по-
верхности), они слабо разрешались, поэтому не
измерялись.Относительное распределение дис-
пергированных частиц по размерам R опреде-
лялось как

R =

N −
n∑
i=1

ni

N
, (1)

где N — общее количество частиц в экспери-
менте; ni — количество частиц в i-м интерва-
ле диаметров с учетом количества в предыду-
щем интервале. На рис. 8 представлены зависи-
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Рис. 8. Распределение диспергированных ча-
стиц по размерам в опытах 3, 8, 9 и 12

мости R(d) в опытах. Погрешность измерения
диаметров частиц составляла 14 %.

Из результатов опытов, приведенных в

табл. 2, можно сделать следующие выводы:
– скорость фронта диспергированных ча-

стиц близка к расчетной скорости СП;
– в жидкой фазе свинца при расчетной ско-

рости СП Wcalc ≈ 1.89 ÷ 1.83 км/с средний
размер диспергированных частиц при гради-
енте давления ∆p/∆x = 157 ГПа/см соста-
вил 24 мкм (опыты 3 и 9), при ∆p/∆x =
86 ГПа/см — 26 мкм (опыт 12), т. е. в дан-
ных постановках экспериментов не наблюдает-
ся существенного влияния градиента давления

на размеры частиц;
– в смеси твердой и жидкой фаз при рас-

четной скорости СП ≈1.64 км/с и градиенте

Та блиц а 2

Некоторые результаты экспериментов

Номер

опыта

Wcalc,
км/с

WPDV,
км/с

Wmax,
км/с

d,
мкм

3 1.89 1.78 2.6 20

8 1.64 1.55 2.3 117

9 1.89 1.79 2.5 28

11 1.34 1.2 1.8 —

12 1.83 1.72 2.48 26

Прим е ч а н и я. Wcalc — расчетная скорость сво-
бодной поверхности; WPDV — максимальная ско-
рость фронта диспергированных частиц по дан-
ным PDV; Wmax — максимальная скорость фрон-
та пыли по данным PDV; d — среднее значение

диаметра диспергированных частиц.

давления ∆p/∆x = 80 ГПа/см средний размер
частиц составил 117 мкм (опыт 8), т. е. значи-
тельно больше, чем в жидкой фазе;

– при твердом состоянии свинца при рас-
четной скорости СП ≈1.34 км/с и градиенте
давления ∆p/∆x = 107 ГПа/см на СП наблю-
даются микроотколы размером до 1 мм, движу-
щиеся со скоростью ≈ 1 ÷ 1.2 км/с (опыт 11);

– скорости фронтов пыли с «зеркальных»
поверхностей СП для всех его фазовых состоя-
ний примерно в 1.3 раза больше скорости СП.

ЗАКЛЮЧЕНИЕ

С использованием микроскопической элек-
тронно-оптической методики и методики PDV
проведены экспериментальные исследования

процесса пыления и диспергирования свинцо-
вого образца после ударно-волнового нагруже-
ния и изоэнтропической разгрузки при различ-
ных фазовых состояниях свинца после нагру-
жения. Получено, что градиент давления за
фронтом УВ при жидком состоянии свинца не

влияет существенно на размер частиц; в смеси
жидкой и твердой фаз размер диспергирован-
ных частиц примерно в пять раз больше, чем
в жидкой фазе; при твердом состоянии свинца
на СП наблюдаются микроотколы.
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