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Предложена математическая модель, описывающая формирование внутренних гидрав-
лических прыжков и перемешивание сонаправленных потоков идеальной стратифици-
рованной жидкости в приближении Буссинеска. Модель основана на трехслойном пред-
ставлении течения с учетом вовлечения жидкости из внешних слоев в промежуточную
вихревую прослойку и представляется в виде системы неоднородных законов сохране-
ния. Скорость вовлечения задается условием равновесия в рамках более общей модели
эволюции слоя смешения.Определены скорости распространения возмущений и сформу-
лированы понятия докритического и сверхкритического течений. Показано, что модель
применима для описания особенностей перемешивания и расщепления потока в глу-
боководных течениях. Построены решения, соответствующие обтеканию препятствия с
образованием внутреннего гидравлического прыжка и области интенсивного перемеши-
вания. Проведено сравнение результатов численного моделирования с эксперименталь-
ными данными. Показано, что они хорошо согласуются.
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Введение. Генерация внутренних волн, гидравлических прыжков и боров, а так-
же формирование областей интенсивного перемешивания вследствие развития сдвиговой

неустойчивости характерны для слоистых стратифицированных течений над неровным

дном [1]. В природных условиях колебания температуры и солености приводят к рас-
слоению толщи воды, при этом создаются условия для распространения внутренних волн,
понижающих или повышающих уровень пикноклина. Особый интерес представляет иссле-
дование внутренних волн конечной амплитуды, способных перемещаться на значительные
расстояния без существенного изменения формы. Такие волны регулярно регистрируются
в прибрежных водах [2, 3] и в открытом море [4, 5]. Натурные наблюдения придонных
гравитационных потоков в каналах Атлантического океана показывают, что в глубоко-
водных течениях над уступами и препятствиями также распространены процессы пере-
мешивания и генерации волн [6, 7]. Формирование внутренних гидравлических прыжков
и боров является одним из механизмов перемешивания слоистой жидкости в сдвиговом

течении. Несмотря на то что внутренние боры в настоящее время наблюдаются часто и
в различных акваториях [8, 9], процесс их генерации в естественных условиях требует
дальнейшего изучения.

В природных потоках сдвиг скорости определяется перепадом плотности жидкости по

глубине и рельефом обтекаемой поверхности. Основные особенности таких течений вос-

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 23-41-00090).

c© Ляпидевский В. Ю., Чесноков А. А., 2024



44 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3

производятся в лабораторных условиях [10, 11], что позволяет экспериментально исследо-
вать развитие сдвиговой неустойчивости в нисходящих потоках на подветренной поверх-
ности препятствия. Результаты экспериментов [11] по формированию гидравлического

прыжка и слоя смешения в двухслойном однонаправленном течении в канале прямоуголь-
ного сечения с локальным препятствием показывают возможность управления положением

скачка с использованием условий вниз по потоку.Математические модели гидравлических
прыжков в двухслойных сдвиговых течениях предложены и исследованы в работах [12, 13].
Установлено, что увеличение сдвига скорости в спутном потоке приводит к тому, что
физически непротиворечивые решения в рамках двухслойного представления течения не

существуют. Модификация двухслойной теории с учетом вовлечения жидкости [14] поз-
воляет увеличить область применения модели и согласовать полученные результаты с

результатами прямого численного моделирования [15]. Экспериментальное исследование
и прямое численное моделирование турбулентного перемешивания и вовлечения окружа-
ющей жидкости в гравитационный поток проводились в работах [16, 17].

Методы математического моделирования сдвиговых стратифицированных течений с

учетом турбулентного перемешивания, основанные на трехслойном представлении тече-
ния, предложены в [18]. В работах [19, 20] эти подходы были развиты и применены при
построении моделей, описывающих эволюцию слоя смешения, внутренние волны и гид-
равлические скачки в слоистых стратифицированных течениях в приближении Буссине-
ска. В этих моделях скорость вовлечения жидкости из внешних слоев в промежуточный
слой пропорциональна скорости “больших вихрей”, генерируемых сдвигом скорости в сло-
ях. Предложенные модели были верифицированы путем сравнения с известными экспери-
ментальными данными и результатами прямого численного моделирования. Аналогичные
трехслойные модели применялись для описания перемешивания и вовлечения окружающей

жидкости в гравитационное течение над склоном [21]. При этом использовалось допол-
нительное условие равновесия, позволяющее описывать процессы вовлечения с помощью
более простых уравнений движения.

В данной работе предложена модель эволюции слоя смешения в сдвиговом страти-
фицированном течении над неровным дном, являющаяся равновесной для более общих
уравнений [20]. Модель представляется в виде системы четырех неоднородных законов

сохранения. Проведенные расчеты показывают, что предлагаемая модель применима для
описания характерных режимов течения слоистой жидкости. Получены решения, описыва-
ющие расщепление гравитационного потока над склоном с образованием промежуточной

застойной области [22, 23], а также формирование гидравлического скачка на подветрен-
ной поверхности препятствия [11].

1. Уравнения движения. Рассматривается плоскопараллельное движение устойчи-
во стратифицированной трехслойной жидкости, ограниченной непроницаемыми поверхно-
стями z = Z(x) и z = H0 = const. Предполагается, что во внешних однородных слоях c
плотностями ρ1 и ρ2 течение потенциальное, в промежуточном слое со средней плотностью
ρ̄ = (ρ1 + ρ2)/2 движение жидкости вихревое. Такая структура потока обычно использу-
ется при моделировании слоя смешения, формирующегося вследствие развития неустой-
чивости границы раздела двух однородных слоев, движущихся с различными скоростями.
Осредненные по глубине уравнения трехслойного течения с учетом турбулентного пере-
мешивания в приближении Буссинеска имеют вид [20]

ht + (uh)x = −σq, ηt + (vη)x = 2σq, ζt + (wζ)x = −σq,
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Здесь x, t — пространственная координата и время; h, ζ, η — толщины нижнего, верхнего
и промежуточного слоев; u, w, v — средние скорости жидкости в слоях; q — средняя

скорость “больших вихрей” в промежуточном слое; H = h + η + ζ и Q = uh + vη + wζ —
полная толщина слоя и расход жидкости; ρ2p

∗ — давление на верхней крышке канала;
b = g(ρ1−ρ2)/ρ2 > 0 — постоянная плавучесть; g — ускорение свободного падения; c1, c2 —
коэффициенты трения. Постоянные σ и κ определяют скорость вовлечения жидкости из

внешних слоев в прослойку и диссипацию энергии. Взаимодействие потоков на внутренних
границах течения представляет собой процесс вовлечения жидкости в прослойку и учтено

в рассматриваемой модели.
В работах [20, 24] показано, что в зависимости от способа осреднения при моделирова-

нии “больших вихрей” процессы, происходящие в прослойке, описываются двумя близкими
по структуре моделями. Параметры потока (границы раздела, скорость слоев), определен-
ные по этим моделям, различаются незначительно. Поэтому ограничимся рассмотрением
одной модели (модели I в [20, 24]). Кроме того, будем полагать, что слой смешения не
достигает нижней или верхней границы области течения. Это предположение позволяет
считать жидкость в слое смешения однородной с плавучестью b̄ = b/2 в силу симметрии
вовлечения жидкости в прослойку из верхнего и нижнего однородных слоев [18].

Из равенства H = H0−Z(x) и первых трех уравнений (1) следует, что Qx = 0. С уче-
том этого уравнения и граничных условий во входном сечении канала полный расход Q(t)
можно считать известным. Дифференциальными следствиями системы (1) являются урав-
нения [20]

vt + vvx +
b

2
hx +

b

2
ηx + p∗x = − b

2
Zx +

σq

η
(u + w − 2v),

qt + vqx =
σ

2η

(
(u− v)2 + (w − v)2 −

(
2 + κ sign (q)

)
q2 − bη

)
.

(2)

Поэтому в классе гладких решений громоздкие уравнения полного импульса и энергии

трехслойного течения (последние два соотношения в (1)) можно заменить уравнениями (2).
Более того, в [19, 20] показано, что замена закона сохранения энергии его дифференциаль-
ным следствием не приводит к качественным различиям получаемых разрывных решений.

Рассмотрим упрощенный вариант модели (1) для течений, в которых переменная q не
меняет знак. Следуя [18, 21], полагаем, что неотрицательная скорость “больших вихрей”
определяется из условия равновесия, при котором правая часть второго уравнения (2)
тождественно обращается в нуль. Из этого условия можно выразить переменную q:

q2 = max
{

0,
(u− v)2 + (w − v)2 − bη

2 + κ

}
, q =

√
q2. (3)

Таким образом, в равновесной модели трехслойного течения при наличии перемешивания
последнее уравнение системы (1) заменяется соотношением (3).
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Использование переменных r = u − w и R = Q − wH позволяет исключить давле-
ние p∗ в уравнениях баланса импульса и представить равновесную модель в виде системы
эволюционных уравнений. Для определения вектора искомых функций U = (h, η, r, R)т

получаем замкнутую систему четырех неоднородных законов сохранения

ht + (uh)x = −σq, ηt + (vη)x = 2σq,
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+
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ζ
,

где H = H0 − Z; ζ = H − h− η; скорости жидкости в слоях определяются из формул

w =
Q−R

H
, u = r + w, v =

R− rh

η
+ w,

скорость “больших вихрей” q вычисляется из соотношения (3).
Для нахождения скоростей характеристик запишем систему (4) в векторной форме

Ut + AUx = F . Матрица A имеет вид

A =


u 0 h −h/H

w − u w h 1− η/H
b b/2 u (w − u)/H
a1 a2 2(u− v)h w + 2(v −Q/H)

 ,

где a1 = (u− v)2− (w− v)2 + bh+ bη/2; a2 = (h+ η)b/2− (w− v)2. Собственные значения λ
матрицы A находятся из полиномиального уравнения четвертого порядка

χ(λ) = H det (A− λI) =
(
(u− λ)2 − bh

2

)(
(w − λ)2 − bζ

2

)
η +

+ (v − λ)2
((

(u− λ)2 − bh

2

)
ζ +

(
(w − λ)2 − bζ

2

)
h
)

= 0. (5)

Нетрудно показать, что в случае малого сдвига скорости в слоях u ≈ v ≈ w все корни

характеристического уравнения (5) являются вещественными. Течение будем называть
сверхкритическим, если все вещественные скорости характеристик положительны. В слу-
чае если имеется хотя бы одна отрицательная скорость характеристики, течение является
докритическим.

2. Стационарные решения. Система обыкновенных дифференциальных уравнений
определяет класс стационарных решений равновесной модели (4)

(uh)′ = −σq, (vη)′ = 2σq,
(u2 − w2

2
+ bh +

bη

2

)′
= −bZ ′ − c1u|u|

h
+
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ζ

,

(v2 − w2

2
+
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2
+

bη

2

)′
=

σq

η
(u + w − 2v)− b

2
Z ′ +

c2w|w|
ζ

.

(6)

Здесь штрих означает дифференцирование по x; переменная q определяется уравнени-
ем (3). В силу условия H = H0 − Z и постоянства полного расхода Q имеем

ζ = H0 − Z − h− η, w = (Q− uh− vη)/ζ. (7)
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При получении системы (6) использовано уравнение баланса импульса в промежуточном
слое (первое соотношение (2)). Заметим, что для течений над ровным дном Z = 0 при
постоянстве расхода Q = const уравнения (4) инвариантны относительно преобразования
Галилея. В этом случае решения в классе бегущих волн (искомые функции зависят от
переменной ξ = x−Dt, D = const) эквивалентны стационарным решениям.

Систему (6) приведем к разрешенному относительно производных виду. В результате
простых, но громоздких вычислений получаем

h′ =
B2C1 − A2C2

A1B2 − A2
2

, η′ =
C1 − A1h

′

A2
, u′ = −uh′ + σq

h
, v′ =

2σq − vη′

η
, (8)

где

A1 =
u2

h
+

w2

ζ
− b, A2 =

w2

ζ
− b

2
, B2 =

v2

η
+ A2,

C1 = −σq
(u

h
− w

ζ

)
−

(w2

ζ
− b

)
Z ′ − c1u|u|

h
+

c2w|w|
ζ

, (9)

C2 = σq
(w

ζ
− u + w − 4v

η

)
− A2Z

′ +
c2w|w|

ζ
.

Заметим, что χ(0) = (A1B2 − A2
2)hηζ, поэтому из обращения в нуль знаменателя правой

части первого уравнения (8) следует, что λ = 0 является корнем характеристического
полинома (5).

Из уравнений (6) и (3) следует, что в точке начала формирования слоя смешения (при
η → 0) значения переменных v и q выражаются через скорости внешних слоев следующим
образом:

v0 =
u0 + w0

2
, q0 =

|u0 − w0|√
2(2 + κ)

. (10)

Здесь индекс “0” соответствует значениям функций в сечении x = x0 при η = 0. Значе-
ния производных искомых функций в этой точке полагаются конечными. Формулы (10)
позволяют поставить задачу Коши для уравнений (8) и описать начальный участок слоя
смешения.

Равновесная модель (4) сформулирована в виде неоднородных законов сохранения, до-
пускающих решения с сильным разрывом. Следующие из уравнений (4) условия Гюгонио
для стационарного гидравлического скачка имеют вид

[Q1] = 0, [Qm] = 0, [J ] = 0, [W ] = 0, (11)

где

Q1 = uh, Qm = vη, J =
u2 − w2

2
+ bh +

bη

2
,

W = u2h + v2η +
(
ζ − H

2

)
w2 +

b

2

(
h2 + hη +

η2

2

)
.

Квадратные скобки означают разность предельных значений функции f на разрыве x =
xs: [f ] = f+ − f− (f± — предельные значения f при x → xs ± 0). Переменные ζ и w
определяются формулами (7).

Пусть параметры потока U− перед разрывом известны. Тогда можно вычислить Q1,
Qm, J , W , а также Q2 = wζ. Скорости жидкости в слоях за разрывом выражаются через
значения толщин слоев:

u+ =
Q1

h+
, v+ =

Qm

η+
, w+ =

Q2

ζ+
(ζ+ = H − h+ − η+). (12)
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Рис. 1. Результаты расчета докритического течения над склоном:
а — рельеф дна (1) и границы раздела слоев (2, 3); б — распределение скорости жид-
кости в нижнем (4), промежуточном (5) и верхнем (6) слоях

Подставляя эти выражения в соотношения [J ] = 0, [W ] = 0, получаем систему двух алгеб-
раических уравнений для определения h+ и η+:

1

2

( Q2
1

(h+)2
− Q2

2

(ζ+)2

)
+ bh+ +

bη+

2
= J,

Q2
1

h+
+

Q2
m

η+
+

(
1− H

2ζ+

)Q2
2

ζ+
+

b

2

(
(h+)2 + h+η+ +

(η+)2

2

)
= W.

(13)

После нахождения толщин слоев за скачком h+ и η+ восстанавливаются скорости жидко-
сти в слоях u+, v+, w+. Условия Гюгонио (11), сводящиеся к алгебраическим уравнениям
(13), используются ниже при построении стационарных решений с сильным разрывом.

Выбор законов сохранения влияет на определяемые параметры течения за фронтом

разрыва. Однако проведенные в [19, 20] расчеты показывают, что для моделей трехслой-
ного течения при наличии перемешивания выбор законов сохранения оказывает влияние

лишь в узкой области за скачком.
2.1. Транскритическое течение над склоном. Условием существования транскритиче-

ского течения является одновременное обращение в нуль числителя и знаменателя правой

части первого уравнения (8) в некоторой точке x = x∗, т. е.

B2C1 − A2C2 = 0, A1B2 − A2
2 = (hηζ)−1χ(0) = 0. (14)

Если перед сечением x = x∗ течение докритическое (χ(0) < 0), то за ним оно может
перейти в сверхкритический режим (χ(0) > 0) либо остаться докритическим.

Приведем примеры построения стационарных решений уравнений трехслойного те-
чения над неровным дном. Здесь и далее полагаем σ = 0,15, κ = 6. Пусть при x = 0
заданы толщины слоев h0 = 150, η0 = 50 и скорости u0 = 0,15, v0 = 0,09, w0 = 0,03.
Координата верхней границы равна z = H0 = 2000, плавучесть b = 2 · 10−4, коэффи-
циент трения c1 = 0,003. Толщина верхнего слоя выбрана достаточно большой, поэтому
полагаем, что коэффициент трения c2 = 0. Рельеф дна z = Z(x) показан на рис. 1,а,
2,а (кривые 1). Нетрудно показать, что при заданных условиях в сечении x = 0 течение
является докритическим (уравнение (5) имеет три положительных корня и один отрица-
тельный). При этом переменная q, определяемая формулой (3) и характеризующая процесс
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Рис. 2. Результаты расчета транскритического течения с сильным разрывом:
а — рельеф дна (1) и границы раздела слоев (2, 3); б — распределение скорости жид-
кости в нижнем (4), промежуточном (5) и верхнем (6) слоях

перемешивания, равна нулю (q0 = 0). Значения приведенных размерных величин указаны
в системе СИ. Указанные перепады глубин, скорости и малая плавучесть характерны для
глубоководных течений, регистрируемых в разломах Романш и Чейн [6, 7].

Решение уравнений (8) с приведенными выше условиями во входном сечении x = 0
показаны на рис. 1, 2. Определяющая рельеф дна функция z = Z(x) (кривая 1 на рис. 1)
состоит из горизонтального участка Z = Z0 = 500, x ∈ (0, x1) и двух прямолинейных
участков с угловыми коэффициентами k = −0,35; −0,06 на интервалах x ∈ (x1, x2) и
x ∈ (x2, x3), где x1 = 1000; x2 = 2x1; x3 = 4x1. В этом случае решение остается докрити-
ческим всюду в рассматриваемой области течения. Заметим, что в окрестности сечения
x = x1 левые части обоих соотношений (14) близки к нулю, поэтому малое возмущение
потока может привести к возникновению транскритического течения. Слева от сечения
x = x1, в котором начинается резкое изменение рельефа дна, решение практически со-
храняет заданные при x = 0 значения, так как на этом участке вовлечение жидкости
отсутствует. В области x > x1 наблюдается существенное увеличение толщины промежу-
точного слоя (см. рис. 1,а), что не связано с процессом вовлечения жидкости из внешних
слоев, поскольку переменная q = 0. Резкое увеличение толщины прослойки объясняется
практически полной остановкой течения в промежуточном слое на данном участке (v ≈ 0),
как показано на рис. 1,б, на котором приведено распределение скоростей жидкости в слоях.
Такой режим течения, регистрируемый в натурных наблюдениях и реализуемый в экспе-
риментах, соответствует расщеплению потока [7, 22]. При этом между придонной струей
и медленным течением в верхнем слое формируется застойная область.

При выбранных параметрах потока незначительное изменение рельефа дна на гори-
зонтальном участке приводит к смене режима течения. Отличие от расчета в случае до-
критического режима течения состоит в том, что на интервале x ∈ (x̄, x1), x̄ = 700 функ-
ция z = Z(x) имеет вид параболы, максимум которой zm = Z0 + d, d = 10 достигается
в средней точке интервала x = (x̄ + x1)/2 (кривая 1 на рис. 2,а). В окрестности вер-
шины параболы течение становится сверхкритическим (все корни характеристического
уравнения (5) положительны). В области сверхкритического течения происходит генера-
ция “больших вихрей” (q > 0), что приводит к вовлечению жидкости из внешних слоев в
промежуточный слой смешения, уменьшению толщины нижнего слоя и увеличению тол-
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щины прослойки (см. рис. 2,а). При этом скорость жидкости в нижнем слое и вихревой
прослойке возрастает в случае течения над крутым склоном; скорость течения в верх-
нем слое большой толщины незначительно уменьшается. На более пологом участке дна
происходит замедление течения, особенно существенное в придонном слое (см. рис. 2,б),
что объясняется наличием силы трения, влияние которой становится значительным при
сравнительно малой толщине нижнего слоя.

Вычисление корней уравнения (5) для рассматриваемого решения в области над кру-
тым склоном (x ∈ (x1, x2)) показывает, что на интервале x ∈ (1245, 1920) два из четырех
характеристических корней имеют ненулевую мнимую часть. При этом χ(0) > 0, что опре-
деляет сверхкритический режим течения. Выход из области гиперболичности представ-
ляется естественным, поскольку модель описывает нелинейную стадию развития неустой-
чивости Кельвина — Гельмгольца. При этом разрушения течения не происходит, так как
рост возмущений в промежуточном слое компенсируется увеличением толщины прослойки

в результате вовлечения в нее окружающей жидкости.
Как отмечалось выше, уравнения (4) допускают решения с сильным разрывом. По-

ложение скачка в нестационарных расчетах определяется условиями вниз по потоку, на-
пример, наличием локального препятствия. В стационарном решении положение разрыва
x = xs в сверхкритическом при x < xs течении можно выбрать произвольно. Пусть ска-
чок расположен в сечении xs = 2500 (слева от этой точки все скорости характеристик
вещественные и положительные). В результате решения системы двух алгебраических

уравнений (13) по известным значениям функций при x = xs− 0 определим толщины сло-
ев за скачком. Затем по формулам (12) найдем скорости жидкости в слоях при x = xs + 0.
Численный анализ системы (13) показывает, что в данном случае имеется одно физически
непротиворечивое решение, описывающее течение, переходящее в докритический режим за
скачком (одна отрицательная характеристика, остальные положительные). Непрерывное
течение в области x > xs определяется решением уравнений (8) с известными данными
Коши при x = xs +0. На рис. 2 видно, что в области за скачком толщина промежуточного
слоя возрастает вследствие замедления течения в нем.

2.2. Сравнение результатов расчетов с данными натурных наблюдений. Предложен-
ная модель (4) позволяет описать особенности и некоторые количественные характеристи-
ки глубоководных течений. Построим решение стационарных уравнений (8) на интервале
x ∈ (0, 3850) над рельефом дна, соответствующим меридиональному сечению в разломе

Романш (см. рис. 5.33 в [6] и рис. 11 в [23]). Полагаем h0 = 350, η0 = 100, u0 = 0,2,
v0 = 0,1, w0 = 0. Все размерные величины указаны в системе СИ. Рельеф дна аппрокси-
мирован функцией Z = 4600− 0,0012x1,5.

Результаты расчета положения границ раздела слоев по уравнениям (8) показаны на
рис. 3 толстыми пунктирными линиями. Этот режим течения аналогичен рассмотренному
выше режиму течения с расщеплением потока на придонную струю и застойный проме-
жуточный слой (см. рис. 1). Течение является докритическим (χ(0) < 0), но в окрестности
входного сечения оно близко к транскритическому (см. (14)). Перемешивание слоев от-
сутствует (q = 0). При x > 1600 уравнения движения для рассматриваемого решения не
являются гиперболическими (два из четырех корней полинома (5) имеют ненулевую мни-
мую часть). Форма верхней границы раздела соответствует форме изотерм для T > 1,2 ◦C,
а форма нижней границы — форме изотерм для T < 0,7 ◦C. Распределения скоростей в
нижнем и промежуточном слоях аналогичны представленному на рис. 1,б в области над
наклонным дном и соответствуют результатам натурных измерений меридиональной ком-
поненты скорости [6, 23].

3. Формирование стационарных структур. В работе [11] представлены результа-
ты лабораторного исследования стационарных внутренних гидравлических скачков. Экс-
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Рис. 3. Изотермы (◦C), профили зональной U и меридиональной V скоростей с

учетом погрешности в придонном слое в меридиональном сечении вдоль южного

входа разлома Романш (см. рис. 11 в [23]):
толстые пунктирные линии — аппроксимация рельефа дна и границы раздела слоев,
полученные по уравнениям (8)

перименты проводились в проточном прямоугольном канале с локальным препятствием и

поперечным сужением в окрестности выходного сечения. На входе в канал подавался двух-
слойный докритический поток, над препятствием формировался гидравлический скачок,
переводящий течение в сверхкритический режим. При этом в области за скачком наблюда-
лось интенсивное перемешивание. Было показано, что положение гидравлического скачка
определяется шириной канала в окрестности выходного сечения.

Выполним расчеты по предложенной модели (4) при условиях, соответствующих экс-
периментам 6–9 в работе [11]. Форма препятствия с вершиной в точке x = xc задана

уравнением

Z(x) = zm cos2
(π(x− xc)

2Ls

)
, |x− xc| 6 Ls = 16π. (15)

Максимальная высота препятствия zm = 8. Здесь и далее все размерные величины приве-
дены в системе СГС. Поскольку уравнения (4) описывают плоские течения в приближении
Буссинеска, течение вверх по потоку в рамках рассматриваемой модели управляется ло-
кальным препятствием на выходе из канала, в отличие от управления течением путем
сужения поперечного сечения канала (см. [11]). Пусть в канале имеется еще одно препят-
ствие с центром в сечении x = xc +L и высотой zm = z̄m, форма которого задается уравне-
нием (15). Далее полагаем xc = 100, L = 400. Расчеты проводились в области x ∈ (0, 600)
на равномерной сетке с числом узлов N = 1200 с использованием модифицированной схемы
Годунова.

Для моделирования течений в условиях экспериментов 6–9 (см. табл. 1 в [11]) задаем
значения плавучести b = 20,0; 19,7; 19,5; 19,9 и верхнего уровня жидкости H0 = 58,0; 48,8;
44,4; 39,0. Высота второго препятствия для этих примеров z̄m = 6,5; 4,5; 2,7; 0 соответ-
ственно. Во всех экспериментах расходы жидкости в нижнем и верхнем слоях во входном
сечении равны 145 и 217. Модель (4) описывает трехслойные течения, поэтому в расчетах
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при x = 0 задаем расходы в слоях Q1 = 143, Q2 = 215 и Qm = 4, что обеспечивает полный
расход Q = 362, как и в экспериментах [11]. Влиянием трения пренебрегаем: c1 = c2 = 0.
Постоянные σ и κ, характеризующие интенсивность перемешивания и диссипацию энер-
гии, полагаем равными 0,15 и 6,00.

В качестве начальных данных выберем решение стационарных уравнений (8) в от-
сутствие массообмена между слоями (q ≡ 0), удовлетворяющее условию критичности по-
тока (соотношениям (14)) в сечении x = xc над вершиной препятствия. Входящие в (14)
функции Ai, B2 и Ci (i = 1, 2) определены формулами (9). Толщину прослойки ηc задаем

произвольно, так чтобы выполнялись условия ηc � hc, ηc � ζc (нижний индекс соответ-
ствует значениям функций при x = xc). В случае q ≡ 0 расходы в слоях сохраняются. Это
позволяет выразить скорости через толщины слоев по формулам

u = Q1/h, v = Qm/η, w = Q2/ζ (ζ = H0 − Z − h− η). (16)

Тогда при заданном ηc второе уравнение (14) определяет толщину нижнего слоя hc в кри-
тическом сечении. Заметим, что первое уравнение (14) при x = xc выполнено, так как
Z ′(xc) = 0, q = 0 и трение не учитывается. Ниже приводятся результаты расчетов при
ηc = 0,38. Толщины слоев h и η в областях x < xc − ε и x > xc + ε находим из решения
задачи Коши

h′ =
B2C1 − A2C2

A1B2 − A2
2

, η′ =
C1 − A1h

′

A2
, h

∣∣
x=xc±ε

= hc, η
∣∣
x=xc±ε

= ηc.

Здесь A1, A2, B2 определены в (9) с учетом (16); C1 = −(A2− b/2)Z ′; C2 = −A2Z
′; ε > 0 —

малый параметр, например шаг интегрирования по переменной x. По известным функциям
h и η из соотношений (16) вычисляем скорости в слоях и толщину верхнего слоя. Далее с
использованием этих начальных данных при t = 0 проводим расчеты по нестационарным
уравнениям (4). В качестве граничных условий на входе в канал используются значения
функций при t = 0 во входном сечении x = 0. На правой границе расчетной области
задаем условия Неймана, что оправданно, поскольку течение в окрестности выходного
сечения является сверхкритическим. В рассматриваемых примерах при t > 300 решение
выходит на стационарный режим.

На рис. 4 показаны рельеф дна z = Z(x) (кривая 1) и границы раздела слоев z = Z +h
и z = Z + z + η (кривые 2, 3) в начальный момент времени t = 0 и при t = 350. Знак
функции χ(0) определяет режим течения: при χ(0) < 0 докритический, при χ(0) > 0
сверхкритический (кривая 4). На рис. 4,в показаны скорости в нижнем, промежуточном
и верхнем слоях (кривые 5–7), а также характеризующая процесс перемешивания ско-
рость “больших вихрей” q (кривая 8) при t = 350. Заметим, что решение выходит на
стационарный режим при t ≈ 300. Расчет проведен для потока с параметрами H0 = 44,4,
b = 19,5 (эксперимент 8 в работе [11]). Из рис. 4 следует, что в окрестности входного
сечения канала и над передней частью препятствия (x < 100) решение незначительно от-
личается от начальных данных. В процессе эволюции решения над подветренным склоном
препятствия формируются область сверхкритического течения и гидравлический скачок,
переводящий поток в докритический режим. При этом резко возрастает толщина прослой-
ки, в которой происходит интенсивное перемешивание жидкости, вовлекаемой из внешних
слоев. Скорость в промежуточном слое за скачком становится меньше скорости течения во
внешних слоях. В окрестности выходной части канала расположено второе препятствие
высотой z̄m = 2,7, над которым течение переходит в сверхкритический режим. Варьируя
высоту этого препятствия z̄m, можно управлять положением гидравлического скачка на
подветренной поверхности первого препятствия. Увеличение z̄m приводит к сдвигу гид-
равлического скачка к вершине (сечению x = xc), при уменьшении высоты z̄m скачок

смещается к подножию препятствия (сечению x = xc + Ls).
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Рис. 4. Результаты расчета обтекания комбинированного препятствия:
а — начальные данные, б, в — решение уравнений (4) при t = 350 (стационарный ре-
жим); 1 — рельеф дна, 2, 3 — границы раздела слоев, 4 — функция signχ(0), 5–7 —
скорости нижнего, промежуточного и верхнего слоев соответственно, 8 — распределе-
ние переменной q

Фотографии течения, в котором формируются гидравлический скачок и слой смеше-
ния на подветренной поверхности препятствия, представлены на рис. 6,a–d в [11]. По-
казано, что в зависимости от параметров потока и сужения в выходной части канала
положение гидравлического скачка смещается вниз вдоль склона препятствия. Эти экспе-
риментальные данные сопоставлены с результатами расчета по модели (4) при указанных
выше параметрах (пунктирные линии на рис. 5). Границы раздела слоев на промежутке
x ∈ (45, 245) показаны в момент времени t = 350, когда решение вышло на стационарный
режим. Сравнение результатов расчета и экспериментальных данных (см. рис. 5,а–в) по-
казывает, что предложенная модель достаточно точно описывает границы слоя смешения
и положение внутреннего гидравлического скачка при соответствующем выборе высоты

второго препятствия z̄m. Существенные отличия наблюдаются лишь в случае, когда пре-
пятствие в окрестности выходного сечения канала отсутствует и обтекание первого пре-
пятствия происходит без явно выраженного гидравлического скачка и формирования слоя

смешения (см. рис. 5,г).
Заключение. В работе предложена и исследована математическая модель, описыва-

ющая нелинейную стадию сдвиговой неустойчивости в двухслойном течении стратифици-
рованной жидкости над неровным дном. В рамках трехслойного представления течения
модель описывает эволюцию слоя смешения и формирование внутренних гидравлических

скачков, интенсифицирующих процессы перемешивания. Уравнения движения (4) получе-
ны с использованием предложенной в [20] модели (1) и дополнительного условия равнове-
сия (3), определяющего скорость вовлечения жидкости из внешних слоев в турбулентную
прослойку. Найдены скорости распространения возмущений и сформулированы понятия
докритического и сверхкритического течений.
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Рис. 5. Результаты визуализации экспериментов по формированию слоя смешения
в двухслойном сдвиговом течении при обтекании препятствия (см. рис. 6 в [11]):
а — H0 = 58, b = 20, z̄m = 6,5, б — H0 = 48,8, b = 19,7, z̄m = 4,5, в — H0 = 44,4, b = 19,5,
z̄m = 2,7, г — H0 = 39, b = 19,9, z̄m = 0; пунктирные кривые — расчет по уравнениям (4)

Построены стационарные решения, описывающие транскритическое течение с рас-
щеплением потока в глубоководном течении над склоном с образованием застойной обла-
сти. Такие решения соответствуют процессам перемешивания, наблюдаемым в глубоко-
водных течениях над склоном. Показано, что незначительное изменение параметров по-
тока может привести к изменению режима течения, в котором формируется придонная
струя, отделенная от верхнего слоя большой толщины тонкой прослойкой. В таком пото-
ке возможно возникновение гидравлического скачка, замедляющего движение придонных
слоев и переводящего течение в докритический режим. Проведенные расчеты эволюции
стратифицированного течения над комбинированным препятствием показывают возмож-
ность управления положением гидравлического скачка с использованием условий вниз по

потоку. Результаты расчетов по предложенной модели хорошо согласуются с эксперимен-
тальными данными о формировании внутренних гидравлических скачков на подветренной

поверхности препятствия.
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