УДК 534.222.2

ТЕМПЕРАТУРА ДЕТОНАЦИОННОГО ФРОНТА ЭМУЛЬСИОННОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА

В. В. Сильвестров, С. А. Бордзиловский, С. М. Караханов, А. В. Пластинин

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, silver@hydro.nsc.ru

Предложен новый взгляд на структуру сигнала светимости, регистрируемого оптическим пирометром, при измерении яркостной температуры детонационного фронта эмульсионного взрывчатого вещества с микробаллонами из стекла в качестве сенсибилизатора. Структура оптического сигнала типична для гетерогенных взрывчатых веществ: сначала короткий «температурный всплеск» до 2500÷3400 K, связанный с формированием слоя «горячих точек», поджигающих матрицу, способную к выделению энергии, затем — релаксация светимости до квазиравновесного уровня, соответствующего температуре 1880÷2370 K при давлении детонации 0.7÷11 ГПа. Наблюдается удовлетворительное соответствие экспериментальных данных и результатов независимых расчетов.

Ключевые слова: оптические измерения, эмульсионное ВВ, температура детонации.

ВВЕДЕНИЕ

Интерес к измерению температуры провзрыва (температуры детонации) ЛУКТОВ взрывчатых веществ (ВВ) сохраняется на протяжении более чем 60 лет, начиная с пионерских работ советских и американских исследователей [1-4], в которых предложены и апробированы оптические методы измерения температуры, важнейшей термодинамической величины, позволяющей анализировать кинетику взрывного превращения и оценивать корректность уравнений состояния (УРС), необходимых для описания взрывных процессов. Фотоэлектрическая регистрация интенсивности свечения высокотемпературных явлений до сих пор остается единственным способом измерения температуры в ударных и детонационных волнах с субмикросекундным временным разрешением [3–6].

Для регистрации излучения фронта детонационной волны используются две схемы экспериментов. В первой фотоприемник регистрирует излучение со свободного торца заряда BB, на который выходит фронт детонации. Основной недостаток данного варианта: время существования измеряемых параметров и их значения за фронтом детонации ограничены действием волны разрежения со стороны свободной поверхности. Во второй схеме заряд ВВ находится в контакте с пластиной, «окном», из материала, сохраняющего прозрачность в необходимом диапазоне давления и имеющего малую температуру ударного сжатия по сравнению с температурой фронта детонации [7-10]. В этой схеме интенсивность волны разгрузки значительно уменьшается, и возможна регистрация свечения детонационного комплекса в течение более длительного времени. В качестве оконного материала используются плексиглас, вода, глицерин, плавленый кварц, сапфир, кристаллы поваренной соли, оптические стекла и фторид лития, которые остаются прозрачными в широком диапазоне ударного давления $22 \div 160$ ГПа. Но в этой схеме за счет разницы акустических импедансов материала окна и продуктов взрыва в последних возникает отраженная волна сжатия или разгрузки, возмущающее действие которой необходимо учитывать при анализе результатов измерений.

Для прозрачных однородных жидких ВВ проблема измерения температуры детонации была успешно решена, и результаты различных исследователей хорошо согласуются. В работах [1, 3, 8, 10] показано, что излучение детонационного фронта ряда мономолекулярных жидких ВВ соответствует модели черного тела с яркостной температурой 3 500 ÷ 4 050 K.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 12-08-00092-а), программы Президиума РАН № 2.9 и фонда Президента РФ по государственной поддержке ведущих научных школ (НШ-2695.2014).

[©] Сильвестров В. В., Бордзиловский С. А., Караханов С. М., Пластинин А. В., 2015.

В то же время при измерении температуры детонации конденсированных гетерогенных непрозрачных (или частично прозрачных) ВВ наблюдается большой разброс результатов. Это связано не только с разным качеством подготовки зарядов ВВ, но и с дополнительными эффектами свечения на границе ВВ / оптически прозрачная среда, источником которых могут быть ударная люминесценция кристаллов ВВ или свечение газа в порах ВВ и на его поверхности [8, 10].

Но несмотря на методические сложности, для многих гетерогенных ВВ, от низкоскоростного предохранительного ВВ, низкоплотных тротила и тэна до прессованных гексогена и октогена, были измерены яркостные температуры T_b детонационного фронта, равные 2350÷7500 К [3, 4, 7–12]. Опытные данные для одного и того же ВВ могут значительно различаться в зависимости от применяемой методики, например, для тэна при плотности ≈1.6 г/см³ температура детонации составляет от 4250 К [8] до 6300 К [12]. Измерения температуры находятся в удовлетворительном согласии с результатами расчетов по различным уравнениям состояния для продуктов взрыва, так как всегда можно построить УРС, соответствующее экспериментальным данным [8, 9].

Для цитируемых работ общей особенностью является выбор точки на профиле светимости, по амплитуде которой рассчитывается температура детонации. Как правило, это максимум сигнала светимости, хотя в ряде работ отмечалось, что в случае гетерогенных ВВ свечение «горячих точек», присутствующих в структуре вещества, может давать заметный вклад в амплитуду сигнала излучения [8, 10]. В то же время, согласно модели Зельдовича — Неймана — Дёринга, за фронтом детонации температура продуктов должна расти и достигать максимума в конце зоны реакции, через ненулевое время от момента выхода детонации на торец заряда. Поэтому подход, когда T_b оценивается по максимуму сигнала светимости, возможно, оправдан только в случае мощных ВВ, для которых время реакции мало.

Согласно теоретическим оценкам температура детонации эмульсионного BB (ЭмВВ) в точке Чепмена — Жуге существенно ниже, чем для мономолекулярных BB, и составляет $T_b \approx 1770 \div 2160$ K [13–17] в диапазоне начальной плотности $0.4 \div 1.3$ г/см³. В [11] сделана попытка измерения температуры детона-

ции промышленного ЭмВВ типа Nitram (компания «Nitrochime — EPC», Франция) на основе водного раствора аммиачной селитры с добавкой 7 и 14 % алюминиевого порошка и без него. Плотность исследуемых композиций — 1.2 и 1.28 г/см³. В качестве оконного материала использовался плексиглас. Температура, как обычно, оценивалась по максимуму сигнала, регистрируемого фотоэлектрическим пирометром. Для ЭмВВ без алюминия получено значение $T_b = 4180$ К, что примерно в два раза больше результатов расчета [17] и оценок фирмы-производителя $2170 \div 2500$ К [18]. Вряд ли результат измерения T_b можно считать удовлетворительным.

Если время реакции BB велико, то возможен иной взгляд на структуру оптического сигнала, регистрируемого фотоприемником. К таким взрывчатым веществам как раз и относятся ЭмBB, для которых характерное время реакции составляет $t_r = 0.5 \div 2$ мкс [19].

В данной работе на примере ЭмВВ проведен анализ выбора точки на оптическом сигнале, регистрируемом фотоприемником, в которой следует проводить расчет температуры. На основе этого анализа измерена яркостная температура продуктов детонации эмульсионного взрывчатого вещества в широком диапазоне начальных плотностей, соответствующих давлению детонации 0.7 ÷ 11 ГПа.

ЭКСПЕРИМЕНТАЛЬНАЯ ПОСТАНОВКА

Основная часть экспериментов проведена с высокодисперсной эмульсионной матрицей следующего состава: окислитель — водный раствор аммиачной и натриевой селитр, 94 % (по массе); горючее — смесь углеводородов: индустриального масла, парафина и эмульгатора, 6 % (ниже АС/НС-эмульсия). Сенсибилизатор — отечественные полые микросферы МС-В насыпной плотностью 0.15 г/см³ и характерного размера 58 мкм. Плотность ЭмВВ в пределах $\rho_0 = 0.5 \div 1.3$ г/см³ варьировалась количеством микросфер — $\mu = 50 \div 1 \%$ сверх массы эмульсии. Скорость детонации составляла 2÷6 км/с, критический диаметр — 5÷38 мм. Размеры испытуемых зарядов диаметр 55 мм, длина 165 мм (105 и 400 мм соответственно при $\rho_0 = 1.3 \ r/cm^3$). Оболочкой зарядов служили трубы из полипропилена.

Использовалась методика «оптического окна», изготовленного из плексигласа толщи-

Рис. 1. Схема эксперимента:

1 — детонатор, 2 — боевик из 5%-го ЭмВВ, 3 исследуемое ЭмВВ, 4 — труба из полипропилена, 5 — контактный датчик, 6 — ПВДФ-датчик, 7 окно из плексигласа, 8 — маска с отверстием диаметром 6 мм, 9 — оптоволокно (к пирометру)

ной 10 мм (рис. 1). Излучение детонационного фронта при помощи оптоволокна (сердцевина $\emptyset 0.4$ мм из кварца, длина $8 \div 15$ м) выводилось из взрывной камеры и поступало на вход 4-канального пирометра. В качестве детекторов излучения использовались фотоумножители со спектральной чувствительностью в оптическом диапазоне. В измерительных каналах между торцами световодов и фотоумножителями устанавливали светофильтры, выбор которых определялся предполагаемыми значениями регистрируемой температуры. Для измерения относительно невысокой температуры детонации ЭмВВ в основном использовали интерференционный фильтр на линии $\lambda =$ 630 (20) нм и, с целью повышения отношения сигнал/шум, широкополосный светофильтр на длине волны 660 (120) нм (в скобках — полоса пропускания фильтра). Разница значений температуры, рассчитываемых при использовании различных светофильтров, не превышала 50÷70 К и находилась в пределах ошибки измерений и потому не учитывалась. Детальное описание пирометра, техника калибровки и методика расчета температуры по амплитуде сигнала светимости приведены в [20]. Временное разрешение пирометра составляло 25 нс.

При обработке пирометрических сигналов использовалась модель черного тела, т. е. определялась яркостная температура T_b детонационного фронта ЭмВВ. Неоднократные проверки соответствия излучения детонационного фронта гомогенных и гетерогенных ВВ модели черного тела показали, что это действительно так [1, 3, 4, 8, 9].

В отдельных опытах на границе раздела ЭмВВ/плексиглас в центре заряда был установлен либо тонкопленочный пьезоэлектрический датчик давления Dynasen PVF₂11-.04-EK, либо манганиновый датчик, который регистрировал профиль давления и отмечал момент прихода детонационной волны на торец заряда. На расстоянии $80 \div 100$ мм от границы раздела в заряде расположен контактный датчик, по разнице в моментах срабатывания этого датчика и датчика давления измерялась скорость детонации. Эксперименты показали, что момент выхода детонационной волны на границу раздела ЭмBB/плексиглас совпадает с моментом достижения максимума сигнала светимости, регистрируемого пирометром.

АНАЛИЗ СТРУКТУРЫ ОПТИЧЕСКОГО СИГНАЛА

Излучение от фронта детонационной волны проходит сквозь сильно рассеивающую и одновременно поглощающую среду, которой является ЭмВВ. Поэтому по мере приближения фронта детонации к границе ЭмВВ/окно толщина поглощающего слоя уменьшается, и сигнал нарастает в соответствии с законом Бугера — Ламберта — Бэра. Осциллограммы интенсивности свечения при детонации ЭмВВ плотностью 1.0 и 1.3 г/см³ представлены на рис. 2 (кривые 1). Их вид характерен для гетерогенных ВВ: сначала «температурный всплеск», связанный с формированием слоя «горячих точек», поджигающих матрицу, способную к экзотермическому выделению энергии, затем релаксация светимости до квазиравновесного уровня.

Сопоставлять сигнал, регистрируемый пирометром, со значением температуры горячих продуктов взрыва по калибровочной кривой можно лишь, начиная с момента $t = t_1$, когда детонация выходит на торец заряда и у оптического окна появляются горячие продукты детонации. Профили в координатах температура — время показаны кривыми 2 на рис. 2. Соответствующие температуры детонации измерены в точках t_2 , отмеченных вертикальной стрелкой. Эти моменты времени соответствуют временам реакции, определенным по профилям давления и/или массовой скорости за фронтом волны детонации [19, 21]. Инструментальная ошибка измерений 6÷8 %, т. е. 120÷150 К. Обоснование выбора точки измерения температуры приведено ниже.

Дополнительно давление детонации рассчитывалось по измеряемой плотности по фор-

Рис. 2. Изменение интенсивности свечения во времени (1) и профиль температуры (2) при давлении детонации 4.4 (a) и 10.7 ГПа (δ)

муле $p_d = 4.53 \rho_0^{3.25}$, аппроксимирующей экспериментальные данные для этого ЭмВВ [19]. Точность оценки давления около 5 %.

При анализе структуры сигнала, регистрируемого пирометром при детонации ЭмВВ, приняты во внимание измерения амплитудно-временных характеристик светимости полых микросфер из стекла, размещенных в матрице из эпоксидной смолы, при ударном давлении $9 \div 29$ ГПа [22]. В работе [22] использовались те же микросферы, что и в опытах с исследуемыми ЭмВВ. Показано, что наличие искусственных пор приводит к температурному всплеску до $3200 \div 3500$ К на фоне температуры ударно-сжатой матрицы без пор, равной 1400÷1440 К (измерена в опытах без микросфер). Длительность всплеска около 0.3 мкс при давлении 20 ГПа и увеличивается до 0.9 мкс при уменьшении давления до 9 ГПа.

На основе этих результатов сделан вывод, что регистрируемый сигнал является суперпозицией двух температурных профилей. Первый — температурный всплеск (рис. 3, кривая 3), обусловленный формированием слоя «горячих точек» вблизи границы раздела ЭмВВ/окно за фронтом ударной волны, ведущей детонацию. Второй профиль связан с тем, что в соответствии с классической теорией Зельдовича — Неймана — Дёринга внутри зоны реакции температура возрастает по мере увеличения степени взрывного разложения композиции — это иллюстрирует кривая 2 на рис. 3. Максимум температуры продуктов взрыва достигается в конце зоны реакции вбли-

Рис. 3. Предполагаемая структура сигнала светимости при детонации ЭмВВ:

1 — профиль регистрируемого яркостного сигнала, 2 — равновесный профиль, соответствующий температуре в зоне реакции, 3 — температурный всплеск, обусловленный «горячими точками»; температура определяется в точке $T_{\rm CJ}$

зи точки Чепмена — Жуге. Отсюда следует, что температуру продуктов взрыва следует рассчитывать по амплитуде сигнала светимости в точке на «хвосте» сигнала, удаленной от максимума на время реакции t_r , измеряемое по профилям давления и массовой скорости.

Обоснование этого утверждения иллюстрирует рис. 4, где совмещены профили температуры, давления и массовой скорости, опре-

Рис. 4. Структура зоны реакции для ЭмВВ плотностью 0.5 г/см³:

1 — температура (пирометр), 2 — давление (ПВДФ), 3 — массовая скорость (интерферометр)

деленные соответственно при помощи оптического пирометра, датчика давления ПВДФ и лазерного интерферометра VALYN VISAR [19] на границе ЭмВВ/плексиглас. Наблюдается корреляция временных профилей, полученных по трем различным методикам определения структуры зоны реакции. Подобное сопоставление позволяет найти положение характерной точки для измерения температуры продуктов детонации (отмечена кружком на рис. 4). В данном примере расчет температуры проводился в точке профиля, удаленной на $t_r = 0.65$ мкс от момента выхода детонационной волны на границу ЭмВВ/окно при давлении детонации ≈ 0.7 ГПа. Отметим, что на рис. 4 профили p(t) и u(t) не пересчитаны по амплитуде на давление и массовую скорость в продуктах взрыва.

Подобный анализ для других давлений позволил установить подобные точки на профилях светимости для измерения температуры продуктов взрыва вблизи конца зоны реакции. Отметим, что в предлагаемой методологии выбора точки для оценки температуры детонации измеряемая температура немного завышена, так как исключить полностью вклад свечения «горячих точек» невозможно.

ТЕМПЕРАТУРА ДЕТОНАЦИИ ЭмВВ

Экспериментальные данные по яркостной температуре продуктов взрыва Т_b на границе ЭмВВ/плексиглас приведены на рис. 5 и приближаются квадратичным полиномом $T_b =$ $1836 + 116p_d - 10p_d^2$. Уровень температуры эмульсионного ВВ на основе АС/НС-эмульсии (точки 1) невысок по сравнению с температурами прессованных ВВ [3, 7–10, 12]. Температура изменяется немонотонно с давлением, составляет 1880÷2260 К в широком диапазоне давления от 0.7 до 11 ГПа и примерно в два раза ниже, чем в [11]. Температура «горячих точек» T_{hs}, оцениваемая по максимуму сигнала светимости, существенно выше и достигает $2500 \div 3300$ К в исследуемом диапазоне давления и растет при увеличении давления.

При увеличении плотности ВВ (уменьшении количества микробаллонов и, следовательно, числа «горячих точек») наблюдается снижение температуры детонации до 1880 К несмотря на рост детонационного давления до 11 ГПа. Эффект обычно связывают с тем, что в общей величине давления растет доля упругой составляющей. При уменьшении давления детонации до 0.7 ГПа (за счет увеличения доли пористого сенсибилизатора до 50 %) температура детонации остается достаточно высокой,

Рис. 5. Зависимость температуры детонации ЭмВВ от детонационного давления:

эксперимент: 1 — АС/НС-эмульсия, 2 — температура «горячих точек», 3 — АС-эмульсия; 4 — расчет температуры в точке Жуге для АС/НС-эмульсии [13]; штриховые линии — аппроксимация при разных коэффициентах Грюнайзена

несмотря на то, что объемная доля эмульсии, единственного энергетического компонента, составляет только 25 %.

Разница в сжимаемостях продуктов взрыва ЭмВВ и материала окна не учитывалась. Для окна не существует материала, согласующегося с импедансом продуктов взрыва низкоплотных ЭмВВ. Сравнение на p-u-диаграмме ударной адиабаты плексигласа и кривой $p_{\rm CI} =$ $f(u_{\rm CI})$, рассчитанной в [13], показывает, что после взаимодействия детонационной волны с окном из плексигласа в продуктах взрыва образуется волна сжатия, если плотность ЭмВВ ниже 1.1 г/см³ или давление детонации менее 6.2 ГПа. За этой волной температура продуктов детонации увеличивается. При давлении более 6.2 ГПа в продуктах взрыва генерируется волна разрежения и температура уменьшается. Коррекция на эти эффекты возможна. Но требуется построение широкодиалазонного уравнения состояния продуктов взрыва, причем это уравнение должно учитывать энергетические и радиационные потери, связанные с большим количеством физического сенсибилизатора. В настоящее время корректное построение подобного УРС не представляется возможным.

Грубую оценку влияния взаимодействия детонационной волны с пластиной из оргстекла на измеряемую температуру T можно получить в предположении, что продукты взрыва описываются моделью совершенного газа и их конечное состояние несильно отличается от состояния в точке Жуге. Тогда разгрузку и ударное сжатие продуктов взрыва можно описать изоэнтропой с постоянным показателем (§ 5.6 в [23]), температуры при этом связаны простым соотношением [7]

$$T = T_{\rm CJ} (V_{\rm CJ}/V)^G,$$

где $T_{\rm CJ}$ — температура в точке Жуге, $V_{\rm CJ}$ и V — удельные объемы в точке Жуге и на ударной адиабате (адиабате разгрузки) продуктов взрыва соответственно, G — коэффициент Грюнайзена.

На краях диапазона по давлению $V/V_{\rm CJ} = 0.85$ при $p_d = 0.7$ ГПа и $V/V_{\rm CJ} = 1.05$ при $p_d = 11$ ГПа. Согласно [23] для продуктов взрыва ВВ G < 1, например для гексогена G = 0.4, для октогена G = 0.8. Штриховыми кривыми на рис. 5 приведены аппроксимации экспериментальных данных, пересчитанные для указанных значений коэффициента Грюнайзена. При

давлении более 4 ГПа эти аппроксимации находятся в пределах погрешности измерений. При меньшем давлении результат коррекции при G = 0.4 лежит в пределах ошибки измерений, а при G = 0.8 выходит за пределы погрешности. В любом случае общая характеристика полученных результатов не изменяется.

Для контроля методологии измерения яркостной температуры в целом был поставлен эксперимент с ЭмВВ, в состав которого входили только аммиачная селитра и вода (93 %), индустриальное масло (3 %), эмульгатор (4 %) и микробаллоны МС-В. Плотность ЭмВВ 1.18 г/см³. При диаметре заряда 70 мм для этой композиции измеренные давление и скорость детонации составили 9.5 ГПа и 5.46 км/с; время реакции $0.6 \div 0.8$ мкс [22, 24]. Согласно расчетам температура детонации композиции на основе АС-эмульсии [15– 17] оценивается от 1 300 до 2160 К. В рамках одного уравнения состояния Кихара — Хикита — Танака температура этой композиции на 360÷470 К выше, чем для композиций на основе АС/НС-эмульсии [13, 16, 17]. Это связано с тем, что натриевая селитра за фронтом детонации разлагается с поглощением части детонационной энергии.

На рис. 6 приведен профиль температуры из этого опыта, совмещенный с профилем давления, полученным при помощи мангани-

Рис. 6. Структура зоны реакции для ЭмВВ на основе AC-эмульсии:

1 — давление (манганиновый датчик), 2 — температура (пирометр) нового датчика. Для этой композиции примерно на 0.65-й микросекунде от момента выхода детонационной волны на поверхность раздела ЭмВВ/плексиглас изменяется темп уменьшения яркостной температуры, что связано с достижением значения, характерного для температуры детонации. Соответствующая яркостная температура 2 370 К (точка 3 на рис. 5) на 340 К выше, чем для ЭмВВ на основе AC/HCэмульсии, в количественном и качественном соответствии с расчетами [13, 16, 17].

Отметим, что для эмульсионного BB Nitram-a, -b, -с плотностью 1.2 г/см^3 на основе AC-эмульсии также наблюдается излом на профиле $T_b(t)$ в интервале $2\,200 \div 2\,300$ К (рис. 9 из [11]), который, по нашему мнению, и соответствует яркостной температуре детонации, а не значения $3\,054 \div 4\,179$ К, рассчитанные по максимуму светимости. Таким образом, используемая методология измерения яркостной температуры дает вполне адекватные результаты, качественно и количественно соответствующие расчетным данным.

На рис. 7 результаты измерений сравниваются с расчетными данными других авторов, полученными для ЭмВВ на основе AC/HCэмульсии [13, 14, 17] и на основе AC-эмульсии [15, 16]. Экспериментальные данные превышают результаты всех расчетов и имеют макси-

Рис. 7. Сравнение экспериментальных данных с результатами расчетов:

АС/НС-эмульсия: расчет: 1 — [13], 3 — [17], 6 — [14], 7 — аппроксимация экспериментальных данных; АС-эмульсия: расчет: 2 — [16], 4, 5 — [15], 8 — эксперимент

мум вблизи 6 ГПа, что не находит количественного объяснения ни в одной модели. Наиболее удовлетворительное соответствие данных эксперимента и расчетов наблюдается для УРС Кихара — Хикита (точки 1) [13].

Расчетные данные по температуре детонации различных авторов разнятся на 250 ÷ 500 K и зависят не только от выбора уравнения состояния продуктов взрыва, но и от набора определяющих параметров. Поэтому разницу в 200÷400 К при сравнении экспериментальных значений и результатов расчета, полученных при использовании УРС Кихара — Хикита — Танака [13, 16, 17] или УРС ВКW-RR [14, 15] (точки 4 и 6 на рис. 7), можно считать несущественной. Но полученные данные по температуре детонации позволяют выбирать и уточнять параметры уравнения состояния продуктов взрыва ЭмВВ; например, ясно, что УРС BKW-RDX [15] (точки 5 на рис. 7) не подходит для описания температуры детонации ЭмВВ.

Расчетные точки на рис. 5, 7 при давлении более 13 ГПа соответствуют состоянию Жуге при детонации эмульсии без пор [13, 15]. Экстраполяция квадратичной аппроксимации, приближающей данные по измерению яркостной температуры детонации ЭмВВ, соответствует расчетному значению точки Жуге для чистой AC/HC-эмульсии [13].

ЗАКЛЮЧЕНИЕ

Измерена яркостная температура продуктов взрыва ЭмВВ в широком диапазоне давления детонации от 0.7 до 11 ГПа, которая составила 1 880 ÷ 2 370 К и немонотонно зависит от давления. Наблюдается удовлетворительное качественное соответствие полученных экспериментальных данных и независимых результатов расчета [13].

Предложен альтернативный подход к интерпретации структуры сигнала светимости фронта детонации для эмульсионных BB с микробаллонами из стекла в качестве сенсибилизатора. Проведен анализ структуры регистрируемого сигнала светимости, и обоснован выбор точки на этом сигнале, которая используется для оценки температуры продуктов детонации исследуемых BB. Положение этой точки определяется путем сравнения профилей давления, массовой скорости и формальной температуры за фронтом детонационной волны.

ЛИТЕРАТУРА

- Аленцев М. Л., Беляев А. Ф., Соболев Н. Н., Степанов Б. М. Измерение температуры свечения взрыва взрывчатых веществ оптическим методом // Журн. эксперим. и теорет. физики. — 1946. — Т. 16, вып. 11. — С. 990–995.
- Boyer R. L. Determination of detonation temperature in high explosives // Phys. Rev. 1948. — V. 74, N 9. — P. 1221–1222.
- Gibson F. C., Bowser M. L., Summers C. R., Scott F. H., Mason C. M. Use of an electro-optical method to determine detonation temperatures in high explosives // J. Appl. Phys. — 1958. — V. 29, N 4. — P. 628–632.
- 4. Воскобойников И. М., Апин А. Я. Измерение температуры детонационного фронта взрывчатых веществ // Докл. АН СССР. — 1960. — Т. 130, № 4. — С. 804–806.
- Зельдович Я. Б., Кормер С. Б., Синицын М. В., Куряпин А. И. Температура и теплоемкость плексигласа, сжатого ударной волной // Докл. АН СССР. — 1958. — Т. 122, № 1. — С. 48–50.
- Кормер С. Б. Оптические исследования ударно-сжатых диэлектриков // Успехи физ. наук. — 1968. — Т. 94, № 4. — С. 641–687.
- Акимова Л. Н., Гогуля М. Ф., Галкин В. Н. Параметры детонации малоплотных конденсированных ВВ // Физика горения и взрыва. — 1978. — Т. 14, № 2. — С. 135–138.
- Kato Y., Mori N., Sakai H., Tanaka K., Sakurai T., Hikita T. Detonation temperature of nitrometane and some solid high explosives // Proc. 8th Symp. (Intern.) on Detonation. — 1985. — P. 558–565.
- He X., Han G., Kang S. The measurements of detonation temperature of condensed explosives with two color optical-fibers pyrometer // Proc. 8th Symp. (Intern.) on Detonation. — 1985. — P. 567–574.
- Гогуля М. Ф., Бражников М. А. Температуры продуктов детонации конденсированных веществ. 1. Твердые ВВ // Хим. физика. — 1994. — Т. 13, № 1. — С. 52–63.
- Lefrancois A., Grouffal J.-V., Bouinot P., Mencacci S. Temperature and pressure measurements comparison of the aluminized emulsion explosives detonation front and products expansion // Proc. 12th Symp. (Intern.) on Detonation. — 2002. — P. 432–439.
- Тарасов М. Д., Карпенко И. И., Судовцов В. А., Толшияков А. И. Измерение яркостной температуры детонационного фронта в пористом взрывчатом веществе // Физика горения и взрыва. — 2007. — Т. 43, № 4. — С. 108– 110.

- Yoshida M., Iida M., Tanaka K., Fudjiwara S. Detonation behavior of emulsion explosives containing glass microballoons // Proc. 8th Symp. (Intern.) on Detonation. — 1985. — P. 993– 1000.
- Алымова Я. В., Анников В. Э., Власов Н. Ю., Кондриков Б. Н. Детонационные характеристики эмульсионного взрывчатого состава // Физика горения и взрыва. — 1994. — Т. 30, № 3. — С. 86–91.
- 15. Одинцов В. В., Пепекин В. И., Кутузов Б. Н. Оценка термодинамической неидеальности детонации эмульсионного ВВ // Хим. физика. — 1994. — Т. 13, № 11. — С. 79–87.
- Tanaka K. Detonation properties of high explosives calculated by revised Kihara — Hikita equation of state // Proc. 8th Symp. (Intern.) on Detonation. — 1985. — P. 548–557.
- Tanaka K. Shock compression of solid with voids by gridless Lagrangian SPH // Shock Compression of Condensed Matter — 2005: AIP Conf. Proc. 1426. — Pt 2. — P. 1117–1120.
- NITRAM emulsions: http://www.epc-france. com/IMG/pdf/NITRAM_01_13.pdf.
- Юношев А. С., Пластинин А. В., Сильвестров В. В. Исследование влияния плотности эмульсионного взрывчатого вещества на ширину зоны реакции // Физика горения и взрыва. 2012. Т. 48, № 3. С. 79–88.
- Бордзиловский С. А., Караханов С. М. Измерение температуры полиметилметакрилата при ударном сжатии // Вестн. Новосиб. гос. ун-та. Сер. физ. — 2011. — № 1. — С. 116–122.
- 21. Сильвестров В. В., Караханов С. М., Пластинин А. В. Влияние плотности эмульсионного ВВ на ширину зоны реакции // Тр. междунар. конф. «VII Харитоновские тематические научные чтения». — Саров: ВНИИЭФ, 2005. — С. 132–137.
- 22. Бордзиловский С. А., Караханов С. М., Сильвестров В. В. Оптическое излучение ударно-сжатой эпоксидной смолы со стеклянными микросферами // Физика горения и взрыва. — 2014. — Т. 50, № 3. — С. 105–112.
- Баум Ф. А., Орленко Л. П., Станюкович К. П., Челышев В. П., Шехтер Б. И. Физика взрыва / под ред. К. П. Станюковича. — М.: Наука, 1975.
- Шведов К. К., Лавров В. В. Параметры детонации эмульсионных ВВ // Проблемы взрывного дела: сб. ст. и докл. / МГГУ. — 2002. — № 1. — С. 90–99.

Поступила в редакцию 28/V 2014 г.