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ВВЕДЕНИЕ

В последние годы интенсивно развиваются

аддитивные технологии — производство объ-
ектов путем послойного наращивания матери-
ала [1, 2]. Детали, изготовленные по таким тех-
нологиям, широко используются в различных
областях промышленности, строительстве, ме-
дицине и т. д. Одним из направлений адди-
тивных технологий, имеющим большое прак-
тическое применение, является технология се-
лективного лазерного плавления (СЛП) метал-
лических порошков [3–6], которая заключается
в расплавлении тонкого слоя металлического

порошка лазером высокой мощности. Эта тех-
нология позволяет проводить построение слож-
ных неразборных изделий с внутренними по-
лостями и каналами с высокой точностью и

повторяемостью, что и отличает технологию
СЛП от традиционных методов изготовления

деталей.
Технологический процесс СЛП включает

в себя построение подробной 3D-модели изде-
лия, выбор оптимальных параметров исполь-
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зуемой установки для выращивания изделий из

различных порошков и определение свойств но-
вых, полученных по технологии СЛП материа-
лов, удовлетворяющих эксплуатационным тре-
бованиям изделия.

Целью настоящей работы было определе-
ние динамических прочностных характеристик

аустенитной нержавеющей стали 12Х18Н10Т,
изготовленной по технологии СЛП (далее по
тексту СЛП-сталь), и сравнение их со свой-
ствами стали 12Х18Н10Т, полученной по тра-
диционной технологии горячей прокатки (да-
лее по тексту традиционная сталь). Иссле-
дования проводили с применением современ-
ных лабораторных комплексов высокоскорост-
ных ударных воздействий, методик регистра-
ции волновых процессов и комплекса металло-
графических исследований.

Отметим, что большинство представлен-
ных в открытой литературе эксперименталь-
ных исследований различных материалов, из-
готовленных по технологии СЛП, проведено в
области скоростей деформации до ε̇ ≈ 104 с−1

[7–12].
Особый интерес представляют данные о

деформационных и прочностных свойствах ма-
териалов при высокоскоростных ударных на-
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грузках (ε̇ ≈ 105 ÷ 106 с−1), поскольку в этой
области нагружений результаты ограничены

единичными экспериментами на небольшом ко-
личестве материалов СЛП [13–18]. Эти данные
также используются при разработке конструк-
ций, работающих в экстремальных условиях
эксплуатации.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ

В качестве исходного материала для из-
готовления опытных образцов выбрали поро-
шок на основе сплава 12Х18Н10Т производства
ООО «Сфера М» (г. Озерск) со средним разме-
ром частиц ≈40 мкм. Определение грануломет-
рического, химического и фазового составов и
других параметров исходной металлопорошко-
вой композиции, а также изготовление исход-
ных образцов по технологии СЛП выполнены в

РФЯЦ-ВНИИЭФ.
Выращивание образцов методом селектив-

ного лазерного плавления проводили на уста-
новке MeltMaster3D-250 (изготовитель НПО

«ЦНИИТМАШ», Россия). Она оборудована

двумя иттербиевыми волоконными лазерами

Nd:YAG Laser с максимальной выходной мощ-
ностью 400 Вт и длиной волны 1 075 ± 2 нм.
Рабочий объем «строительной камеры» состав-
ляет 250 × 250 × 250 мм.

Опытные образцы были изготовлены при

следующих параметрах печати: мощность ла-
зера — 210 Вт, диаметр лазерного пятна на
поверхности порошка ≈50 мкм. Образцы изго-
тавливали в камере в защитной среде азота,
скорость сканирования — 600 мм/с, шаг ска-
нирования — 60 мкм, толщина слоя наносимо-
го порошка — 40 мкм. Применяли линейную
стратегию сканирования лазерным лучом —
«зиг-зиг».

На установке MeltMaster3D-250 были изго-
товлены заготовки в форме цилиндров высотой

до 100 мм и диаметром до 12 мм. Из этих ци-
линдров далее вырезали образцы в виде дисков

диаметром ≈10 мм и толщиной ≈4 мм.
На рис. 1 представлены фрагменты мик-

роструктуры срезов образцов-дисков.
Сталь, изготовленная методом СЛП, со-

стоит из отдельных чешуек неправильной ли-
стообразной формы (см. рис. 1,б). Такая струк-
тура является отражением технологии изго-
товления материала, при которой происхо-
дят полное расплавление исходного порошка

и охлаждение расплава с большой скоростью

Рис. 1. Внутренняя структура образцов (уве-
личение ×200) из традиционной стали

12Х18Н10Т (а) и СЛП-стали 12Х18Н10Т (б)

(до 106 К/с). Характерные размеры чешуек —
(100 ÷ 150) × (30 ÷ 50) мкм.

Перед испытаниями образцов проводили

измерения их плотности и твердости. Твер-
дость образцов, изготовленных по технологии
СЛП, составила HV 260, а для стали, из-
готовленной по традиционной технологии, —
HV 152. Плотность СЛП-стали, определенная
методом гидростатического взвешивания, со-
ставила ρ0 = 7.87 ÷ 7.89 г/см3, плотность тра-
диционной стали — 7.89 г/см3.

ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

Исследования поведения образцов из СЛП-
стали проводили по следующей схеме: плоский
ударник, разогнанный в стволе нагружающей
пневматической установки пушечного типа, со-
ударялся с мишенным блоком, на котором была
закреплена обойма с двумя встроенными в нее
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образцами. Такая постановка экспериментов с
плоскими ударными волнами привлекает вни-
мание условиями, характеризуемыми одномер-
ной деформацией, и большим диапазоном до-
стигаемых напряжений. Нагружение мишенно-
го блока с образцами осуществляли ударни-
ком из традиционной стали 12Х18Н10Т тол-
щиной 2 мм и диаметром 45 мм со скоростя-
ми до 350 м/с. Выбор диапазона скоростей на-
гружения определяли возможностью рассмот-
рения многостадийности процесса откольного

разрушения — от стадии зарождения дефектов

до полного разделения образца на части.
В мишенную обойму помещали образцы

диаметром 10 мм и толщиной 4 мм из тради-
ционной стали 12Х18Н10Т и из СЛП-стали.

С использованием методики непрерывной

доплеровской диагностики на основе многока-
нальной оптической схемы PDV [19] регистри-
ровали подлетную скорость ударника к мише-
ни Wуд и скорость движения свободных по-
верхностей образцов W (t). Согласно методике
по соотношению сигнал — шум 30 дБ средняя
погрешность определения скорости составля-
ет 2.5 м/с, времени— 5 нс. После каждого опы-
та сохраненные образцы разрезали, проводили
металлографический анализ шлифов их попе-
речных срезов и определяли степень их разру-
шения.

Анализ поврежденности образцов выпол-
няли с помощью пакета компьютерных про-
грамм Vestra Imaging System (ООО «Мите-
ла», г. Москва). Для количественной оценки
поврежденности ω в постопытных образцах ис-
пользовали планиметрический метод, основан-
ный на измерении суммарной площади сечений

дефектов на определенной площади металло-
графического шлифа и построении гистограм-
мы распределения поврежденности по толщине

шлифа ω(x), которую аппроксимировали кри-
вой Гаусса [20].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Характерные экспериментальные спек-
трограммы, полученные в опыте со скоро-
стью нагружения Wуд = 273 м/с, приведены
на рис. 2. Зависимости скорости движения сво-
бодных поверхностей образцов, полученные по-
сле обработки спектрограмм, изображения по-
перечных сечений сохраненных образцов и ги-
стограммы распределения поврежденности ω
по толщине образца x с построенными по ним

Рис. 2. Экспериментальные спектрограммы

(Wуд = 273 м/с)

аппроксимациями кривыми Гаусса приведены

на рис. 3, 4.
Как следует из полученных результатов,

при Wуд = 203 и 238 м/с в СЛП-стали не
образуется поврежденность, способная сфор-
мировать «откольный» сигнал (см. рис. 3,а),
в отличие от образца из традиционной ста-
ли (см. рис. 4,а), поэтому на профилях W (t)
в образцах из СЛП-стали (рис. 3,а, зависи-
мости 1, 2) не регистрируется выход удар-
ной волны на свободную поверхность, которая
образуется в зоне откольной поврежденности.
При скоростях удара Wуд = 273 и 295 м/с в
СЛП-стали поврежденность становится более
выраженной и соответствует стадии слияния

(столкновений) трещин в одну магистральную
трещину. Возможно поэтому на зависимостях
W (t) в образцах из СЛП-стали регистрируется
затянутый характер откольного импульса —
плавное нарастание скорости после прихода

ударной волны, образованной в зоне откола, на
свободную поверхность образца. Для образцов
из традиционной стали при таких скоростях

нагружения уже образовались магистральные

трещины.
При скорости соударения 350 м/с все

образцы разрушились на две части (на
рис. 3,е, 4,е показаны верхние части сохранен-
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Рис. 3. Зависимость скорости движения свободной поверхности образцов из СЛП-стали
12Х18Н10Т (а, Wуд = 203 (1), 238 (2), 273 (3), 295 (4), 350 м/с (5)), поперечные сечения
сохраненных образцов (увеличение ×50) и гистограммы распределения поврежденности с ап-
проксимирующими кривыми Гаусса (Wуд = 203 (б), 238 (в), 273 (г), 295 (д), 350 м/с (е))

Рис. 4. Зависимость скорости движения свободной поверхности образцов из традиционной ста-
ли 12Х18Н10Т (а, Wуд = 203 (1), 238 (2), 273 (3), 295 (4), 350 м/с (5)), поперечные сечения
сохраненных образцов (увеличение ×50) и гистограммы распределения поврежденности с ап-
проксимирующими кривыми Гаусса (Wуд = 203 (б), 238 (в), 273 (г), 295 (д), 350 м/с (е))
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ных образцов), структура фрагментов неразру-
шенной части образцов соответствует исход-
ной структуре, а профили W (t) передают все
особенности волновых течений в образцах при

полном откольном разрушении.
Металлографический анализ сохраненных

в опытах образцов подтвердил многостадий-
ный характер откольного разрушения и мень-
шую степень поврежденности образцов из

СЛП-стали, по сравнению с образцами из тра-
диционной стали, при одинаковых условиях

действия растягивающих волн.

АНАЛИЗ РЕЗУЛЬТАТОВ

На всех профиляхW (t) наблюдается двух-
волновая структура фронта ударной волны,
связанная с разделением его на упругий пред-
вестник, который распространяется со скоро-
стью, соответствующей продольной скорости
звука CL, и пластическую волну, догоняющую
предвестник со скоростью ударной волны D.
Согласно полученным результатам амплиту-
ды упругого предвестника WHEL для СЛП-
стали и традиционной стали 12Х18Н10Т сов-
падают (см. рис. 3,а, 4,а) и примерно рав-
ны 40 м/с. Значения динамического преде-
ла упругости σHEL = ρ0CLWHEL/2 и ди-
намического предела текучести Yд = (1 −
2ν)σHEL/(1−ν), где ν — коэффициент Пуассо-
на, составили σHEL ≈ 0.9 ГПа, Yд ≈ 0.5 ГПа.
Продольная скорость звука в обоих материалах

CL = 5.74 км/с, ν = 0.28 [21].
Отметим здесь, что при скоростях дефор-

мации ε̇ ≈ 104 с−1, которые достигаются в экс-
периментах по методу Кольского — Гопкин-
сона, динамические свойства (предел текуче-
сти σ0.2 и предел прочности σв) СЛП-стали
12Х18Н10Т [7] примерно в два раза выше, чем
у традиционной стали 12Х18Н10Т.

По результатам обработки поперечных

срезов образцов были сделаны оценки общей

поврежденности образца ω (площадь под кри-
вой Гаусса), ширины зоны образца ∆, где есть
дефекты, и координаты сечения образца xc, где
поврежденность достигает максимального зна-
чения (см. таблицу).

Как следует из таблицы и рис. 5, общая по-
врежденность ω стали 12Х18Н10Т, изготовлен-
ной традиционным способом, превышает ана-
логичные значения для стали, изготовленной
по технологии селективного лазерного плавле-
ния. При скорости соударения Wуд = 273 м/с

Результаты измерения откольной
поврежденности стали 12Х18Н10Т,
изготовленной по разным технологиям

№

п/п
Тип образца Wуд,

м/с
ω ∆,

мм

xc,
мм

1

Традиционная

сталь 203
0.02 0.39 2.1

СЛП-сталь 0.016 1.14 2.0

2

Традиционная

сталь 238
0.097 0.38 2.05

СЛП-сталь 0.027 1.78 2.1

3

Традиционная

сталь 273
0.388 0.66 2.2

СЛП-сталь 0.068 0.32 2.0

4

Традиционная

сталь 295
0.69 1.2 2.3

СЛП-сталь 0.21 0.68 2.1

в образце из традиционной стали образуется

раскрытая магистральная трещина шириной

∆ ≈ 0.66 мм, а в образце из СЛП-стали —
отдельные дефекты, выстроенные в линию

(∆ ≈ 0.32 мм), и общая поврежденность ω у

традиционной стали примерно в шесть раз

больше. Отметим, что координата сечения об-
разца, где достигается максимум поврежденно-
сти, для всех материалов ≈2.1 мм. При ско-

Рис. 5. Зависимость поврежденности от ско-
рости соударения образцов из традиционной

стали 12Х18Н10Т (кривая 1) и из СЛП-стали
12Х18Н10Т (кривая 2)
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Рис. 6. Зависимость откольной прочности от
амплитуды ударной волны образцов из тра-
диционной стали 12Х18Н10Т (линия 1) и из
СЛП-стали 12Х18Н10Т (линия 2)

ростях нагружения 203 и 238 м/с на обраба-
тываемой площади шлифов образцов из СЛП-
стали выявлены дефекты, не связанные с дей-
ствием растягивающих напряжений, приводя-
щих к откольному разрушению. По-видимому,
это результат компактирования дефектов, име-
ющихся в исходной структуре образцов. По-
скольку в подсчет поврежденности включают-
ся все дефекты, которые видны в оптический

микроскоп, ширина зоны разрушения образцов
в этих опытах большая, а реальная откольная
поврежденность может быть еще ниже опреде-
ляемой в экспериментах.

По результатам опытов были сделаны

оценки откольной прочности σотк всех ис-
пытанных образцов. Поскольку эксперименты
проводили в постановке с одинаковой формой

профиля импульса ударного сжатия и при од-
ной и той же геометрии экспериментальной

сборки, оценки были выполнены в приближе-
нии [22]:

σотк =
ρ0CLC0

CL + C0
∆W

[
1 +

δотк
∆τ

( 1

C0
− 1

CL

)]
,

где ∆W — разница между максимальным и

минимальным значениями скорости W , δотк —
расстояние от свободной поверхности до зоны

откола (толщина откольного слоя), ∆τ — раз-
ница во времени между приходом на свобод-
ную поверхность волны разрежения и отколь-

ного импульса, C0 — объемная скорость звука

при нормальных условиях.
Зависимость откольной прочности от ам-

плитуды ударной волны P , соответствующей
скорости соударения ударника и мишени, по-
казана на рис. 6. По приведенным на нем ре-
зультатам в рассмотренном диапазоне нагру-
жения среднее значение откольной прочности

СЛП-стали составило σотк ≈ 3.4 ГПа, что
больше, чем у традиционной стали — σотк ≈
3.05 ГПа. Это хорошо согласуется с результа-
тами металлографического анализа сохранен-
ных после опытов образцов, согласно которым
степень откольной поврежденности СЛП-стали
меньше, чем традиционной стали, при одина-
ковых условиях ударного нагружения.

ЗАКЛЮЧЕНИЕ

С использованием современных лабора-
торных комплексов высокоскоростных удар-
ных воздействий, высокоточных методик ре-
гистрации волновых процессов и комплекса

металлографических исследований определены

прочностные свойства стали 12Х18Н10Т, изго-
товленной по технологии селективного лазер-
ного плавления, при высокоскоростном удар-
ном нагружении (ε̇ ≈ 0.35 · 105 с−1). Со-
гласно полученным результатам эти образ-
цы имеют большую сопротивляемость кратко-
временному растяжению, возникающему в ре-
зультате взаимодействия встречных волн раз-
грузки, по сравнению с горячекатаной ста-
лью 12Х18Н10Т. Это подтверждается больши-
ми значениями откольной прочности и метал-
лографическим анализом поперечных сечений

сохраненных в опытах образцов.
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