УДК 54.057 DOI: 10.15372/KhUR20180212

# Количественная оценка эффективности схем синтеза простагландина dl-PGF<sub>2α</sub>

Р. Ф. ТАЛИПОВ<sup>1</sup>, И. В. ВАКУЛИН<sup>1</sup>, Р. Р. САЯХОВ<sup>1</sup>, М. М. КАНЧУРИНА<sup>1</sup>, Г. Ю. ИШМУРАТОВ<sup>2</sup>

<sup>1</sup>Башкирский государственный университет, Уфа, Россия E-mail: talipovrf@mail.ru

<sup>2</sup>Уфимский институт химии РАН, Уфа, Россия

(Поступила 11.11.17; после доработки 12.02.18)

## Аннотация

Выбор оптимального пути синтеза действующего вещества практически любого лекарственного препарата представляет собой сложную задачу. Отсутствие расчетных методов оценки эффективности химических превращений не позволяет количественно сравнивать предлагаемые варианты синтеза и эффективно использовать вычислительные методы при их разработке. Разработан метод количественной оценки эффективности синтезов, учитывающий изменения структурной сложности органических соединений, условий и результатов проведения реакций.

Ключевые слова: лекарственный препарат, органический синтез, количественная оценка эффективности синтеза

#### введение

Действующие вещества (ДВ) лекарственных препаратов представляют собой обширную группу биологически активных соединений, законодательно разрешенных для профилактики и лечения заболеваний человека и животных. Одной из актуальных проблем современной органической химии является разработка оптимальных схем их синтеза. Практически все ДВ могут быть получены несколькими способами, однако в литературе не обнаружены удовлетворительные примеры количественной оценки эффективности схем органического синтеза и их сравнительного анализа, а предлагаемые подходы сторонников "зеленой химии" Шелдона [1, 2] и Траста [3] ориентированы на оценку технологических процессов.

Мы предлагаем метод комплексной количественной оценки эффективности схем органического синтеза как функции изменения структурной сложности органических соединений, условий и результатов проведения реакции [4]. Количественная оценка позволяет ранжировать схемы органического синтеза и использовать компьютерные технологии для повышения их эффективности.

## МЕТОДОЛОГИЯ КОЛИЧЕСТВЕННОЙ ОЦЕНКИ ЭФФЕКТИВНОСТИ СХЕМ СИНТЕЗА

Очевидно, что оценка направленного органического синтеза биологически активных соединений должна носить комплексный характер, а предлагаемый метод – учитывать все основные критерии, определяющие эффектив-

© Талипов Р. Ф., Вакулин И. В., Саяхов Р. Р., Канчурина М. М., Ишмуратов Г. Ю., 2018

ность схемы синтеза. Одним из вариантов такой оценки могла бы служить себестоимость 1 г вещества, получаемого по данной схеме. Однако экономический показатель - необъективный фактор, подверженный влиянию спроса и предложения. В этой связи мы предлагаем формулу расчета эффективности, которая основана на характеристиках химических процессов и не зависит от субъективного фактора. При этом структурная сложность соединения частично отражает экономический показатель, а общий выход и оптическая чистота продукта реакции - квалификационный показатель. В частности, мы предлагаем рассматривать количественную оценку эффективности Е как функцию изменения основных параметров реакции

 $E = f(\text{Str} \cdot t \cdot \tau \cdot P \cdot Y \cdot \text{OP})$  (1) где Str — структурная сложность; t — температура;  $\tau$  — время реакции; P — давление; Y общий выход конечного соединения; OP — оптическая чистота конечного соединения.

При составлении формулы за основу взята мультипликативная схема, и все показатели нормированы от 0 до 1.

 $E = f(Str) \cdot f(\tau) \cdot f(t) \cdot f(P) \cdot f(Y) \cdot f(OP)$ (2)

Особое внимание уделяется изменению структурной сложности соединений как важнейшему показателю эффективности синтеза, а также общему выходу конечного продукта и его оптической чистоте. Эти параметры вносят максимальный вклад в эффективность синтеза конечного продукта (E), когда их значения равны 1. Вклад температуры и давления максимальный при проведении всех стадий синтеза при атмосферном давлении и температуре 25 °C.

Показатель изменения структурной сложности f(Str) вычисляется по формуле  $f(Str) = e^{-(Str_r/Str_p)}$  (3) где  $Str_r$  – структурная сложность исходного соединения схемы превращений по Берпцу [5];  $Str_p$  – структурная сложность конечного продукта.

Чем больше различия между структурной сложностью исходного соединения и конечного продукта, тем больше вклад этого параметра в величину эффективности *E*.

Индикатор времени реакции вычисляется по формуле

по формуле  

$$f(\tau) = e^{-0.01|\tau'N - \tau|/\tau}$$
(4)

где  $\tau$  — общее время всех стадий синтеза, ч;  $\tau'$  — стандартное время протекания одной стадии многостадийного синтеза (по умолчанию 1 ч); N — количество стадий синтеза.

Температурный параметр учитывается как функция отклонения от 25 °С максимальной и минимальной температур проведения реакций во всей рассматриваемой схеме превращений по формуле

 $f(t) = e^{-0.01(\Delta t/25)}$  (5) где  $\Delta t = |25 - t_{\min}| + |25 - t_{\max}|$ , °C;  $t_{\min}$ ,  $t_{\max}$  – минимальная и максимальная температура, используемая в схеме превращений, °C.

Чем меньше отклонение от 25 °C, тем больше вклад температурного параметра в величину E.

Аналогичным образом учитывается параметр давления как функция отклонения от атмосферного давления (101 325 Па):  $f(P) = e^{-0.01(\Delta P/101 325)}$  (6) где  $\Delta P = |101 325 - P_{min}| + |101 325 - P_{max}|;$  $P_{min}, P_{max}$  – минимальное и максимальное дав-

ление, используемое в схеме превращений, Па. Параметр выхода конечного продукта схемы превращений *f*(Y) учитывается как произведение выходов отдельных стадий, в долях единицы Y.

$$f(Y) = e^{0.1(Y - 1)}$$
(7)

Фактор оптической чистоты учитывается по формуле

$$f(OP) = e^{(OP - 1)}$$
(8)

При синтезе оптически чистого продукта (OP = 1) его вклад в эффективность E максимальный (f(OP) = 1).

Таким образом, получаем следующую формулу для расчета эффективности схемы превращений:

 $\ln E = (OP - 1) + 0.1(Y - 1) - Str_r/Str_p$  $- 0.01(\Delta t/25 + \Delta P/101 \ 325 + |\tau'N - \tau|/\tau)$ (9)

### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Тестирование формулы (9) проводили на примере пяти схем синтеза простагландина dl-PGF<sub>2α</sub> (1 [6], 2 [7], 3 [8], 4 [9], 5 [10]). В качестве примера в табл. 1 приведены значения параметров для каждой стадии синтеза простагландина dl-PGF<sub>2α</sub> из (R)-глицидола по схеме 5 [10] (рис. 1).

|                                                                     |      |              | •, 1 | r, 11a      | ОР, доли. ед. |  |  |  |
|---------------------------------------------------------------------|------|--------------|------|-------------|---------------|--|--|--|
| 1                                                                   | 0.74 | -30, 25      | 11   | 101 325     | 1             |  |  |  |
| 2                                                                   | 0.88 | -78, -50, 25 | 8    | $101 \ 325$ | 1             |  |  |  |
| 3                                                                   | 0.84 | 40           | 12   | $101 \ 325$ | 1             |  |  |  |
| 4                                                                   | 0.70 | -78          | 9    | $101 \ 325$ | 1             |  |  |  |
| $HO \longrightarrow \longrightarrow \longrightarrow \bigcirc CO_2H$ |      |              |      |             |               |  |  |  |

Значения параметров для каждой стадии синтеза простагландина dl-PGF $_{2\alpha}$  по схеме 5 [10]

Рис. 1. Структурные формулы (R)-глицидола и простагландина dl-PGF <sub>2α</sub>.

На рис. 2 и в табл. 2 приведены данные о зависимости эффективности синтеза от изменения структурной сложности органических соединений, условий и результатов реакции для синтеза по схеме 1. Параметр изменения структурной сложности подобран таким образом, чтобы его вклад в эффективность синтеза был максимальным. На это указывает увеличение эффективности синтеза *E* с повышением структурной сложности. Для двух других показателей (изменение условий и результатов реакции) наблюдается обратная зависи-

ТАБЛИЦА 1

мость. Аналогичная ситуация имеет место для схем синтезов 2-5.

На рис. 3 и в табл. 3 для всех пяти схем синтеза приведены данные о зависимости эффективности синтеза от количества стадий, т. е. от изменения структурной сложности реагента и конечного продукта превращений. Чем больше различия между структурной сложностью реагента и конечного продукта, тем выше вклад этого параметра в величину эффективности синтеза. Об этом свидетельствует наклон прямых линий на рис. 3.



Рис. 2. Постадийная зависимость эффективности синтеза простагландина dl-PGF<sub>2α</sub> (*E*) от изменения структурной сложности органических соединений (*a*), условий проведения (б) и результатов реакций (*в*) для схемы 1.

#### Р. Ф. ТАЛИПОВ и др.

| Стадия              | $f(\text{Str}) = e^{-\text{Str}_{\text{r}}/\text{Str}_{\text{p}}}$ | $f(t,P,\tau) = e^{-0.01(\Delta t/25 + \Delta P/101 \ 325 +  \tau'N - \tau /\tau)}$ | $f(Y,OP) = e^{(OP - 1) + 0.1(Y - 1)}$ | Е    |
|---------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|------|
| 14                  | 0.19                                                               | 0.99                                                                               | 0.99                                  | 0.19 |
| $13 \rightarrow 14$ | 0.27                                                               | 0.99                                                                               | 0.97                                  | 0.26 |
| $12 \rightarrow 14$ | 0.24                                                               | 0.96                                                                               | 0.97                                  | 0.22 |
| $11 \rightarrow 14$ | 0.34                                                               | 0.96                                                                               | 0.96                                  | 0.31 |
| $10 \rightarrow 14$ | 0.31                                                               | 0.96                                                                               | 0.93                                  | 0.27 |
| 9→14                | 0.45                                                               | 0.96                                                                               | 0.92                                  | 0.39 |
| 8→14                | 0.46                                                               | 0.96                                                                               | 0.92                                  | 0.40 |
| $7 \rightarrow 14$  | 0.53                                                               | 0.96                                                                               | 0.92                                  | 0.47 |
| $6 \rightarrow 14$  | 0.60                                                               | 0.95                                                                               | 0.92                                  | 0.53 |
| $5 \rightarrow 14$  | 0.59                                                               | 0.95                                                                               | 0.91                                  | 0.51 |
| 4→14                | 0.61                                                               | 0.95                                                                               | 0.91                                  | 0.53 |
| $3 \rightarrow 14$  | 0.49                                                               | 0.95                                                                               | 0.91                                  | 0.43 |
| $2 \rightarrow 14$  | 0.81                                                               | 0.95                                                                               | 0.91                                  | 0.71 |
| 1→14                | 0.89                                                               | 0.95                                                                               | 0.91                                  | 0.77 |

ТАБЛИЦА 2

Постадийная зависимость эффективности синтеза простагландина dl-PGF $_{2\alpha}\left( E\right)$  по схеме 1 от функции структурной сложности, условий и результатов реакции

Для каждой из схем приведены значения *E* от последнего промежуточного соединения до простагландина (наименьшая разность структурной сложности), затем от предпоследнего промежуточного соединения до простагландина и в конце концов от исходного для данной схемы соединения до простагландина (наибольшая разность величины структурной сложности). Видно, что более эффективны схемы синтеза, имеющие наибольшую разность структурных сложностей исходного со-



Рис. 3. Постадийная зависимость эффективности синтеза простагландина dl-PGF<sub>207</sub> 1–5 – схемы 1–5 соответственно.

единения и конечного продукта превращений. Некоторые отклонения от этой зависимости связаны с применением защитных групп с большим собственным индексом структурной сложности. В общем случае существенное изменение параметра Str в цепочке превращений свидетельствует о невысоком индексе сложности исходного соединения, а следовательно, о его доступности, поэтому учет этого фактора в формуле представляется очень важным.

Кроме того, мы использовали метод экспертной оценки. В табл. 4 приведены результаты оценки эффективности схем синтеза простагландина  $\mathrm{PGF}_{2\alpha}$ , выполненные шестью приглашенными экспертами. Пять схем синтеза по эффективности размещаются в следующем порядке:  $5 > 1 > 2 > 4 \ge 3$ .

Расчеты по нашей формуле дали следующий результат (табл. 5): 5 > 1 > 3 > 2 > 4.

#### ЗАКЛЮЧЕНИЕ

Предложена количественная оценка схем эффективности органического синтеза *E* как функция изменения структурной сложности от реагента к продукту, условий проведения реакции (температура, время реакции, дав-

| 1                    |      | 2       |      | 3       |      | 4                    |      | 5                    |      |
|----------------------|------|---------|------|---------|------|----------------------|------|----------------------|------|
| $\overline{1 - x/n}$ | Ε    | 1 - x/n | Ε    | 1 - x/n | Ε    | $\overline{1 - x/n}$ | E    | $\overline{1 - x/n}$ | Ε    |
| 0.93                 | 0.19 | 0.88    | 0.46 | 0.93    | 0.48 | 0.93                 | 0.27 | 0.75                 | 0.16 |
| 0.86                 | 0.26 | 0.75    | 0.50 | 0.87    | 0.46 | 0.86                 | 0.19 | 0.50                 | 0.51 |
| 0.79                 | 0.22 | 0.63    | 0.45 | 0.80    | 0.37 | 0.79                 | 0.16 | 0.25                 | 0.11 |
| 0.71                 | 0.31 | 0.50    | 0.59 | 0.73    | 0.53 | 0.71                 | 0.25 | 0.00                 | 0.81 |
| 0.64                 | 0.27 | 0.38    | 0.59 | 0.67    | 0.51 | 0.64                 | 0.08 |                      |      |
| 0.57                 | 0.40 | 0.25    | 0.53 | 0.60    | 0.52 | 0.57                 | 0.26 |                      |      |
| 0.50                 | 0.40 | 0.13    | 0.58 | 0.53    | 0.53 | 0.50                 | 0.32 |                      |      |
| 0.43                 | 0.47 | 0.00    | 0.59 | 0.47    | 0.57 | 0.43                 | 0.31 |                      |      |
| 0.36                 | 0.53 |         |      | 0.40    | 0.35 | 0.36                 | 0.20 |                      |      |
| 0.29                 | 0.51 |         |      | 0.33    | 0.55 | 0.29                 | 0.32 |                      |      |
| 0.21                 | 0.53 |         |      | 0.27    | 0.36 | 0.21                 | 0.25 |                      |      |
| 0.14                 | 0.43 |         |      | 0.20    | 0.24 | 0.14                 | 0.34 |                      |      |
| 0.07                 | 0.71 |         |      | 0.13    | 0.59 | 0.07                 | 0.44 |                      |      |
| 0.00                 | 0.77 |         |      | 0.07    | 0.49 | 0.00                 | 0.47 |                      |      |
|                      |      |         |      | 0.00    | 0.70 |                      |      |                      |      |

ТАБЛИЦА 5

ТАБЛИЦА 3 Постадийная зависимость эффективности схем 1-5 синтеза простагландина dl-PGF<sub>20</sub>

Примечание. n – общее количество стадий синтеза, x = 1, 2...n; E – эффективность.

### ТАБЛИЦА 4

Результаты экспертной оценки эффективности схем синтеза 1-5

| Эксперт         | Схема |         |          |    |    |  |  |  |
|-----------------|-------|---------|----------|----|----|--|--|--|
|                 | 1     | 2       | 3        | 4  | 5  |  |  |  |
|                 | Оцен  | іка эфф | ективнос | ти |    |  |  |  |
| Ишмуратов Г. Ю. | 3     | 2       | 1        | 4  | 5  |  |  |  |
| Мифтахов М.С.   | 5     | 1       | 4        | 2  | 3  |  |  |  |
| Куковинец О.С.  | 2     | 5       | 1        | 4  | 3  |  |  |  |
| Kenji Mori      | 4     | 3       | 2        | 1  | 5  |  |  |  |
| Валеев Ф. А.    | 4     | 3       | 2        | 1  | 5  |  |  |  |
| Одиноков В. Н.  | 4     | 3       | 2        | 1  | 5  |  |  |  |
| Общее           | 22    | 17      | 12       | 13 | 26 |  |  |  |

Примечания. 1. Экспертная оценка выполнена по пятибалльной системе, где 5 – максимальная оценка, 1 – минимальная. 2. Экспертный состав: М. С. Мифтахов, Ф. А. Валеев – проф. УФИХ РАН (Уфа, Россия), Kenji Mori – Emeritus Professor of the University of Tokyo (Japan), В. Н. Одиноков – профессор ИНК РАН (Уфа, Россия), О. С. Куковинец – проф. Башкирского государственного университета (Уфа, Россия).

ление) и результатов реакции (выход, оптическая чистота).

Особо отметим, что корректно сопоставлять между собой можно только схемы получения

| Параметр                    | Схема |       |       |        |       |  |  |
|-----------------------------|-------|-------|-------|--------|-------|--|--|
|                             | 1     | 2     | 3     | 4      | 5     |  |  |
| Str <sub>r</sub>            | 41.06 | 134.1 | 69.28 | 204.37 | 33.87 |  |  |
| $\mathbf{Str}_{\mathbf{p}}$ | 342.1 | 342.1 | 342.1 | 342.1  | 342.1 |  |  |
| $\Delta t$                  | 97    | 128   | 120   | 165    | 118   |  |  |
| $\Delta P$                  | 0     | 0     | 0     | 0      | 0     |  |  |
| OP                          | 1     | 1     | 1     | 1      | 1     |  |  |
| Y                           | 0.08  | 0.30  | 0.06  | 0.08   | 0.38  |  |  |
| τ'                          | 1     | 1     | 1     | 1      | 1     |  |  |
| τ                           | 68    | 38    | 59    | 79     | 40    |  |  |
| Ν                           | 14    | 8     | 15    | 14     | 4     |  |  |
| Ε                           | 0.77  | 0.59  | 0.70  | 0.47   | 0.81  |  |  |

Результаты расчетов эффективности схем синтеза 1-5

одного и того же соединения. Тестовый вариант программы [11], позволяющей проводить расчеты по этой формуле, доступен на сайте Башкирского государственного университета (URL: http://chemrcc.xyz/). Предлагаемый нами подход открыт для дальнейшего развития, а программный продукт предполагает возможность включения в него и других формул, отличных от предлагаемого нами. Авторы выражают благодарность профессорам М. С. Мифтахову и Ф. А. Валееву (Уфимский институт химии РАН, Уфа), Кенья Мори (Университет Токио), В. Н. Одинокову (Институт нефтехимии и катализа РАН, Уфа), О. С. Куковинец (Башкирский государственный университет, Уфа) за выполненные экспертные оценки в рамках данной работы.

## СПИСОК ЛИТЕРАТУРЫ

- 1 Sheldon R. A. // Chem. Ind. (London). 1992. Vol. 23. P. 903-906.
- 2 Sheldon R. A. // Chem. Ind. (London). 1997. Vol. 1. P. 12–15.
- 3 Trost B. M. // Science, New Series. 1991. Vol. 254, No. 5037. P. 1471-1477.

- 4 Вакулин И. В., Талипов Р. Ф., Ишмуратов Г. Ю. // Вестн. Башк. ун-та. 2013. Т. 18, № 3. С. 679–681.
- 5 Bertz S. H. // J. Am. Chem. Soc. 1981. No. 103. P. 3241–3243.
- 6 Corey E. J., Weinshenker N. M., Schaaf T. K., Huber W. // J. Am. Chem. Soc. 1969. Vol. 91, No 20. P. 5675–5677.
- 7 Corey E. J., Noyori R. // Tetrahedron Lett. 1970. Vol. 11, No. 4. P. 311–313.
- 8 Woodward R. B., Gosteli J., Ernest I., Friary R. J., Nestler G., Raman H., Sitrin R., Suter C., Whitesell J. K. // J. Am. Chem. Soc. 1973. Vol. 95, No. 20. P. 6853-6855.
- 9 Sato Y., Takimoto M., Mori M. // Synlett. 1997. No. 6. P. 734-736.
- 10 Sheddan N. A., Arion V. B., Mulzer J. // Tetrahedron Lett. 2006. No. 47. P. 6689-6693.
- 11 Расулов А. З., Вакулин И. В., Талипов Р. Ф., Ишмуратов Г. Ю. Свидетельство о государственной регистрации программы для ЭВМ №2014618352 от 15.08.2014 г.