УДК 517.95

ИНВАРИАНТНЫЕ ИНТЕГРАЛЫ В ЗАДАЧЕ О ТРЕЩИНЕ НА ГРАНИЦЕ РАЗДЕЛА ДВУХ СРЕД

А. М. Хлуднев

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: khlud@hydro.nsc.ru

Рассматривается задача о равновесии упругого тела, содержащего трещину на границе раздела двух сред. Доказано, что в этой задаче существуют инвариантные (не зависящие от поверхности интегрирования) интегралы. Существование инвариантных интегралов установлено также в задаче о контакте упругого тела, взаимодействующего на части поверхности с жестким штампом. При этом на контактных границах задаются нелинейные краевые условия взаимного непроникания. Установлен физический смысл инвариантных интегралов.

Ключевые слова: инвариантный интеграл, упругое тело, трещина, контактная задача.

Введение. Контактная задача описывает равновесие упругого тела, взаимодействующего на части границы с жестким (недеформируемым) телом. При этом на контактной границе задаются краевые условия, имеющие вид системы равенств и неравенств. В задаче о равновесии упругого тела, содержащего трещину, также задаются нелинейные условия на берегах трещины. В работе доказывается, что в данных нелинейных задачах существуют инвариантные интегралы. Инвариантные интегралы построены как в двумерном, так и в трехмерном случае.

Существование инвариантных интегралов в линейной теории трещин, называемых обычно интегралами Черепанова — Райса, обсуждалось во многих работах (см., например, [1–4]). Речь при этом идет о линейных задачах, что означает задание линейных краевых условий на берегах трещины. Будем рассматривать нелинейные задачи теории трещин, которые исследуются в монографии [5]. Особенностью нелинейных задач являются краевые условия на берегах трещины, имеющие вид системы равенств и неравенств. С точки зрения приложений нелинейные задачи лучше описывают реальные процессы, в то время как линейные задачи теории трещин могут противоречить механике явления. В нелинейных задачах теории трещин ранее были построены инвариантные интегралы для гладких (в частности, постоянных) тензоров модулей упругости [5–7]. В данной работе построены инвариантные интегралы для упругого тела с трещиной на границе раздела двух сред. В этом случае тензор модулей упругости не является гладким в области.

Для получения инвариантных интегралов в контактных задачах применяется метод фиктивных областей, который недавно был разработан для задач с краевыми условиями Синьорини [8, 9]. При этом задача о равновесии тела с трещиной содержится в семействе задач, зависящих от параметра, а контактная задача соответствует предельному значению параметра. Фактически инвариантные интегралы в рассматриваемых задачах, т. е.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03-01-00124).

в задаче о равновесии анизотропного тела с трещиной и контактной задаче, получены одновременно. Используемый метод фиктивных областей позволяет с помощью введения вспомогательного параметра построить семейство краевых задач, включающее как контактную задачу, так и задачу о равновесии тела с трещиной. Основы метода фиктивных областей применительно к линейным краевым условиям изложены в [10–12]. Одновременно в работе используется формула для производной функционала энергии по параметру возмущения в задачах теории упругости для тел, содержащих трещины с нелинейными краевыми условиями на берегах. С техникой дифференцирования функционалов энергии в нелинейных задачах теории трещин можно ознакомиться в работах [5–7, 13, 14]. Приложения задач теории трещин в механике деформируемого твердого тела содержатся в [1, 2, 15], а общие вопросы исследования краевых задач в негладких областях рассмотрены в [16].

Двумерный случай. Пусть $\Omega_1 \subset \mathbb{R}^2$ — ограниченная односвязная область с липшицевой границей Γ_1 , а $\Gamma_c \subset \Gamma_1$ — контактная граница, которую для простоты считаем гладкой кривой, заданной в виде графика функции $x_2 = \phi(x_1), x_1 \in [0,1]$. Предполагается, что существует $\delta_0 > 0$ такое, что

$$((-\delta_0, \delta_0) \times \{0\}) \subset \Gamma_1, \qquad (1 - \delta_0, 1 + \delta_0) \times \{0\}) \subset \Gamma_1. \tag{1}$$

Эти включения означают, что граница Γ_1 содержит прямолинейные участки вблизи точек $(0,0),\ (1,0).$ Обозначим через $\boldsymbol{\nu}=(\nu_1,\nu_2)$ единичный вектор внутренней нормали к Γ_1 . Пусть $\Gamma_0=\Gamma_1\setminus\Gamma_c$. Постановка контактной задачи состоит в следующем [17]. В области Ω_1 требуется найти функции $\boldsymbol{u}^0=(u_1^0,u_2^0),\ \sigma=\{\sigma_{ij}\}\ (i,j=1,2)$ такие, что

$$-\operatorname{div} \sigma = \boldsymbol{f} \qquad \text{B} \quad \Omega_1; \tag{2}$$

$$\sigma = C^1 \varepsilon(\boldsymbol{u}^0) \qquad \text{B} \quad \Omega_1; \tag{3}$$

$$\boldsymbol{u}^0 = 0$$
 на Γ_0 ; (4)

$$\boldsymbol{u}^0 \cdot \boldsymbol{\nu} \geqslant 0, \quad \sigma_{\nu} \leqslant 0, \quad \boldsymbol{\sigma}_{\tau} = 0, \quad \boldsymbol{u}^0 \cdot \boldsymbol{\nu} \sigma_{\nu} = 0 \quad \text{ Ha } \Gamma_c.$$
 (5)

Здесь и далее $\varepsilon_{ij}(\boldsymbol{v})=(v_{i,j}+v_{j,i})/2$ — компоненты тензора деформаций; $v_{i,j}=\partial v_i/\partial x_j$; $x=(x_1,x_2)\in\Omega_1;$ $\boldsymbol{f}=(f_1,f_2)\in C^1_{loc}(\mathbb{R}^2)$ — известная функция; $C^1=\{c^1_{ijkl}\}$ — тензор модулей упругости (i,j,k,l=1,2);

$$c_{ijkl}^{1} = c_{klij}^{1} = c_{jikl}^{1}, c_{ijkl}^{1} = \text{const},$$

$$c_{ijkl}^{1} \xi_{kl} \xi_{ij} \geqslant c|\xi|^{2}, c > 0 \forall \xi = \{\xi_{ij}\},$$

$$\sigma_{\nu} = \sigma_{ij} \nu_{j} \nu_{i}, \boldsymbol{\sigma}_{\tau} = \sigma \boldsymbol{\nu} - \sigma_{\nu} \boldsymbol{\nu}, \sigma \boldsymbol{\nu} = \{\sigma_{ij} \nu_{j}\}_{i=1}^{2}.$$

$$(6)$$

При этом уравнения (2) — уравнения равновесия, соотношения (3) представляют собой закон Гука, краевое условие (4) соответствует закреплению упругого тела на Γ_0 , а краевые условия (5) описывают контакт упругого тела с недеформируемой поверхностью при нулевом трении и называются краевыми условиями Синьорини. Все величины с двумя нижними индексами предполагаются симметричными по этим индексам ($\sigma_{ij} = \sigma_{ji}$ и т. д.), по повторяющимся индексам проводится суммирование.

Известно, что задача (2)–(5) допускает вариационную постановку и имеет единственное решение. Действительно, рассмотрим пространство функций Соболева

$$H^1_{\Gamma_0}(\Omega_1) = \{ \boldsymbol{v} = (v_1, v_2) \in H^1(\Omega_1) \mid \boldsymbol{v} = 0 \text{ Ha } \Gamma_0 \}$$

и множество допустимых перемещений

$$K = \{ \boldsymbol{v} \in H^1_{\Gamma_0}(\Omega_1) \mid \boldsymbol{v} \cdot \boldsymbol{\nu} \geqslant 0 \text{ п.в. на } \Gamma_c \}.$$

Тогда задача (2)–(5) эквивалентна минимизации функционала

$$\Pi_0(\Omega_1; oldsymbol{v}) = rac{1}{2} \int\limits_{\Omega_1} \sigma(oldsymbol{v}) arepsilon(oldsymbol{v}) - \int\limits_{\Omega_1} oldsymbol{f} oldsymbol{v}$$

на множестве K и может быть записана в виде вариационного неравенства

$$\mathbf{u}^{0} \in K, \qquad \int_{\Omega_{1}} \sigma(\mathbf{u}^{0}) \varepsilon(\mathbf{v} - \mathbf{u}^{0}) \geqslant \int_{\Omega_{1}} \mathbf{f}(\mathbf{v} - \mathbf{u}^{0}) \qquad \forall \mathbf{v} \in K.$$
 (7)

Здесь и далее $\sigma(\mathbf{v}) = C^1 \varepsilon(\mathbf{v})$.

Наряду с контактной задачей (2)–(5) рассмотрим задачу о равновесии упругого тела, содержащего трещину на линии раздела сред. Добавляя к области Ω_1 ограниченную область Ω_2 с липшицевой границей Γ_2 и решая в области $\Omega_c = \Omega_1 \cup \Omega_2 \cup (\Sigma \setminus \Gamma_c)$ краевую задачу с нелинейными краевыми условиями на Γ_c , можно установить существование инвариантных интегралов в задаче о равновесии анизотропного упругого тела с трещиной на линии раздела сред. Здесь $\Sigma = \Sigma_0 \setminus \partial \Sigma_0$; $\Sigma_0 = \Gamma_1 \cap \Gamma_2$. Получаемая при этом задача описывает равновесие упругого тела, занимающего область Ω_c и имеющего трещину Γ_c , с краевыми условиями непроникания берегов Γ_c^\pm . Фактически мы будем рассматривать семейство краевых задач, зависящих от параметра λ . При этом каждому значению параметра $\lambda > 0$ будет соответствовать задача о равновесии тела с трещиной, значению $\lambda = 0$ — задача (2)–(5). Существование инвариантных интегралов будет установлено одновременно для всего семейства задач, т. е. при всех $\lambda > 0$. Переходя к пределу при $\lambda \to 0$, установим существование инвариантных интегралов и для контактной задачи (2)–(5).

Для контактной задачи (2)–(5) добавленная область Ω_2 названа фиктивной. Как будет показано ниже, коэффициенты оператора задачи в области Ω_2 будут стремиться к бесконечности при стремлении λ к нулю.

Прежде чем перейти к реализации указанной схемы, уточним геометрию областей Ω_1 , Ω_2 . Будем предполагать, что точки (0,0), (1,0) являются внутренними точками кривой Σ (это предположение не относится к примерам 3, 4, где рассматривается другая геометрия областей). Что же касается гладкости границ Γ_1 , Γ_2 , то достаточно выполнения условия Липшица. Отметим, что будет установлено существование инвариантных интегралов разных типов и для областей разной геометрии. В каждом двумерном случае необходимо интегрировать по (произвольной) гладкой кривой, в трехмерном случае — по двумерным поверхностям.

Итак, введем тензор $B^{\lambda} = \{b_{ijkl}^{\lambda}\}, \ \lambda > 0, \ i, j, k, l = 1, 2,$

$$b_{ijkl}^{\lambda} = \left\{ \begin{array}{cc} c_{ijkl}^1 & \text{в } \Omega_1, \\ \lambda^{-1} c_{ijkl}^2 & \text{в } \Omega_2. \end{array} \right.$$

Здесь тензор $C^2=\{c_{ijkl}^2\}$ обладает такими же свойствами, что и тензор C^1 . В области Ω_c , имеющей трещину-разрез Γ_c , будем решать следующую задачу. Требуется найти функции $\boldsymbol{u}^\lambda=(u_1^\lambda,u_2^\lambda),\ \sigma^\lambda=\{\sigma_{ij}^\lambda\}\ (i,j=1,2)$ такие, что

$$-\operatorname{div}\sigma^{\lambda} = \boldsymbol{f} \qquad \text{B} \quad \Omega_c; \tag{8}$$

$$\sigma^{\lambda} = B^{\lambda} \varepsilon(\boldsymbol{u}^{\lambda}) \qquad \text{B} \quad \Omega_c; \tag{9}$$

$$\boldsymbol{u}^{\lambda} = 0$$
 на Γ ; (10)

$$[\boldsymbol{u}^{\lambda}] \cdot \boldsymbol{\nu} \geqslant 0, \quad [\sigma_{\nu}^{\lambda}] = 0, \quad \sigma_{\nu}^{\lambda} \leqslant 0, \quad \boldsymbol{\sigma}_{\tau}^{\lambda} = 0, \quad [\boldsymbol{u}^{\lambda}] \cdot \boldsymbol{\nu} \sigma_{\nu}^{\lambda} = 0 \quad \text{ ha } \Gamma_{c}.$$
 (11)

Здесь $[{m v}]={m v}^+-{m v}^-$ — скачок функции ${m v}$ на Γ_c (знаки "+" и "–" соответствуют положительному и отрицательному направлениям нормали ${m \nu}$); Γ — внешняя граница области Ω_c , т. е. $\Gamma=\partial\Omega_c\setminus(\Gamma_c^+\cup\Gamma_c^-)$; $\sigma_\nu^\lambda=\sigma_{ij}^\lambda\nu_j\nu_i;$ ${m \sigma}_\tau^\lambda=\sigma^\lambda{m \nu}-\sigma_\nu^\lambda{m \nu}$. Равенство ${m \sigma}_\tau^\lambda=0$ на Γ_c означает, что $\sigma_{\tau}^{\lambda} = 0$ на Γ_{c}^{\pm} .

Каждое значение параметра $\lambda>0$ соответствует задаче о равновесии тела с трещиной на линии раздела анизотропных частей, занимающих области Ω_1, Ω_2 с постоянными тензорами упругости C^1 , C^2/λ . Рассмотрим случай $\lambda > 0$ и предельный случай $\lambda = 0$.

Задача (8)–(11) при каждом $\lambda > 0$ имеет единственное решение. Действительно, рассмотрим пространство функций

$$H^1_{\Gamma}(\Omega_c)=\{oldsymbol{v}=(v_1,v_2)\in H^1(\Omega_c)\mid oldsymbol{v}=0$$
 на $\Gamma\}$

и множество допустимых перемещений

$$K_c = \{ \boldsymbol{v} \in H^1_{\Gamma}(\Omega_c) \mid [\boldsymbol{v}] \cdot \boldsymbol{\nu} \geqslant 0$$
 п.в. на $\Gamma_c \}$.

Тогда задача (8)–(11) эквивалентна минимизации функционала

$$\Pi_{\lambda}(\Omega_c; oldsymbol{v}) = rac{1}{2} \int\limits_{\Omega_c} \sigma^{\lambda}(oldsymbol{v}) arepsilon(oldsymbol{v}) - \int\limits_{\Omega_c} oldsymbol{f} oldsymbol{v}$$

на множестве K_c и может быть сформулирована в виде вариационного неравенства

$$\boldsymbol{u}^{\lambda} \in K_c, \qquad \int_{\Omega_c} \sigma^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon(\boldsymbol{v} - \boldsymbol{u}^{\lambda}) \geqslant \int_{\Omega_c} \boldsymbol{f}(\boldsymbol{v} - \boldsymbol{u}^{\lambda}) \qquad \forall \boldsymbol{v} \in K_c.$$
 (12)

Здесь $\sigma^{\lambda}(\mathbf{v})$ определяются из уравнения вида (9), т. е. $\sigma^{\lambda}(\mathbf{v}) = B^{\lambda} \varepsilon(\mathbf{v})$.

Цель дальнейших рассуждений — ввести возмущение задачи (12), т. е. рассмотреть семейство возмущенных задач, зависящих от параметра δ и определенных в возмущенной области Ω_c^{δ} . При каждом фиксированном λ и малом δ будут найдены решение возмущенной задачи $u^{\lambda\delta}$ и производная функционала энергии $\Pi_{\lambda}(\Omega_c^{\delta}; u^{\lambda\delta})$ по параметру δ при $\delta=0$. Полученная формула для производной при подходящем выборе возмущений будет давать инвариантные интегралы в задаче (8)–(11). Затем перейдем к пределу в формуле для указанной производной при $\lambda \to 0$. Важно заметить, что формула для отмеченной производной функционала энергии будет содержать (невозмущенное по δ) решение u^{λ} . Кроме того, u^{λ} будут сходиться к u^0 при $\lambda \to 0$, где u^0 — решение задачи (7), что и позволяет перейти к пределу при $\lambda \to 0$ в формуле для указанной производной. Итоговая формула приводит к инвариантным интегралам для задачи (2)–(5) при соответствующем выборе указанных возмущений.

Рассмотрим возмущение области Ω_c , и в возмущенной области Ω_c^{δ} будем искать решение задачи. Пусть преобразование независимых переменных

$$y = \Psi_{\delta}(x), \qquad x \in \Omega_c, \quad y \in \Omega_c^{\delta}$$
 (13)

 $y=\Psi_{\delta}(x), \qquad x\in\Omega_{c}, \quad y\in\Omega_{c}^{\delta}$ (13) описывает возмущение области Ω_{c} , где $\Psi_{\delta}(x)=x+\delta {m V}(x); \ {m V}(x)=(V_{1}(x),V_{2}(x))\in$ $W^{1,\infty}_{loc}(\mathbb{R}^2)$. При малых δ преобразование (13) устанавливает взаимно однозначное соответствие между Ω_c и Ω_c^{δ} . Будем предполагать, что векторное поле $\boldsymbol{V}(x)$ таково, что

$$\boldsymbol{\nu}^{\delta}(y) = \boldsymbol{\nu}(x), \qquad y = \Psi_{\delta}(x),$$
 (14)

где $m{
u}^\delta(y)$ — нормаль к возмущенному разрезу $\Gamma_c^\delta=\Psi_\delta(\Gamma_c)$. При каждом δ получаем возмущенную область Ω_c^δ и возмущенную (по отношению к (8)–(11)) краевую задачу, которая формулируется следующим образом. Требуется найти функции $\boldsymbol{u}^{\lambda\delta}=(u_1^{\lambda\delta},u_2^{\lambda\delta}),$ $\sigma^{\lambda\delta} = \{\sigma_{ij}^{\lambda\delta}\}\ (i,j=1,2)$ такие, что

$$-\operatorname{div}\sigma^{\lambda\delta} = \boldsymbol{f} \qquad \text{B} \quad \Omega_c^{\delta}; \tag{15}$$

$$\sigma^{\lambda\delta} = B^{\lambda\delta}\varepsilon(\boldsymbol{u}^{\lambda\delta}) \qquad \text{B} \quad \Omega_c^{\delta}; \tag{16}$$

$$\boldsymbol{u}^{\lambda\delta} = 0$$
 на $\Psi_{\delta}(\Gamma);$ (17)

$$[\boldsymbol{u}^{\lambda\delta}] \cdot \boldsymbol{\nu} \geqslant 0, \quad [\sigma_{\boldsymbol{\nu}}^{\lambda\delta}] = 0, \quad \sigma_{\boldsymbol{\nu}}^{\lambda\delta} \leqslant 0, \quad \boldsymbol{\sigma}_{\tau}^{\lambda\delta} = 0, \quad [\boldsymbol{u}^{\lambda\delta}] \cdot \boldsymbol{\nu} \sigma_{\boldsymbol{\nu}}^{\lambda\delta} = 0 \quad \text{ ha } \Gamma_{c}^{\delta}.$$
 (18)

Будем считать, что в (16) коэффициенты $b_{ijkl}^{\lambda\delta}$ определяются в Ω_c^{δ} с сохранением свойств гладкости при отображении (13), т. е. остаются кусочно-постоянными:

$$b_{ijkl}^{\lambda\delta} = \begin{cases} c_{ijkl}^1 & \text{на } \Psi_{\delta}(\Omega_1), \\ \lambda^{-1} c_{ijkl}^2 & \text{на } \Psi_{\delta}(\Omega_2). \end{cases}$$

Пусть $\boldsymbol{u}^{\lambda\delta}$ — решение задачи (15)—(18) из пространства $H^1(\Omega_c^{\delta})$. Это решение можно определить по следующей схеме. Рассмотрим множество допустимых перемещений в задаче (15)—(18):

$$K_c^\delta = \{ m{v} \in H^1_{\Psi_s(\Gamma)}(\Omega_c^\delta) \mid [m{v}] \cdot m{
u} \geqslant 0$$
 п.в. на $\Gamma_c^\delta \}$.

Введем обозначение

$$\Pi_{\lambda}(\Omega_{c}^{\delta}; oldsymbol{v}) = rac{1}{2}\int\limits_{\Omega_{c}^{\delta}} \sigma^{\lambda\delta}(oldsymbol{v}) arepsilon(oldsymbol{v}) - \int\limits_{\Omega_{c}^{\delta}} oldsymbol{f} oldsymbol{v}$$

и рассмотрим задачу минимизации

$$\min_{\boldsymbol{v} \in K_c^{\delta}} \Pi_{\lambda}(\Omega_c^{\delta}; \boldsymbol{v}). \tag{19}$$

Решение задачи (19) существует и определяется из вариационного неравенства

$$\boldsymbol{u}^{\lambda\delta} \in K_c^{\delta}, \quad \int_{\Omega_c^{\delta}} \sigma^{\lambda\delta}(\boldsymbol{u}^{\lambda\delta}) \varepsilon(\boldsymbol{v} - \boldsymbol{u}^{\lambda\delta}) \geqslant \int_{\Omega_c^{\delta}} \boldsymbol{f}(\boldsymbol{v} - \boldsymbol{u}^{\lambda\delta}) \quad \forall \boldsymbol{v} \in K_c^{\delta}.$$
 (20)

Предположим, что $V(x) = (V_1(x), 0)$, а функция V_1 такова, что $\Psi_{\delta}(\Gamma) = \Gamma$ и выполнено условие (14). В этом случае отображение (13) устанавливает взаимно однозначное соответствие между пространствами $H^1_{\Gamma}(\Omega_c)$ и $H^1_{\Gamma}(\Omega_c^{\delta})$, а также между множествами K_c и K_c^{δ} . Определим функционал энергии в задаче (20)

$$\Pi_{\lambda}(\Omega_c^{\delta}; \boldsymbol{u}^{\lambda\delta}) = rac{1}{2} \int\limits_{\Omega_c^{\delta}} \sigma^{\lambda\delta}(\boldsymbol{u}^{\lambda\delta}) \varepsilon(\boldsymbol{u}^{\lambda\delta}) - \int\limits_{\Omega_c^{\delta}} \boldsymbol{f} \boldsymbol{u}^{\lambda\delta}$$

и введем обозначение

$$I^{\lambda} = \frac{d}{d\delta} \prod_{\lambda} (\Omega_c^{\delta}; \boldsymbol{u}^{\lambda \delta}) \big|_{\delta=0}$$

для производной функционала энергии по параметру δ . Согласно [6, 7] имеем

$$I^{\lambda} = \int_{\Omega_c} \left\{ \frac{1}{2} \operatorname{div} \left(\boldsymbol{V} b_{ijkl}^{\lambda} \right) \varepsilon_{kl}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) E_{ij} \left(\frac{\partial \boldsymbol{V}}{\partial x}; \boldsymbol{u}^{\lambda} \right) \right\} - \int_{\Omega_c} \operatorname{div} \left(\boldsymbol{V} f_i \right) u_i^{\lambda}.$$
 (21)

Здесь $E_{ij}(\Phi; \boldsymbol{v}) = (v_{i,k}\Phi_{kj} + v_{j,k}\Phi_{ki})/2; \ \Phi = \{\Phi_{ij}\}\ (i,j=1,2).$ Заметим, что в силу сделанного предположения о векторном поле \boldsymbol{V} нет необходимости дифференцировать по x_2

коэффициенты b_{ijkl}^{λ} , которые, вообще говоря, имеют разрыв вдоль кривой Σ . Формулу для I^{λ} запишем в виде $I^{\lambda}=I_1^{\lambda}+I_2^{\lambda}$, где

$$I_{1}^{\lambda} = \int_{\Omega_{1}} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}(\mathbf{u}^{\lambda}) \varepsilon_{ij}(\mathbf{u}^{\lambda}) - \sigma_{ij}(\mathbf{u}^{\lambda}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{\lambda} \right) \right\} - \int_{\Omega_{1}} \operatorname{div} (\mathbf{V} f_{i}) u_{i}^{\lambda},$$

$$I_{2}^{\lambda} = \int_{\Omega_{2}} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) \varepsilon_{ij}(\mathbf{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{\lambda} \right) \right\} - \int_{\Omega_{2}} \operatorname{div} (\mathbf{V} f_{i}) u_{i}^{\lambda}.$$

$$(22)$$

Как известно (см. [8, 9]), при $\lambda \to 0$

$$\mathbf{u}^{\lambda}/\sqrt{\lambda} \to 0$$
 сильно в $H^1(\Omega_2);$ (23)

$$\boldsymbol{u}^{\lambda} \to \boldsymbol{u}^0$$
 сильно в $H^1(\Omega_1),$ (24)

где \boldsymbol{u}^0 — решение задачи (2)–(5) (или задачи (7)). Из (23) следует

$$|\nabla \boldsymbol{u}^{\lambda}|^2/\lambda \to 0$$
 сильно в $L^1(\Omega_2), \quad \lambda \to 0.$ (25)

Тогда из (21) с учетом (22), (24), (25) находим $I^0 = \lim_{\lambda \to 0} I^{\lambda}$, т. е. имеем

$$I^{0} = \int_{\Omega_{1}} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}(\mathbf{u}^{0}) \varepsilon_{ij}(\mathbf{u}^{0}) - \sigma_{ij}(\mathbf{u}^{0}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{0} \right) \right\} - \int_{\Omega_{1}} \operatorname{div} (\mathbf{V} f_{i}) u_{i}^{0}.$$
 (26)

Отметим, что в формуле (26) функция u^0 является решением задачи (2)–(5).

Инвариантные интегралы в задачах (2)–(5) и (8)–(11) будут получены из формул (26) и (21) соответственно. Поскольку компоненты тензора напряжений не определяются, вообще говоря, в области Ω_2 при $\lambda=0$, соответствующие инвариантные интегралы для задач (2)–(5) и (8)–(11) будут выписываться отдельно.

Рассмотрим теперь конкретные случаи выбора векторного поля V, которые посредством преобразования формул (21), (26) и приведут к инвариантным интегралам. Во всех примерах нам придется выбирать окрестности S_1 , S_2 с гладкими (липшицевыми) границами ∂S_1 , ∂S_2 . В дальнейшем будем считать, что границы областей $(S_1 \setminus S_2) \cap \Omega_c$ также удовлетворяют условию Липшица.

ПРИМЕР 1. Пусть носитель функции θ лежит в малой окрестности S_1 точки (1,0) и $\theta=1$ в окрестности S_2 точки (1,0), $S_2 \subset S_1$. Малость окрестности S_1 означает, что ∂S_1 пересекает ось x_1 по прямолинейным участкам (1). Возмущение (13) выберем в виде

$$y_1 = x_1 + \delta\theta(x_1, x_2), \qquad y_2 = x_2,$$

где $(x_1,x_2)\in\Omega_c;\ (y_1,y_2)\in\Omega_c^\delta.$ При этом векторное поле $\boldsymbol{V}(x)$ определяется по формуле $\boldsymbol{V}(x)=(\theta(x),0),\ \mathrm{a}\ (21)$ можно переписать в виде

$$I^{\lambda} = \int_{\Omega_{c}} \left\{ \frac{1}{2} \,\theta_{,1} \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} \theta_{,j} \right\} - \int_{\Omega_{c}} (\theta f_{i})_{,1} u_{i}^{\lambda}. \tag{27}$$

Из (27) после интегрирования по частям следует

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\} + \int_{(S_1 \setminus S_2) \cap \Omega_c} \theta(\sigma_{ij,j}^{\lambda} + f_i) u_{i,1}^{\lambda} + \int_{S_2 \cap \Omega_c} f_i u_{i,1}^{\lambda}. \tag{28}$$

Здесь $\mathbf{n} = (n_1, n_2)$ — внутренняя нормаль к границе ∂S_2 , а $(\partial S_2) \cap \overline{\Omega}_c$ — замкнутая кривая, окружающая вершину трещины (1,0). Важно отметить, что решение \mathbf{u}^{λ} задачи (8)–(11)

является H^2 -гладким вплоть до точек $(1 - \delta_0, 1) \times \{0\}$ и $(1, 1 + \delta_0) \times \{0\}$ (см. [5, с. 100]), что обеспечивает сходимость входящих в (28) интегралов. Кроме того, отметим, что если часть кривой $(\partial S_2) \cap \overline{\Omega}_c$ лежит на отрезке $(1 - \delta_0, 1) \times \{0\}$, то в (28) можно интегрировать по любому берегу разреза. Это связано с наличием краевых условий

$$\sigma_{12}^{\lambda}(\boldsymbol{u}^{\lambda}) = [\sigma_{22}^{\lambda}(\boldsymbol{u}^{\lambda})] = 0, \qquad \sigma_{22}^{\lambda}(\boldsymbol{u}^{\lambda})[u_{2,1}^{\lambda}] = 0 \quad \text{Ha} \quad (1 - \delta_0, 1) \times \{0\}.$$
 (29)

Действительно, условия $\sigma_{12}^{\lambda}(\boldsymbol{u}^{\lambda})=0$, $[\sigma_{22}^{\lambda}(\boldsymbol{u}^{\lambda})]=0$ на $(1-\delta_0,1)\times\{0\}$ совпадают с условиями $\boldsymbol{\sigma}_{\tau}^{\lambda}=0$, $[\sigma_{\nu}^{\lambda}]=0$ (см. (11)), а доказательство второго соотношения (29) можно найти в [5, с. 276].

Предположим, что $\mathbf{f} \equiv 0$ в $S_2 \cap \Omega_c$. Учитывая справедливость уравнений равновесия (8) в Ω_c , из (28) получим инвариантный интеграл для задачи (8)–(11):

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\},$$

который не зависит от выбора кривой $(\partial S_2) \cap \overline{\Omega}_c$. Рассуждая аналогично, при тех же условиях на f из (26) получаем инвариантный интеграл для задачи (2)–(5):

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} n_{1} \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) u_{i,1}^{0} n_{j} \right\}.$$
(30)

Кривая $(\partial S_2) \cap \Omega_1$ является в данном случае произвольной "шапочкой", лежащей в Ω_1 и окружающей точку (1,0).

При выводе (30) из (26) важно отметить справедливость краевого условия

$$\sigma_{22}(\boldsymbol{u}^0)u_{2,1}^0 = 0$$
 на $(1 - \delta_0, 1) \times \{0\},$ (31)

а также H^2 -гладкость решения \boldsymbol{u}^0 вплоть до точек $(1-\delta_0,1)\times\{0\}$. Указанная гладкость решения \boldsymbol{u}^0 контактной задачи (2)–(5) доказана в [17], а справедливость краевого условия (31) может быть установлена аналогично второму соотношению в (29).

Инвариантный интеграл по кривой, лежащей в Ω_1 и окружающей точку (0,0), также существует и имеет вид (30).

ПРИМЕР 2. Пусть θ — гладкая функция с носителем в малой окрестности S_1 кривой Γ_c . Более того, $\theta=1$ в окрестности S_2 кривой Γ_c , $S_2\subset S_1$. Рассмотрим возмущение (13) в виде

$$y_1 = x_1 + \delta\theta(x), \qquad y_2 = x_2,$$

где $(x_1, x_2) \in \Omega_c$, $(y_1, y_2) \in \Omega_c^{\delta}$. Как и в примере 1, имеем $\boldsymbol{V}(x) = (\theta(x), 0)$, и формула (21) будет совпадать с (27).

Предполагая, что $f \equiv 0$ в $S_2 \cap \Omega_c$, осуществим интегрирование по частям в (27). Получим инвариантный интеграл для задачи (8)–(11):

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\},\,$$

где $\boldsymbol{n}=(n_1,n_2)$ — внутренняя нормаль к ∂S_2 . В данном случае $(\partial S_2)\cap\overline{\Omega}_c$ — кривая, лежащая в $\overline{\Omega}_c$ и окружающая Γ_c .

Для задачи (2)–(5) инвариантный интеграл получается при том же выборе $\boldsymbol{V}(x)$ в (26) и имеет вид

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} n_{1} \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) u_{i,1}^{0} n_{j} \right\}.$$

Теперь рассмотрим другую геометрию областей Ω_1 , Ω_2 .

ПРИМЕР 3. Пусть ограниченная область Ω_1 имеет вид полосы. Будем считать, что Ω_1 имеет границу, состоящую из частей Γ_0 и Γ_c вида

$$\Gamma_0 = ((0,1) \times \{0\}) \cup ((0,1) \times \{1\}) \cup (\{0\} \times [0,1]),$$

$$\Gamma_c = \{(x_1, x_2) \mid x_1 = \psi(x_2), \ x_2 \in [0,1]\}.$$

Предполагается, что функция ψ удовлетворяет условию Липшица; $0 < \psi(x_2) < 2, x_2 \in [0,1]$. Область Ω_2 также имеет вид ограниченной полосы с границей

$$\Gamma_2 = \Gamma_c \cup ((1,2) \times \{0\}) \cup ((1,2) \times \{1\}) \cup (\{2\} \times [0,1]).$$

Пусть гладкая функция θ обращается в нуль вне некоторой окрестности S_1 кривой Γ_c и существует окрестность S_2 кривой Γ_c , где $\theta=1,\ S_2\subset S_1$. Рассмотрим преобразование $y=\Psi_\delta(x)$ следующего вида:

$$y_1 = x_1 + \delta\theta(x), \qquad y_2 = x_2.$$

Здесь $(x_1, x_2) \in \Omega_c$; $(y_1, y_2) \in \Omega_c^{\delta}$. Как и ранее, $\Omega_c = \Omega_1 \cup \Omega_2 \cup (\Sigma \setminus \Gamma_c)$. Очевидно, что $\Sigma \setminus \Gamma_c = \emptyset$, где $\Sigma = \Sigma_0 \setminus \partial \Sigma_0$, $\Sigma_0 = \Gamma_1 \cap \Gamma_2$, так что в данном случае $\Omega_c = \Omega_1 \cup \Omega_2$. На множестве Ω_c можно решить задачу вида (12) и найти решение \boldsymbol{u}^{λ} , а затем на возмущенном множестве Ω_c^{δ} решить задачу отыскания $\boldsymbol{u}^{\lambda\delta} = (u_1^{\lambda\delta}, u_2^{\lambda\delta})$, $\sigma^{\lambda\delta} = \{\sigma_{ij}^{\lambda\delta}\}$ (i, j = 1, 2) таких, что

$$-\operatorname{div}\sigma^{\lambda\delta} = \boldsymbol{f} \qquad \text{B} \quad \Omega_c^{\delta},$$

$$\sigma^{\lambda\delta} = B^{\lambda}\varepsilon(\boldsymbol{u}^{\lambda\delta}) \qquad \text{B} \quad \Omega_c^{\delta},$$

$$\boldsymbol{u}^{\lambda\delta} = 0 \qquad \text{Ha} \quad (\partial\Omega_1^{\delta} \cup \partial\Omega_2^{\delta}) \setminus \Psi_{\delta}(\Gamma_c)^{\pm},$$

$$[\boldsymbol{u}^{\lambda\delta}] \cdot \boldsymbol{\nu} \geqslant 0, \quad [\sigma_{\nu}^{\lambda\delta}] = 0, \quad \boldsymbol{\sigma}_{\nu}^{\lambda\delta} \leqslant 0, \quad \boldsymbol{\sigma}_{\tau}^{\lambda\delta} = 0, \quad [\boldsymbol{u}^{\lambda\delta}] \cdot \boldsymbol{\nu} \sigma_{\nu}^{\lambda\delta} = 0 \qquad \text{Ha} \quad \Psi_{\delta}(\Gamma_c).$$

Здесь ν — внутренняя нормаль к границе $\partial\Omega_1$, определенная на Γ_c ; $\Omega_i^{\delta} = \Psi_{\delta}(\Omega_i)$ (i=1,2). Отметим, что в данном случае $\nu^{\delta} = \Psi_{\delta}(\nu)$. Множество Ω_c и возмущенное множество Ω_c^{δ} не являются областями, так как их связность нарушена. Можно найти производную I^{λ} функционала энергии в виде (21) и векторное поле $V(x) = (\theta(x), 0)$. Следовательно, формулу (21) можно записать в виде (27). Интегрируя по частям в (27) и предполагая, что $f \equiv 0$ в $S_2 \cap \Omega_c$, получаем инвариантный интеграл для задачи (8)–(11):

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\},$$

где $\mathbf{n} = (n_1, n_2)$ — внутренняя нормаль к ∂S_2 .

Рассуждая аналогично, из формулы (26) получаем инвариантный интеграл для контактной задачи (2)–(5):

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} n_{1} \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) u_{i,1}^{0} n_{j} \right\}.$$

В данном случае $(\partial S_2) \cap \Omega_1$ — гладкая кривая, соединяющая верхний и нижний берега полосы Ω_1 .

Пример 4. Пусть область Ω_1 имеет вид конуса и при этом

$$\Gamma_{c} = \{ (r, \varphi) \mid 0 \leqslant \varphi \leqslant \varphi_{0}, \ r = q_{0}(\varphi), \ q_{0} > 0, \ q_{0} \in C^{0,1} \},$$

$$\Gamma_{0} = \{ (r, \varphi) \mid \varphi = 0, \ 0 \leqslant r \leqslant q_{0}(0) \} \cup \{ (r, \varphi) \mid \varphi = \varphi_{0}, \ 0 \leqslant r \leqslant q_{0}(\varphi_{0}) \}.$$

Здесь (r, φ) — полярные координаты на плоскости. Выберем гладкую функцию θ , равную нулю вне некоторой малой окрестности S_1 кривой Γ_c . Пусть $\theta = 1$ в окрестности S_2 кривой Γ_c , $S_2 \subset S_1$. Область Ω_2 выбрана следующим образом:

$$\Omega_2 = \{ (r, \varphi) \mid 0 < \varphi < \varphi_0, \ q_0(\varphi) < r < q_1(\varphi), \ q_1 \in C^{0,1} \}.$$

Определим (несвязное) множество $\Omega_c=\Omega_1\cup\Omega_2$ и рассмотрим возмущение множества Ω_c вида

$$y_1 = x_1(1 + \delta\theta(x)), \qquad y_2 = x_2(1 + \delta\theta(x)), \qquad x \in \Omega_c, \quad y \in \Omega_c^{\delta}.$$
 (32)

Как и ранее, получим формулу для производной функционала энергии в возмущенной задаче (15)–(18):

$$I^{\lambda} = \int_{\Omega_{C}} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) \varepsilon_{ij}(\mathbf{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{\lambda} \right) \right\} - \int_{\Omega_{C}} \operatorname{div} \left(\mathbf{V} f_{i} \right) u_{i}^{\lambda}.$$

Находим векторное поле для возмущения (32):

$$V(x) = (\theta(x)x_1, \theta(x)x_2).$$

Далее заметим, что это векторное поле обеспечивает равенство

$$\int_{S_2 \cap \Omega_c} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) \varepsilon_{ij}(\mathbf{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{\lambda} \right) \right\} = 0.$$

Таким образом, считая, что $\boldsymbol{f} \equiv 0$ в $S_2 \cap \Omega_c$, получим

$$I^{\lambda} = \int_{(S_1 \setminus S_2) \cap \Omega_c} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) \varepsilon_{ij}(\mathbf{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\mathbf{u}^{\lambda}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{\lambda} \right) \right\} - \int_{(S_1 \setminus S_2) \cap \Omega_c} \operatorname{div}(\mathbf{V} f_i) u_i^{\lambda}.$$

Подставляя в это равенство значения поля V(x), найдем

$$I^{\lambda} = \int_{(S_1 \backslash S_2) \cap \Omega_c} \left\{ \frac{1}{2} (\theta_{,l} x_l) \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) (u_{i,l}^{\lambda} x_l) \theta_{,j} \right\} - \int_{(S_1 \backslash S_2) \cap \Omega_c} (x_l \theta f_i)_{,l} u_i^{\lambda}.$$
(33)

Проинтегрируем по частям в (33), освобождаясь от производных функции θ в первом интеграле и сбрасывая на u_i^{λ} производные во втором интеграле. Заметим, что после интегрирования по частям сумма интегралов по $(S_1 \setminus S_2) \cap \Omega_c$ будет равна нулю, и, следовательно, приходим к инвариантному интегралу по $(\partial S_2) \cap \overline{\Omega}_c$ в задаче (8)–(11):

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} (n_l x_l) \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) (u_{i,l}^{\lambda} x_l) n_j \right\},\,$$

где $\mathbf{n} = (n_1, n_2)$ — внутренняя нормаль к границе ∂S_2 . Вид этого инвариантного интеграла отличается от предыдущих.

Для контактной задачи (2)–(5) инвариантный интеграл имеет вид

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} (n_{l}x_{l}) \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) (u_{i,l}^{0}x_{l}) n_{j} \right\}.$$

Трехмерный случай. Рассмотрим контактную задачу в ограниченной односвязной области $\Omega_1 \subset \mathbb{R}^3$ с липшицевой границей Γ_1 . Пусть $\Gamma_c \subset \Gamma_1$ — контактная граница, т. е. часть границы, на которой выполнены краевые условия Синьорини; $\Gamma_0 = \Gamma_1 \setminus \Gamma_c$,

 $\operatorname{meas}\Gamma_0>0$. Для простоты предполагаем, что Γ_c как двумерная поверхность в \mathbb{R}^3 может быть записана в виде графика функции

$$x_3 = \phi(x_1, x_2), \qquad (x_1, x_2) \in \overline{D}$$

с достаточно гладкой функцией ϕ . Здесь $D\subset\mathbb{R}^2$ — ограниченная односвязная область с границей γ_0 класса $C^{0,1}$, причем γ_0 как кривая в \mathbb{R}^3 может быть записана в виде

$$\gamma_0 = \{(r, \varphi, 0) \mid r = g(\varphi), \ \varphi \in [0, 2\pi], \ g(0) = g(2\pi), \ g > 0, \ g \in C^{0,1}\}$$

и, более того, существует $\delta_0 > 0$ такое, что

$$\{(r, \varphi, 0) \mid g(\varphi) - \delta_0 < r < g(\varphi) + \delta_0\} \subset \Gamma_1. \tag{34}$$

Здесь (r, φ, ξ) — цилиндрические координаты в \mathbb{R}^3 . Условие (34) означает, что вблизи края γ_0 контактной границы Γ_c имеется плоский участок, принадлежащий границе Γ_1 .

Постановка контактной задачи в области Ω_1 состоит в следующем. Требуется найти функции $\boldsymbol{u}^0=(u_1^0,u_2^0,u_3^0),\ \sigma=\{\sigma_{ij}\}\ (i,j=1,2,3)$ такие, что

$$-\operatorname{div} \sigma = \mathbf{f} \qquad \text{B} \quad \Omega_{1},$$

$$\sigma = C^{1} \varepsilon(\mathbf{u}^{0}) \qquad \text{B} \quad \Omega_{1},$$

$$\mathbf{u}^{0} = 0 \qquad \text{Ha} \quad \Gamma_{0},$$
(35)

$$m{u}^0\cdotm{
u}\geqslant 0,\quad \sigma_
u\leqslant 0,\quad m{\sigma}_ au=0,\quad m{u}^0\cdotm{
u}\sigma_
u=0 \qquad {
m Ha} \quad \Gamma_c.$$

Здесь $\boldsymbol{\nu}=(\nu_1,\nu_2,\nu_3)$ — внутренняя нормаль к $\partial\Omega_1$ на Γ_c ; $C^1=\{c^1_{ijkl}\}$ (i,j,k,l=1,2,3) — тензор модулей упругости, обладающий такими же свойствами, как в двумерном случае (см. (6)); $\boldsymbol{f}=(f_1,f_2,f_3)\in C^1_{loc}(\mathbb{R}^3)$. Остальные обозначения такие же, как и ранее.

Задача (35) допускает вариационную формулировку и может быть записана в виде вариационного неравенства. Обозначим

$$H^1_{\Gamma_0}(\Omega_0) = \{ oldsymbol{v} = (v_1, v_2, v_3) \in H^1(\Omega_c) \mid oldsymbol{v} = 0 \;\; \text{на } \Gamma_0 \},$$
 $K = \{ oldsymbol{v} \in H^1_{\Gamma}(\Omega_c) \mid [oldsymbol{v}] \cdot oldsymbol{
u} \geqslant 0 \; \text{п.в. на } \Gamma_c \}.$

Существует решение вариационного неравенства

$$\boldsymbol{u}^0 \in K, \quad \int_{\Omega_1} \sigma(\boldsymbol{u}^0) \varepsilon(\boldsymbol{v} - \boldsymbol{u}^0) \geqslant \int_{\Omega_1} \boldsymbol{f}(\boldsymbol{v} - \boldsymbol{u}^0) \quad \forall v \in K.$$

Как и в двумерном случае, построим ограниченную область Ω_2 с липшицевой границей Γ_2 . Пусть $\Omega_c = \Omega_1 \cup \Omega_2 \cup (\Sigma \setminus \Gamma_c)$, $\Sigma = \Sigma_0 \setminus \partial \Sigma_0$, $\Sigma_0 = \Gamma_1 \cap \Gamma_2$. Фактически мы предполагаем, что существует область в \mathbb{R}^3 , которая делится регулярной поверхностью Σ_0 на две подобласти Ω_1 , Ω_2 , при этом $\Gamma_c \subset \Sigma_0$. Внешнюю границу области Ω_c (т. е. $\partial \Omega_c \setminus \Gamma_c^{\pm}$) обозначим через Γ . Геометрия областей Ω_1 , Ω_2 предполагается такой, что разрез Γ_c не выходит на внешнюю границу Γ , т. е. $\Gamma_c \cap \Gamma = \emptyset$. Это предположение не относится к примерам Γ , 8.

Положим $B^{\lambda} = \{b_{ijkl}^{\lambda}\}, \ \lambda > 0, \ i, j, k, l = 1, 2, 3,$

$$b_{ijkl}^{\lambda} = \begin{cases} c_{ijkl}^1 & \text{в } \Omega_1, \\ \lambda^{-1} c_{ijkl}^2 & \text{в } \Omega_2, \end{cases}$$

где тензор $C^2 = \{c_{ijkl}^2\}$ обладает такими же свойствами, как и C^1 . В области Ω_c с разрезом Γ_c можно найти решение семейства задач, зависящих от параметра $\lambda > 0$, а именно:

для каждого $\lambda > 0$ требуется найти функции $\boldsymbol{u}^{\lambda} = (u_1^{\lambda}, u_2^{\lambda}, u_3^{\lambda}), \ \sigma^{\lambda} = \{\sigma_{ij}^{\lambda}\}\ (i, j = 1, 2, 3)$ такие, что

$$-\operatorname{div} \sigma^{\lambda} = \boldsymbol{f} \qquad \text{B} \quad \Omega_{c},$$

$$\sigma^{\lambda} = B^{\lambda} \varepsilon(\boldsymbol{u}^{\lambda}) \qquad \text{B} \quad \Omega_{c},$$

$$\boldsymbol{u}^{\lambda} = 0 \qquad \text{Ha} \quad \Gamma,$$

$$[\boldsymbol{u}^{\lambda}] \cdot \boldsymbol{\nu} \geqslant 0, \quad [\sigma_{\nu}^{\lambda}] = 0, \quad \sigma_{\nu}^{\lambda} \leqslant 0, \quad \boldsymbol{\sigma}_{\tau}^{\lambda} = 0, \quad [\boldsymbol{u}^{\lambda}] \cdot \boldsymbol{\nu} \sigma_{\nu}^{\lambda} = 0 \qquad \text{Ha} \quad \Gamma_{c}.$$

$$(36)$$

Пусть

$$H^1_{\Gamma}(\Omega_c) = \{ \boldsymbol{v} = (v_1, v_2, v_3) \in H^1(\Omega_c) \mid \boldsymbol{v} = 0 \text{ на } \Gamma \},$$
 $K_c = \{ \boldsymbol{v} \in H^1_{\Gamma}(\Omega_c) \mid [\boldsymbol{v}] \cdot \boldsymbol{\nu} \geqslant 0 \text{ п.в. на } \Gamma_c \}.$

Тогда задача (36) эквивалентна минимизации функционала

$$\Pi_{\lambda}(\Omega_c; m{v}) = rac{1}{2} \int\limits_{\Omega_c} \sigma^{\lambda}(m{v}) arepsilon(m{v}) - \int\limits_{\Omega_c} m{f} m{v}$$

на множестве K_c , поэтому решение u^{λ} этой задачи существует и удовлетворяет вариационному неравенству

$$\boldsymbol{u}^{\lambda} \in K_c, \quad \int\limits_{\Omega_c} \sigma^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon(\boldsymbol{v} - \boldsymbol{u}^{\lambda}) \geqslant \int\limits_{\Omega_c} f(\boldsymbol{v} - \boldsymbol{u}^{\lambda}) \qquad \forall \boldsymbol{v} \in K_c.$$

Дальнейшее построение в целом аналогично использованному в двумерном случае. Рассмотрим возмущение $y = \Psi_{\delta}(x)$ исходной области в виде

$$y = x + \delta \mathbf{V}(x), \quad x \in \Omega_c, \quad y \in \Omega_c^{\delta}, \quad \mathbf{V}(x) = (V_1(x), V_2(x), 0).$$

Более того, считаем, что носитель поля $V \in W^{1,\infty}_{loc}(\mathbb{R}^3)$ не пересекается с границей Γ . При этом предполагается, что выполнено условие (14). Далее решаем возмущенную задачу вида (15)–(18) и находим решение $\boldsymbol{u}^{\lambda\delta}$, а затем производную функционала энергии $\Pi_{\lambda}(\Omega_c^{\delta};\boldsymbol{u}^{\lambda\delta})$ по параметру δ при $\delta=0$. Пусть

$$I^{\lambda} = \frac{d}{d\delta} \left. \Pi_{\lambda}(\Omega_c^{\delta}; \boldsymbol{u}^{\lambda \delta}) \right|_{\delta = 0}.$$

Аналогично (21) получим

$$I^{\lambda} = \int_{\Omega_{c}} \left\{ \frac{1}{2} \operatorname{div} \left(\boldsymbol{V} b_{ijkl}^{\lambda} \right) \varepsilon_{kl}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) E_{ij} \left(\frac{\partial \boldsymbol{V}}{\partial x}; \boldsymbol{u}^{\lambda} \right) \right\} - \int_{\Omega_{c}} \operatorname{div} \left(\boldsymbol{V} f_{i} \right) u_{i}^{\lambda}, \quad (37)$$

где

$$E_{ij}(\Phi; \mathbf{v}) = (v_{i,k}\Phi_{kj} + v_{j,k}\Phi_{ki})/2, \qquad \Phi = \{\Phi_{ij}\}, \qquad i, j, k, l = 1, 2, 3.$$

Отметим, что в силу сделанного выбора векторного поля V нет необходимости дифференцировать по x_3 коэффициенты b_{ijkl}^{λ} в формуле (37).

Используя вновь сходимость вида (23)–(25), получим формулу для $I^0=\lim_{\lambda\to 0}I^\lambda$. Действительно,

$$I^{0} = \int_{\Omega_{1}} \left\{ \frac{1}{2} \operatorname{div} \mathbf{V} \sigma_{ij}(\mathbf{u}^{0}) \varepsilon_{ij}(\mathbf{u}^{0}) - \sigma_{ij}(\mathbf{u}^{0}) E_{ij} \left(\frac{\partial \mathbf{V}}{\partial x}; \mathbf{u}^{0} \right) \right\} - \int_{\Omega_{1}} \operatorname{div} (\mathbf{V} f_{i}) u_{i}^{0}.$$
(38)

Теперь рассмотрим конкретные случаи выбора векторного поля V(x) в формулах (37), (38), которые приведут к инвариантным интегралам в трехмерном случае для задач (35) и (36).

ПРИМЕР 5. Выберем гладкую функцию θ с носителем в малой окрестности S_1 поверхности Γ_c . Считаем, что $\theta=1$ в окрестности S_2 поверхности Γ_c , $S_2\subset S_1$. Малость окрестности S_1 означает, что край поверхности $(\partial S_1)\cap\Omega_c$ является частью плоского участка (34) границы Γ_1 . Выберем возмущение области Ω_c в виде

$$y_1 = x_1 + \delta\theta(x_1, x_2, x_3)\cos\alpha, \qquad y_2 = x_2 + \delta\theta(x_1, x_2, x_3)\sin\alpha, \qquad y_3 = x_3.$$

где $(x_1,x_2,x_3)\in\Omega_c;\ (y_1,y_2,y_3)\in\Omega_c^\delta;\ \alpha\in[0,2\pi)$ — фиксированное число. Обозначим $p_1=\cos\alpha,\ p_2=\sin\alpha.$ В этом случае ${\pmb V}(x)=(\theta(x)p_1,\theta(x)p_2,0),$ а формула (37) принимает вид

$$I^{\lambda} = \int_{\Omega_{C}} \left\{ \frac{1}{2} \left(\theta_{,l} p_{l} \right) \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) (u_{i,l}^{\lambda} p_{l}) \theta_{,j} \right\} - \int_{\Omega_{C}} (\theta f_{i})_{,l} p_{l} u_{i}^{\lambda}. \tag{39}$$

Интегрируя по частям в (39), получаем

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} (n_l p_l) \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) (u_{i,l}^{\lambda} p_l) n_j \right\} + \int_{(S_1 \setminus S_2) \cap \Omega_c} \theta(\sigma_{ij,j}^{\lambda} + f_i) (u_{i,l}^{\lambda} p_l) + \int_{S_2 \cap \Omega_c} f_i u_{i,l}^{\lambda} p_l.$$

Здесь $\boldsymbol{n}=(n_1,n_2,n_3)$ — внутренняя нормаль к ∂S_2 . Предполагая, что $\boldsymbol{f}\equiv 0$ в $S_2\cap\Omega_c$, из предыдущего соотношения получаем инвариантный интеграл для задачи (36):

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_C} \left\{ \frac{1}{2} (n_l p_l) \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) (u_{i,l}^{\lambda} p_l) n_j \right\}, \tag{40}$$

где суммирование проводится по i, j = 1, 2, 3. Аналогично формуле (38) инвариантный интеграл для контактной задачи (35) имеет вид

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} (n_{l} p_{l}) \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) (u_{i,l}^{0} p_{l}) n_{j} \right\}.$$

$$(41)$$

В данном случае $(\partial S_2) \cap \Omega_1$ — поверхность типа "шапочки", лежащая в Ω_1 и накрывающая Γ_c .

Пример 6. Пусть $\theta(x)$ — гладкая функция, равная нулю вне малой окрестности S_1 кривой γ_0 , $\theta=1$ в окрестности S_2 кривой $\gamma_0, S_2 \subset S_1$. Например, S_1, S_2 — торы, содержащие γ_0 и настолько малые, что $(\partial S_1) \cap \Gamma_1$ является частью плоского участка (34). Рассмотрим возмущение области Ω_c в виде

$$y_1 = x_1 + \delta\theta(x)p_1, \qquad y_2 = x_2 + \delta\theta(x)p_2, \qquad y_3 = x_3,$$

где $x \in \Omega_c, y \in \Omega_c^{\delta}, p_1^2 + p_2^2 = 1$. Имеем $V(x) = (\theta(x)p_1, \theta(x)p_2, 0)$, а формула для I^{λ} совпадает с (39). Отличие данного случая от примера 5 состоит в том, что возмущается лишь окрестность фронта γ_0 трещины Γ_c .

Инвариантный интеграл для задачи (36) при $f \equiv 0$ в $S_2 \cap \Omega_c$ в данном случае имеет вид (40).

То же значение векторного поля V(x) в (38) дает инвариантный интеграл в задаче (35), вид которого совпадает с (41). При этом $(\partial S_2) \cap \Omega_1$ — поверхность типа "шапочки", лежащая в Ω_1 и накрывающая кривую γ_0 .

Случаю, когда возмущается лишь часть края границы Γ_c , соответствует следующий пример.

ПРИМЕР 7. Пусть контактная граница Γ_c является частью плоскости, а именно:

$$\Gamma_c = \{(x_1, x_2, 0) \mid 0 \leqslant x_1 \leqslant \phi(x_2), \ \phi(x_2) > 0, \ x_2 \in [-1, 1]\},\$$

причем существует $\delta_0 > 0$ такое, что $\gamma_1 \subset \Gamma_1$, где

$$\gamma_1 = \{(x_1, x_2, 0) \mid 0 \leqslant x_1 \leqslant \phi(x_2) + \delta_0, \ x_2 \in [-1, 1]\}.$$

Здесь $\phi(x_2)$ — достаточно гладкая функция. Как и ранее, вводим в рассмотрение область Ω_2 с гладкой границей Γ_2 и строим область Ω_c . Далее рассмотрим возмущение области Ω_c при $x \in \Omega_c, y \in \Omega_c^{\delta}$:

$$y_1 = x_1 + \delta\theta(x), \qquad y_2 = x_2, \qquad y_3 = x_3.$$
 (42)

Здесь выбранная функция θ равна нулю вне некоторой малой трехмерной окрестности S_1 кривой

$$\{(x_1, x_2, 0) \mid x_1 = \phi(x_2), \ x_2 \in [-1, 1]\}.$$
 (43)

Более того, $\theta = 1$ в некоторой окрестности S_2 кривой (43), $S_2 \subset S_1$. Малость окрестности S_1 означает, что $S_1 \cap \gamma_1$ является частью плоскости. Согласно (42) имеем $\boldsymbol{V}(x) = (\theta(x), 0, 0)$. Тогда из формулы (37) в данном случае получаем

$$I^{\lambda} = \int_{\Omega_c} \left\{ \frac{1}{2} \,\theta_{,1} \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} \theta_{,j} \right\} - \int_{\Omega_c} (\theta f_i)_{,1} u_i^{\lambda}. \tag{44}$$

Осуществим интегрирование по частям в (44). Получим инвариантный интеграл для задачи (36) в предположении, что $f \equiv 0$ в $S_2 \cap \Omega_c$. Этот интеграл имеет вид

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\},$$

где $\mathbf{n} = (n_1, n_2, n_3)$ — внутренняя нормаль к ∂S_2 .

Как и в других примерах, из формулы (38) подстановкой выбранного поля V(x) найдем инвариантный интеграл для задачи (35):

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} n_{1} \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) u_{i,1}^{0} n_{j} \right\}.$$

ПРИМЕР 8. Пусть область Ω_1 имеет вид "бруса"

$$\Omega_1 = \{(x_1, x_2, x_3) \mid 0 < x_1 < \varphi(x_2, x_3), \ x_2 \in (0, 1), \ x_3 \in (0, 1)\}$$

с достаточно гладкой функцией φ , такой что $\varphi=1$ при $x_2=0,1,\,x_3=0,1.$ Предполагаем, что $0<\varphi(x_2,x_3)<2$ при $x_2\in[0,1],\,x_3\in[0,1].$ Пусть контактная граница Γ_c в задаче Синьорини (35) выбрана в виде

$$\Gamma_c = \{(x_1, x_2, x_3) \mid x_1 = \varphi(x_2, x_3), x_2 \in [0, 1], x_3 \in [0, 1]\}.$$

Область Ω_2 также возьмем в виде "бруса"

$$\Omega_2 = \{(x_1, x_2, x_3) \mid \varphi(x_2, x_3) < x_1 < 2, x_2 \in (0, 1), x_3 \in (0, 1)\}.$$

Выберем гладкую функцию θ , равную нулю вне некоторой малой окрестности S_1 поверхности Γ_c и такую, что $\theta=1$ в окрестности S_2 поверхности Γ_c , $S_2\subset S_1$. Рассмотрим возмущение множества $\Omega_c=\Omega_1\cup\Omega_2$:

$$y_1 = x_1 + \delta\theta(x), \quad y_2 = x_2, \quad y_3 = x_3, \quad x \in \Omega_c, \quad y \in \Omega_c^{\delta}.$$

Отметим, что множество Ω_c в данном случае не будет областью, так как связность Ω_c нарушена. Легко находим векторное поле $\mathbf{V}(x) = (\theta(x), 0, 0)$. Таким образом, для данного векторного поля $\mathbf{V}(x)$ из (37) получаем формулу

$$I^{\lambda} = \int_{\Omega_c} \left\{ \frac{1}{2} \,\theta_{,1} \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} \theta_{,j} \right\} - \int_{\Omega_c} (\theta f_i)_{,1} u_i^{\lambda}. \tag{45}$$

Интегрируя по частям в (45), находим инвариантный интеграл для задачи (36) в предположении, что $f \equiv 0$ в $S_2 \cap \Omega_c$:

$$I^{\lambda} = \int_{(\partial S_2) \cap \overline{\Omega}_c} \left\{ \frac{1}{2} n_1 \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) \varepsilon_{ij}(\boldsymbol{u}^{\lambda}) - \sigma_{ij}^{\lambda}(\boldsymbol{u}^{\lambda}) u_{i,1}^{\lambda} n_j \right\},$$

где $\mathbf{n} = (n_1, n_2, n_3)$ — внутренняя нормаль к границе ∂S_2 .

Аналогичные рассуждения при $f \equiv 0$ в $S_2 \cap \Omega_c$ приводят к инвариантному интегралу в задаче (35):

$$I^{0} = \int_{(\partial S_{2}) \cap \Omega_{1}} \left\{ \frac{1}{2} n_{1} \sigma_{ij}(\boldsymbol{u}^{0}) \varepsilon_{ij}(\boldsymbol{u}^{0}) - \sigma_{ij}(\boldsymbol{u}^{0}) u_{i,1}^{0} n_{j} \right\}.$$

В частности, здесь можно выбрать

$$(\partial S_2) \cap \Omega_1 = \{(x_1, x_2, x_3) \mid x_1 = \psi(x_2, x_3), x_2 \in (0, 1), x_3 \in (0, 1)\}$$

с достаточно гладкой функцией $\psi(x_2, x_3)$ такой, что

$$0 < \psi(x_2, x_3) < \varphi(x_2, x_3), \quad x_2 \in (0, 1), \quad x_3 \in (0, 1).$$

В заключение отметим, что установить наличие инвариантных интегралов можно и в ряде других случаев. Во всех рассмотренных выше ситуациях значение инвариантного интеграла численно совпадает со значением производной функционала энергии по параметру возмущения δ при $\delta=0$. В частности, инвариантные интегралы могут быть использованы для приближенного отыскания функционалов энергии в возмущенных задачах. Как уже отмечалось, инвариантный интеграл I^{λ} равен значению производной функционала энергии $\Pi_{\lambda}(\Omega_c^{\delta}; \boldsymbol{u}^{\lambda\delta})$ по параметру возмущения δ при $\delta=0$. Поэтому можно использовать формулу

$$\Pi_{\lambda}(\Omega_c^{\delta}; \boldsymbol{u}^{\lambda\delta}) = \Pi_{\lambda}(\Omega_c; \boldsymbol{u}^{\lambda}) + \delta I^{\lambda} + o(\delta),$$

справедливую для всех $\lambda > 0$. Аналогичное разложение имеет место и для $\lambda = 0$, при этом Ω_c следует заменить на Ω_1 .

ЛИТЕРАТУРА

- 1. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.
- 2. Партон В. З., Морозов Е. М. Механика упругопластического разрушения. М.: Наука, 1985.
- 3. Назаров С. А. Трещина на стыке анизотропных тел. Сингулярности напряжений и инвариантные интегралы // Прикл. математика и механика. 1998. Т. 62, вып. 3. С. 489–502.
- 4. **Назаров С. А., Полякова О. Р.** Весовые функции и инвариантные интегралы высших порядков // Изв. РАН. Механика твердого тела. 1995. № 1. С. 104–119.
- 5. **Khludnev A. M., Kovtunenko V. A.** Analysis of cracks in solids. Southampton; Boston: WIT Press, 2000.

6. **Соколовский Я., Хлуднев А. М.** О производной функционала энергии по длине трещины в задачах теории упругости // Прикл. математика и механика. 2000. Т. 64, вып. 3. С. 464–475.

- 7. **Ковтуненко В. А.** Инвариантные интегралы энергии для нелинейной задачи о трещине с возможным контактом берегов // Прикл. математика и механика. 2003. Т. 67, вып. 1. С. 109–164.
- 8. **Степанов В. Д., Хлуднев А. М.** Метод фиктивных областей в задаче Синьорини // Сиб. мат. журн. 2003. Т. 44, № 6. С. 1350–1364.
- 9. **Hoffmann K.-H., Khludnev A. M.** Fictitious domain method for the Signorini problem in a linear elasticity // Adv. Math. Sci. Appl. 2004. V. 14, N 2. P. 465–481.
- 10. **Копченов В. Д.** Приближение решения задачи Дирихле методом фиктивных областей // Дифференц. уравнения. 1968. Т. 4, № 1. С. 151–164.
- 11. **Брусникин М. Б.** Об эффективных алгоритмах решения задач метода фиктивных областей в многосвязном случае // Докл. РАН. 2002. Т. 387, № 2. С. 151–155.
- 12. **Вабищевич П. В.** Метод фиктивных областей в задачах математической физики. М.: Издво Моск. ун-та, 1991.
- 13. **Лазарев Н. П.** Дифференцирование функционала энергии для задачи о равновесии тела, содержащего трещину, с краевыми условиями Синьорини // Сиб. журн. индустр. математики. 2002. Т. 5, № 2. С. 139–147.
- 14. Khludnev A. M., Ohtsuka K., Sokolowski J. On derivative of energy functional for elastic bodies with cracks and unilateral conditions // Quart. Appl. Math. 2002. V. 60, N 1. P. 99–109.
- 15. Морозов Н. Ф. Математические вопросы теории трещин. М.: Наука, 1984.
- 16. Grisvard P. Elliptic problems in nonsmooth domains. Boston etc.: Pitman, 1985.
- 17. Фикера Г. Теоремы существования в теории упругости. М.: Мир, 1974.

Поступила в	редакцию	23/XII	2004 a	3.