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С использованием конвективной производной Джонсона— Сигалмана рассматриваются
двумерные течения вблизи свободной критической точки в несжимаемой вязкоупругой
среде Максвелла. Предполагается, что течение осесимметричное, профиль его скорости
является линейным вдоль осевой координаты. Найдено общее точное решение осесим-
метричной задачи о распределении компонент тензора напряжений вблизи критической
точки.
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Введение. Изучение поведения жидкостей имеет важное значение в науке и технике.
Исследование динамики жидкостей позволяет решать такие задачи, как прогнозирование
погоды, проектирование транспортных средств, разработка лекарств, оптимизация произ-
водственных процессов.

Уравнения Навье — Стокса являются основными при анализе поведения жидкостей,
но не всегда точно описывают поведение таких жидкостей, как высоковязкие или вяз-
коупругие жидкости с полимерами. Для их описания требуются более сложные модели,
например уравнения Максвелла, в которых учитываются дополнительные физические ха-
рактеристики, например вязкоупругость.

В данной работе рассматривается модель Максвелла с производными Джонсона —
Сигалмана [1] для вязкоупругих жидкостей, описание которых вызывает затруднение при
математическом анализе вследствие большего числа неизвестных функций по сравнению

с моделями ньютоновских жидкостей. Точные решения задач, описывающих поведение
вязкоупругих жидкостей, используются при тестировании численных методов и эмпири-
ческих моделей.

Классическим примером вязкоупругого течения является течение вблизи критической

точки— простое двумерное течение, используемое в качестве модели. В работе [2] впервые
изучены эти стационарные течения путем сведения с помощью преобразования подобия

уравнений Навье — Стокса к дифференциальному уравнению третьего порядка.
В ряде работ проведены аналитические исследования течений вязкоупругой жидкости

с критической точкой, описываемых уравнениями Максвелла с верхней конвективной про-
изводной. В [3] рассмотрены задачи о плоском и осесимметричном течении, сводящиеся
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к обыкновенным дифференциальным уравнениям. В работе [4] предложено общее анали-
тическое решение для полей напряжений и давления в двумерном плоском течении, но
это решение не удовлетворяет уравнению импульса. Аналитическое решение для поля
напряжений в аналогичном течении получено в [5], однако оно также не удовлетворяет
нелинейным уравнениям движения. В [4, 5] точные решения уравнений в модели вязко-
упругих напряжений строились с использованием верхней конвективной производной для

максвелловской жидкости.
Количество работ, посвященных исследованию нестационарных течений, существен-

но меньше количества работ, в которых изучаются установившиеся течения жидкости
Максвелла. В работе [6] проведен анализ нестационарных плоских течений несжимаемой
вязкоупругой жидкости Максвелла и получены точные решения с нетривиальной зависи-
мостью элементов тензора напряжений от пространственных координат. В [7] рассмат-
ривалось двумерное течение, уравнения были сведены к гиперболической системе, также
были исследованы задачи о сдвиговом и поперечном сдвиговом течениях. В работе [8] изу-
чены численные решения для случая нестационарного течения вблизи критической точки.

Большинство точных решений задач для моделей вязкоупругих жидкостей получены

в случае стационарных течений с двумя пространственными переменными либо в случае

нестационарных одномерных течений. В [9] с помощью различных конвективных произ-
водных найдено общее точное решение задачи о двумерном течении вблизи свободной

критической точки несжимаемой вязкоупругой жидкости Максвелла. Это решение было
использовано для вывода точных стационарных решений [10]. В работе [11] получены
аналитические решения задачи о распределении напряжений для случая течения, не огра-
ниченного стенками, в критической точке для восьмиконстантной модели Олдройда.

В данной работе строится общее решение задачи об осесимметричном течении вяз-
коупругих жидкостей вблизи критической точки, более точно описывающее эксперимен-
тальные данные.

1. Исследуемые уравнения. Исследуется система уравнений, описывающая движе-
ние несжимаемой вязкоупругой среды Максвелла. Уравнения неразрывности и количества
движения несжимаемой сплошной среды имеют вид

∇ · v = 0, ρ(vt + v · ∇v) = −∇p+ divS, (1)

где t — время; v — вектор скорости; p — давление; S — тензор напряжений; ρ — по-
стоянная плотность. Определяющие уравнения с объективной производной Джонсона —
Сигалмана можно записать следующим образом:

τ
(∂S
∂t

+ v · ∇S +
1 + α

2
(−L · S − S · Lт) +

1− α

2
(Lт · S + S · L)

)
+ S = 2µD. (2)

Здесь L — градиент скорости; D — тензор скорости деформации; τ — время релаксации;
µ — вязкость; α ∈ [−1, 1] — параметр модели Джонсона — Сигалмана. Уравнения (1), (2)
представляют собой обобщение классических уравнений Навье — Стокса для описания

движения вязкой жидкости, учитывающее вязкоупругие эффекты, в частности временные
задержки реакции материала на приложенное напряжение. В этих уравнениях содержится
поправочное слагаемое, называемое объективной производной Джонсона — Сигалмана [1].
Объективная производная Джонсона— Сигалмана, добавляемая к уравнениям Максвелла,
зависит от истории деформирования материала и представляется в виде

ṠJS = −1

τ
(S − 2µD) +

∂

∂t
(S − 2µD).

Таким образом, определяющие уравнения с объективной производной Джонсона — Сигал-
мана учитывают вязкоупругость, поэтому представляют собой более сложную модель по
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сравнению с классическими уравнениями Навье — Стокса. Они имеют большое значение
при анализе движения жидкостей, особенно при исследовании различных инженерных и
прикладных задач.

2. Уравнения в цилиндрических координатах с верхней конвективной про-
изводной (α = 1). Пусть r, θ, z — цилиндрические координаты, vr, vθ, vz — компоненты

скорости в цилиндрических координатах. Предполагается, что vr и vz не зависят от θ и
vθ = 0. Введем обозначения для физических компонент тензора напряжений S в цилин-
дрических координатах: [

Prr Prz

Prz Pzz

]
=

[
A B
B C

]
.

В случае осесимметричного течения уравнения (1) в цилиндрических координатах
принимают вид

1

r

∂ (rvr)

∂r
+
∂vz

∂z
= 0;

ρ
(∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+
∂A

∂r
+
∂B

∂z
+
A

r
; (3)

ρ
(∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+
∂B

∂r
+
∂C

∂z
+
B

r
, (4)

уравнения Максвелла (2) записываются следующим образом:

∂A

∂t
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∂A

∂r
+ vz

∂A

∂z
− 2

(
A
∂vr

∂r
+B

∂vr

∂z

)
+ τ−1A = 2µτ−1 ∂vr

∂r
,

∂B

∂t
+ vr

∂B

∂r
+ vz

∂B

∂z
− A

∂vz

∂r
−B

(∂vr

∂r
+
∂vz

∂z

)
− C

∂vr

∂z
+ τ−1B = µτ−1

(∂vr

∂z
+
∂vz

∂r

)
,

∂C

∂t
+ vr

∂C

∂r
+ vz

∂C

∂z
− 2

(
C
∂vz

∂z
+B

∂vz

∂r

)
+ τ−1C = 2µτ−1 ∂vz

∂z
.

Исключая давление p путем дифференцирования уравнения (3) по z, а затем вычитая
из него уравнение (4), продифференцированное по r, получаем уравнение совместности

ρr(ωt + vrωr + vzωz) =
∂2A

∂z ∂r
+

1

r

∂A

∂z
+
∂2B

∂z2
− ∂2B

∂r2
− 1

r

∂B

∂r
+
B

r2
− ∂2C

∂r ∂z
= 0, (5)

где

ω =
1

r

(∂vr

∂z
− ∂vz

∂r

)
.

3. Общие точные аналитические решения с линейной функцией vz(t, z). Ниже
строятся общие решения системы уравнений (1), (2). Функция vz полагается линейной

относительно z: vz = zf1(t) + f0(t), f1 6= 0. Для несингулярных при r = 0 решений из
уравнения неразрывности находим vr = −rf1/2.

Подставляя координаты скорости в определяющие уравнения (2), получаем

τ(At − f1rAr/2 + (zf1 + f0)Az) + (1 + τf1)A+ µf1 = 0,

τ(Bt − f1rBr/2 + (zf1 + f0)Bz) + (1− τf1/2)B = 0, (6)

τ(Ct − f1rCr/2 + (zf1 + f0)Cz) + (1− 2τf1)C − 2µf1 = 0.

Введем функции f1 = ψ′ψ−1 и f0 = ϕ′ψ. Решая уравнения (6) методом характеристик,
находим

A = ψ−1 e−t/τ (HA(z1, z2) + h1(t)),
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B = ψ1/2 e−t/τ HB(z1, z2), (7)

C = ψ2 e−t/τ (HC(z1, z2) + h2(t)),

где HA, HB, HC — произвольные функции переменных z1 = rψ1/2, z2 = z/ψ−ϕ; функции
h1(t) и h2(t) удовлетворяют уравнениям

h′1 = −µ
τ
ψ′ et/τ , h′2 = −2

µ

τ

ψ′

ψ
et/τ .

Заметим, что переменные t, z1, z2 могут рассматриваться в качестве новых независимых
переменных вместо t, r, z.

Подставляя решения уравнений (7) в условие совместности (5), получаем

ψ3(HB
z1z1

+HB
z1
/z1 −HB/z2

1 +HC
z1z2

)−HA
z1z2

−HA
z2
/z1 −HB

z2z2
= 0, (8)

где индексы z1, z2 обозначают производные по этим переменным. Поскольку переменные
t, z1, z2 являются независимыми и предполагается, что ψ

′ 6= 0, уравнение (8) может быть
расщеплено по ψ:

HB
z1z1

+HB
z1
/z1 −HB/z2

1 +HC
z1z2

= 0; (9)

HA
z1z2

+HA
z2
/z1 +HB

z2z2
= 0. (10)

При решении уравнения (9) предположим, что HB(z1, z2) = G̃z1z2(z1, z2). Таким обра-
зом, общее решение этого уравнения может быть записано в форме

G̃z1z1 + G̃z1/z1 +HC = g11(z1) + g12(z2), (11)

где g11(z1), g12(z2) — произвольные функции своих аргументов. Для решения второго урав-

нения (10) введем функции F (z1, z2) и Ĝ(z1, z2), такие что H
A = z1Fz1 и G̃ = Ĝz1 . Тогда,

интегрируя уравнение (10) по z1 и z2, находим

z1F + Ĝz2z2 = z1g22 + g23 + g21, (12)

где g22(z2), g23(z2), g21(z1) — произвольные функции. Уравнение (11) принимает вид

Ĝz1z1z1 + Ĝz1z1/z1 +HC = g11 + g12. (13)

Вводя функции b1(z1), b2(z2), b3(z2), G(z1, z2), такие что

Ĝ = G+ z1b2 + b3 + b1, b′′′1 = −(b′′1/z1 + g11), b′′3 = g23,

уравнения (12), (13) можно упростить:

z1F +Gz2z2 + g21 = 0, Gz1z1z1 +Gz1z1/z1 +HC + g12 = 0.

Следовательно,

HA = −Gz1z2z2 +Gz2z2/z1 − g′21 + g21/z1, HC = −(Gz1z1z1 +Gz1z1/z1 + g12).

Подставляя найденные выражения в (7), получаем окончательные выражения для

функций A, B, C

A = ψ−1 e−t/τ (−Gz1z2z2 +Gz2z2/z1 − g′21 + g21/z1 + h1(t)),

B = ψ1/2 e−t/τ Gz1z1z2 , C = ψ2 e−t/τ (−Gz1z1z1 −Gz1z1/z1 − g12 + h2(t)),

где G(z1, z2), g21(z1), g12(z2) — произвольные функции своих аргументов; функции h1(t),
h2(t) удовлетворяют уравнениям

h′1 = −µ
τ
ψ′ et/τ , h′2 = 2

µ

τ

ψ′

ψ3
et/τ .
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Поскольку условие совместности (5) выполнено, давление восстанавливается по квад-
ратуре

p = M − e−t/τ (ψ2g12 + ψ−1g′21 − ψ−1 ln (z1)h1) + f,

где f(t) — произвольная функция,

M = −ρz2(ϕ′′ψ2 + 2ϕ′ψψ′ + ψ′′ψ(ϕ+ z2/2)) + ρz2
1ψ

−3(2ψψ′′ − 3ψ′2)/8.
Заключение. Исследования уравнений Максвелла, выполненные в настоящей работе,

были инициированы В. В. Пухначевым [9]. В данной работе получено общее аналитическое
решение уравнений Максвелла с верхней конвективной производной (α = 1) для осесим-
метричного случая задачи о течении вблизи критической точки. Заметим, что способ ре-
шения уравнений, использованный в случае плоского течения [9], приводит к громоздким
выкладкам в случае осесимметричного течения. Кроме того, использование предложенно-
го в данной работе подхода позволяет найти решение задачи о течении вблизи критической

точки при любых значениях параметра α не только в случае осесимметричного течения,
но и в случае плоских течений и более сложных моделей.
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