2018

<u>№</u> 3

ГОРНОЕ МАШИНОВЕДЕНИЕ

УДК 624.1 + 534.1

РАСЧЕТ ДВИЖЕНИЯ ТРУБЫ С ГРУНТОВОЙ ПРОБКОЙ ПРИ ПРОДОЛЬНОМ ИМПУЛЬСНОМ ВОЗДЕЙСТВИИ

Н. И. Александрова, А. С. Кондратенко

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: nialex@misd.ru, Красный проспект, 54, 630091, г. Новосибирск, Россия

Исследуется взаимодействие открытой трубы с внутренней грунтовой пробкой по закону сухого трения Кулона. Рассматриваются различные модели грунта и трубы. Для всех моделей получены конечно-разностные решения, для некоторых — аналитические, описывающие процесс упругого взаимодействия трубы с пробкой. Показано хорошее соответствие численных и аналитических решений. Проведено сопоставление результатов численных расчетов по различным моделям и определены пределы применимости моделей. Исследовано влияние сухого трения Кулона на процесс движения трубы и пробки.

Погружение трубы, грунтовая пробка, сухое трение, сдвиговое напряжение, математическое моделирование, нелинейность, численный метод, аналитическое решение

DOI: 10.15372/FTPRPI20180304

При проведении строительных работ одним из этапов является прокладка инженерных коммуникаций различного назначения. Экономически более выгодна подземная бестраншейная прокладка. В настоящее время широко применяется метод, основанный на горизонтальном продавливании в грунтовый массив трубы с открытым торцом. В процессе внедрения трубы в грунт во внутреннюю ее полость поступает разрушенный грунт, который образует пробку.

Вопросам внедрения полой цилиндрической трубы с открытым торцом в грунт посвящены многие публикации [1–16]. В [1–12] приведены результаты численного и физического моделирования процесса погружения вертикальных свай-труб с открытым торцом и проанализированы различные аспекты образования внутренней грунтовой пробки и ее свойств. Существенно меньше работ изучают особенности горизонтального внедрения открытых труб [13–16], большинство из них — экспериментальные.

В данной статье исследуется численно и аналитически задача горизонтального движения открытой трубы в грунте с учетом взаимодействия трубы с внешним грунтом и внутренней грунтовой пробкой по закону сухого трения Кулона. Основное внимание уделено рассмотрению различных моделей трубы и внутренней пробки.

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 17-77-20049).

ПОСТАНОВКА ЗАДАЧИ

Модель I. Математическая постановка задачи ударного погружения открытой трубы в грунт опирается на модель продольных колебаний упругого стержня с учетом бокового сопротивления внутренней и внешней среды. Упругий трубчатый стержень (R_1 — внешний радиус, h — толщина стенки) длиной L заглублен в грунт на величину L_1 . Внутри трубы находится грунтовая пробка длиной L_2 . По левому торцу трубы в продольном направлении производится одиночный удар с силой $F_0(t)$.

$$F_0(t) = Q_0 \sin(\omega_* t) H(t_0 - t) H(t), \quad t_0 = \frac{\pi}{\omega_*},$$
(1)

где Q_0 — амплитуда; ω_* — частота; H — ступенчатая функция Хевисайда.

Обозначим U(z,t) — перемещение трубы, t — время, z — продольную координату. Выберем систему координат так, чтобы ее начало совпадало с ударяемым концом стержня, а ось zбыла направлена параллельно оси трубы вглубь среды. Будем полагать, что взаимодействие на поверхностях контакта трубы и грунта происходит по закону сухого трения Кулона.

Движение трубы описывается одномерным волновым уравнением относительно перемещений:

$$\ddot{U} = c^2 \frac{\partial^2 U}{\partial z^2} - \frac{P_1 \tau_1 k_1}{\rho_1 S_1} - \frac{P_2 \tau_2}{\rho_1 S_1}, \quad k_1 = \operatorname{sign}(\dot{U}) = \begin{cases} 1, & U > 0, \\ 0, & \dot{U} = 0, \\ -1, & \dot{U} < 0. \end{cases}$$
(2)

Здесь $c = \sqrt{E_1/\rho_1}$ — скорость продольной волны в стержне, E_1 — модуль Юнга трубы, ρ_1 — плотность материала трубы; $\tau_2(z, \varepsilon_{rz})$ — реакция грунтовой пробки в сечениях $L - L_2 < z < L$; P_1 , P_2 — внешний и внутренний периметры трубы; $S_1 = \pi h(2R_1 - h)$ — площадь поперечного сечения трубы; τ_1 — постоянное касательное напряжение, приложенное на внешней поверхности трубы в сечениях $L - L_1 \le z \le L$, направление действия которого зависит от знака скорости трубы k_1 . Начальные условия нулевые. На торце трубы z = 0 задается действующая сила, торец z = L свободен от напряжений:

$$E_{1}S_{1}\frac{\partial U}{\partial z}\Big|_{z=0} = -F_{0}(t), \quad E_{1}S_{1}\frac{\partial U}{\partial z}\Big|_{z=L} = 0.$$
(3)

Зависимость $\tau_2(z, \varepsilon_{rz})$ соответствует упруго-пластической диаграмме (рис. 1), предложенной в [17]. На упругом участке, когда сдвиговое напряжение в грунте меняется от 0 до τ_0 , труба и среда сцеплены и движутся с одинаковой скоростью. При достижении предельного сдвигового напряжения τ_0 происходит проскальзывание. Направление действия сил трения определяется в зависимости от знака скорости этих волн. Когда относительная скорость проскальзывания трубы и грунта становится равной нулю, вновь происходит сцепление с грунтом, которое в дальнейшем опять может быть нарушено приходом волн напряжений.

Для определения сдвигового напряжения грунта, действующего изнутри на трубу, используем двумерную модель среды с одним перемещением V(r, z, t) в направлении z:

$$\ddot{V} = a^2 \frac{\partial^2 V}{\partial z^2} + b^2 \left(\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} \right), \quad a^2 = \frac{\lambda + 2G}{\rho_2}, \quad b^2 = \frac{G}{\rho_2}, \tag{4}$$

где G — модуль сдвига; λ — коэффициент Ламе; ρ_2 — плотность грунта; r — радиальная координата. Уравнение (4) представляет модель среды, учитывающую сжимаемость грунта вдоль оси трубы, сопротивляемость материала сдвигу и инерционность грунта при движении его частиц вдоль оси трубы. Математически более простую модель деформируемой среды с одним перемещением (4) можно применять в случае, если амплитуды деформаций и их частных производных в осевом направлении существенно превышают соответствующие значения в радиальном направлении.

Рис. 1. Зависимость реакции среды от сдвиговой деформации

Граничное условие на оси r = 0 соответствует отсутствию источников или стоков:

$$\left. \frac{\partial V}{\partial z} \right|_{r=0} = 0, \quad L - L_2 \le z \le L,$$
(5)

а граничные условия на торцах пробки — отсутствию напряжений на свободных поверхностях грунта:

$$\frac{\partial V}{\partial z}\Big|_{z=L-L_2} = 0, \quad \frac{\partial V}{\partial z}\Big|_{z=L} = 0.$$
(6)

На внутренней поверхности трубы при отсутствии проскальзывания граничное условие для уравнения (4) определяет равенство скоростей перемещений трубы и грунта на поверхности трубы:

$$\dot{V}\Big|_{r=R_2} = \dot{U}(z), \quad L-L_2 \le z \le L,$$
(7)

•

где $R_2 = R_1 - h$ — внутренний радиус трубы.

При упругой стадии процесса взаимодействия сдвиговое напряжение на внутренней поверхности трубы находится по формуле

$$\tau_2(z, \varepsilon_{rz}) = G\varepsilon_{rz}, \quad \varepsilon_{rz} = \frac{\partial V}{\partial r}\Big|_{r=R_2}$$

На этапе проскальзывания грунта, когда $abs(\tau_2) > \tau_0$, труба взаимодействует с ним по закону сухого трения:

$$\tau_{2}(z, \varepsilon_{rz}) = \begin{cases} -k_{2}\tau_{0}, & L - L_{2} < z < L, \\ 0, & z \le L - L_{2}, \end{cases} \quad k_{2} = \operatorname{sign}[\dot{U} - \dot{V}|_{r=R_{2}}]$$

Поскольку при проскальзывании силы трения, действующие на трубу и грунт, совпадают по величине и различны по направлению, для грунта имеем граничные условия

$$G \left. \frac{\partial V}{\partial r} \right|_{r=R_2} = k_2 \tau_0.$$

31

Таким образом, с учетом сухого трения реакция среды τ_2 и граничные условия для грунтовой пробки на поверхности трубы в сечениях $L - L_2 < z < L$ выражаются следующим образом:

— на упругой стадии процесса взаимодействия, когда $\operatorname{abs}\left(G\frac{\partial V}{\partial r}\Big|_{r=R_2}\right) < \tau_0$:

$$\tau_2(z, \varepsilon_{r_2}) = G \frac{\partial V}{\partial r} \bigg|_{r=R_2}, \quad \dot{V} \bigg|_{r=R_2} = \dot{U}, \qquad (8)$$

— на этапе проскальзывания грунта, когда $\operatorname{abs}\left(\left.G\frac{\partial V}{\partial r}\right|_{r-P}\right) > \tau_0$:

$$\tau_2(z, \varepsilon_{rz}) = -k_2 \tau_0, \quad G \frac{\partial V}{\partial r} \bigg|_{r=R_2} = k_2 \tau_0.$$
(9)

Модель II. Аналитические оценки. Получим аналитические оценки более простой постановки данной задачи. Рассмотрим одномерную задачу. Пусть имеется труба, внутри которой находится упругий грунт. Предполагается, что сухое трение на внешней стороне трубы отсутствует ($\tau_1 = 0$). Будем исследовать влияние распространения волн в грунте в радиальном направлении, пренебрегая распространением волн в направлении оси z. Движение грунта описывается одномерным волновым уравнением по радиальной координате r, которое получено из (4) в предположении, что производными по оси z можно пренебречь:

$$\ddot{V} = b^2 \left(\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} \right).$$
(10)

Уравнение движения трубы находим из (2), также полагая, что зависимостью перемещения трубы от переменной *z* можно пренебречь:

$$\ddot{U} = -\frac{P_2 L_2 \tau_2}{M_1} + \frac{F_0}{M_1},\tag{11}$$

где $M_1 = LS_1\rho_1$ — масса трубы.

Для получения аналитических оценок предположим, что на всем этапе движения выполняется условие $abs(\tau_2) < \tau_0$, т. е. труба и грунт взаимодействуют упруго. В этом случае имеем следующие граничные условия:

$$\tau_2 = G \frac{\partial V}{\partial r} \bigg|_{r=R_2}, \quad \dot{V} \bigg|_{r=R_2} = \dot{U}, \quad \frac{\partial V}{\partial r} \bigg|_{r=0} = 0.$$
(12)

Применим к (10) - (12) преобразование Лапласа по времени с параметром *p*, значок *L*:

$$V^{L}\Big|_{r=R_{2}} = \frac{F_{0}^{L}I_{0}(\eta)}{p(M_{1}pI_{0}(\eta) + I_{1}(\eta)bP_{2}\rho_{2}L_{2})},$$
(13)

 I_0, I_1 — модифицированные функции Бесселя; $\eta = R_2 p / b$.

Найдем асимптотику сдвигового напряжения на поверхности трубы при $p \rightarrow 0$:

$$\tau_{2}^{L} = G \frac{\partial V^{L}}{\partial r} \bigg|_{r=R_{2}} = \frac{4Q_{0}G\omega_{*}(1+e^{-p\pi/\omega_{*}})}{R_{2}(2M_{1}+M_{2})(\beta^{2}+p^{2})(p^{2}+\omega_{*}^{2})}, \quad \beta^{2} = \frac{8(M_{1}+M_{2})b^{2}}{(2M_{1}+M_{2})R_{2}^{2}}, \quad (14)$$

здесь $M_2 = S_2 L_2 \rho_2$ — масса пробки; $S_2 = \pi R_2^2$ — площадь поперечного сечения пробки. 32 Обращая выражение (14) [18], имеем асимптотическую зависимость от времени ($t \rightarrow \infty$) для сдвигового напряжения грунта на границе трубы:

$$\tau_2 = G \frac{\partial V}{\partial r} \bigg|_{r=R_2} = \frac{4GQ_0[H(t_0 - t)(\omega_* \sin\beta t - \beta \sin\omega_* t) + H(t - t_0)\omega_*(\sin\beta t + \sin\beta(t - t_0))]}{R_2(2M_1 + M_2)\beta(\omega_*^2 - \beta^2)}$$

Если $\omega_* \ll \beta$, то эту формулу можно упростить:

$$\tau_2 = \frac{\tau_*}{\gamma} H(t_0 - t) \sin \omega_* t , \quad \tau_* = \frac{Q_0}{L_2 P_2}, \quad \gamma = 1 + \frac{M_1}{M_2}.$$
(15)

Используя (12) и (15), запишем выражения для определения перемещения и скорости перемещения трубы:

$$U = \frac{Q_0}{(M_1 + M_2)\omega_*} \left\{ \left(t - \frac{\sin \omega_* t}{\omega_*} \right) H(t_0 - t) + (2t - t_0) H(t - t_0) \right\},$$
 (16)

$$\dot{U} = \frac{Q_0[(1 - \cos \omega_* t)H(t_0 - t) + 2H(t - t_0)]}{(M_1 + M_2)\omega_*}.$$
(17)

Как видно из аналитического решения (15), если $\gamma \tau_0 > \tau_*$, то на всем этапе движения труба и грунт взаимодействуют упруго ($\tau_2 < \tau_0$). Если же $\gamma \tau_0 < \tau_*$, то сначала происходит упругое взаимодействие трубы и грунта, пока τ_2 не достигнет значения τ_0 , а затем взаимодействие по закону сухого трения.

Модель III. В модели I пренебрежем влиянием распространения волн в грунтовой пробке в радиальном направлении. В этом случае уравнения движения с учетом закона постоянного сухого трения на внутренней и внешней поверхности трубы имеют следующий вид:

$$\ddot{U} = c^2 \frac{\partial^2 U}{\partial z^2} - \frac{P_1 \tau_1 k_1}{\rho_1 S_1} - \frac{P_2 \tau_2 k_2}{\rho_1 S_1}, \quad \ddot{V} = a^2 \frac{\partial^2 V}{\partial z^2} + \frac{P_2 \tau_2 k_2}{\rho_2 S_2}, \quad k_2 = \operatorname{sign}(\dot{U}), \quad k_2 = \operatorname{sign}(\dot{U} - \dot{V}). \quad (18)$$

Здесь τ_1 , τ_2 — постоянные касательные напряжения, приложенные на внешней и внутренней поверхности трубы соответственно. Остальные обозначения те же, что и ранее. Начальные условия нулевые. Граничные условия на торцах трубы и пробки:

$$E_1 S_1 \frac{\partial U}{\partial z}\Big|_{z=0} = -F_0(t), \quad E_1 \frac{\partial U}{\partial z}\Big|_{z=L} = -\alpha \rho_2 a \dot{V}\Big|_{z=L} -\sigma_0, \tag{19}$$

$$E_2 \left. \frac{\partial V}{\partial z} \right|_{z=L-L_2} = P_a, \quad E_2 \left. \frac{\partial V}{\partial z} \right|_{z=L} = -\alpha \rho_2 a \dot{V} \Big|_{z=L} - \sigma_0, \tag{20}$$

где $P_a = 0.1$ МПа — атмосферное давление; E_2 — модуль Юнга грунта; σ_0 — начальное напряжение в грунте в горизонтальном направлении.

По сравнению с моделью I добавим неотражающие граничные условия в пробке в сечении z = L и учтем влияние начального напряжения в грунте. Коэффициент α принимает значения $\alpha = 0$ и $\alpha = 1$. Значение $\alpha = 0$ соответствует условию равенства напряжения в трубе в сечении z = L начальному напряжению в грунте σ_0 . Аналогичное равенство справедливо для пробки. Значение $\alpha = 1$ соответствует неотражающей вязкой границе в пробке в сечении z = L, т. е. предполагается, что пробка бесконечно длинная. Предполагается также, что в сечении z = L напряжения в трубе равны напряжениям в пробке.

Если начальное напряженное состояние в грунте вызвано только гравитационным полем, то горизонтальная составляющая напряжений (напряжение бокового распора) на небольшой глубине до 500 м, по мнению некоторых исследователей, определяется в соответствии с гипотезой, предложенной в [19]: $\sigma_0 = \varepsilon \sigma$ (σ_0 — начальное напряжение в грунте в горизонтальном направлении, $\sigma = P_a + \rho_2 Hg$ — вертикальная составляющая напряжений на глубине *H*, вызываемая действием веса вышележащих слоев грунта и атмосферным давлением, ρ_2 — средневзвешенная плотность грунта, $\varepsilon = v_2/(1-v_2)$ — коэффициент бокового распора, v_2 — коэффициент Пуассона грунта).

Модель IV. Аналитические оценки. В модели III пренебрежем влиянием распространения волн в продольном направлении в трубе и грунтовой пробке, т. е. рассмотрим модель жесткой трубы и жесткой пробки. В этом случае уравнения движения с учетом закона постоянного сухого трения на поверхности контакта трубы и пробки имеют следующий вид:

$$M_{1}U = F_{0} - P_{1}\tau_{1}k_{1}L_{1} - P_{2}\tau_{2}k_{2}L_{2} - S_{1}(\alpha\rho_{2}aV + \sigma_{0}),$$

$$M_{2}\ddot{V} = P_{2}\tau_{2}k_{2}L_{2} + S_{2}(P_{a} - \alpha\rho_{2}a\dot{V} - \sigma_{0}).$$
(21)

Для того чтобы получить аналитическое решение с учетом сухого трения между пробкой и трубой, исследуем более простой вариант модели IV. Положим $\tau_1 = 0$, $P_a = 0$, $\alpha = 0$, $\sigma_0 = 0$. В результате запишем уравнения:

$$M_1 \ddot{U} = F_0 - P_2 \tau_2 k_2 L_2, \quad M_2 \ddot{V} = P_2 \tau_2 k_2 L_2.$$
(22)

Проинтегрируем (22) с учетом (1) и нулевых начальных условий:

$$\dot{U}(t) = \frac{1}{M_1} \left[I(t) - \frac{Q_0 \tau_0 k_2 t}{\tau_*} \right], \quad \dot{V}(t) = \frac{Q_0 \tau_0 k_2 t}{M_2 \tau_*},$$
$$I(t) = \int_0^t F_0(t) dt = \frac{2Q_0 t_0}{\pi} \left[\sin^2 \left(\frac{\omega_* t}{2} \right) H(t_0 - t) + H(t - t_0) \right].$$

При $\tau_0 = 0$ решение будет иметь вид $\dot{U}(t) = I(t) / M_1$, $\dot{V}(t) = 0$.

В случае $\tau_0 > 0$ вычислим разность скоростей перемещений трубы и пробки:

$$\dot{U}(t) - \dot{V}(t) = \frac{1}{M_1} \left[I(t) - \frac{Q_0 \tau_0 \gamma t k_2}{\tau_*} \right].$$

Если $\gamma \tau_0 \ge \tau_*$, то сила трения настолько велика, что труба и пробка будут двигаться как единое целое с массой $M_1 + M_2$ на всем интервале взаимодействия:

$$\dot{U}(t) = \dot{V}(t) = \frac{I(t)}{M_1 + M_2}.$$
(23)

Вычтем в (21) из первого уравнения второе. С учетом обозначения W = U - V получим

$$\ddot{W} = \frac{F_0}{M_1} - \frac{Q_0 \tau_0 k_2 \gamma}{M_1 \tau_*}, \quad k_2 = \operatorname{sign}(\dot{W}).$$
(24)

Если $\gamma \tau_0 < \tau_*$, то до момента времени

$$t = t_1 = \frac{1}{\omega_*} \arcsin\left(\frac{\gamma \tau_0}{\tau_*}\right) \le \frac{t_0}{2}$$
(25)

труба и пробка будут двигаться вместе (W = U - V = 0). Проинтегрируем (24):

$$\dot{W}(t) = \frac{1}{M_1} \left\{ I(t) - I(t_1) - \frac{Q_0 \tau_0 \gamma k_2 (t - t_1)}{\tau_*} \right\}.$$

Поскольку функция $k_2 = 1$, если $\dot{W} > 0$, то в результате имеем неравенство для определения интервала времени, где $k_2 = 1$:

$$I(t) - I(t_1) - \frac{Q_0 \tau_0 \gamma(t - t_1)}{\tau_*} > 0$$

Найдем этот интервал. Пусть t_2 удовлетворяет равенству

$$I(t_2) - I(t_1) - \frac{Q_0 \tau_0 \gamma(t_2 - t_1)}{\tau_*} = 0.$$

Если $\tau_0 = \tau_3$, где τ_3 — корень уравнения:

$$\arcsin\left(\frac{\gamma\tau_3}{\tau_*}\right) + \left[\frac{\tau_*}{\gamma\tau_3} + \sqrt{\left(\frac{\tau_*}{\gamma\tau_3}\right)^2 - 1}\right] = \pi , \qquad (26)$$

то тогда $t_2 = t_0$. Корень уравнения (26), полученный численно, равен $\tau_3 \approx 0.725 \tau_* / \gamma$.

Если $au_0 < au_3$, то $t_2 > t_0$, где

$$t_2 = t_1 + \frac{1}{\omega_*} \left[\frac{\tau_*}{\gamma \tau_0} + \sqrt{\left(\frac{\tau_*}{\gamma \tau_0}\right)^2 - 1} \right].$$
(27)

Если $\tau_0 > \tau_3$, то $t_2 < t_0$, где t_2 — корень уравнения:

$$t_2 - t_1 = \frac{2\tau_*}{\omega_* \gamma \tau_0} \left[\left\{ \sin^2 \left(\frac{\omega_* t_2}{2} \right) - \sin^2 \left(\frac{\omega_* t_1}{2} \right) \right\} \right].$$
(28)

На интервале времени $t_1 < t < t_2$ имеем

$$\dot{W}(t) = \dot{U}(t) - \dot{V}(t) = \frac{1}{M_1} \left\{ I(t) - I(t_1) - \frac{Q_0 \tau_0 \gamma(t - t_1)}{\tau_*} \right\} H(t - t_1) H(t_2 - t) .$$
⁽²⁹⁾

До момента времени $t = t_1$ и после момента времени $t = t_2$ труба и пробка движутся вместе и их скорости определяются по формуле

$$\dot{U}(t) = \dot{V}(t) = \frac{I(t)H(t_1 - t) + I(t)H(t - t_2)}{M_1 + M_2}.$$
(30)

Проинтегрируем второе уравнение в (22) с учетом (30). В результате имеем зависимость скорости пробки от времени:

$$\dot{V}(t) = \frac{I(t)[H(t_1 - t) + H(t - t_2)] + \left[I(t_1) + \frac{\tau_0 Q_0 \gamma(t - t_1)}{\tau_*}\right] H(t - t_1) H(t_2 - t)}{M_1 + M_2}.$$
(31)

35

Скорость трубы вычислим, используя (29), (31):

$$\dot{U}(t) = \frac{I(t)[H(t_1 - t) + H(t - t_2)]}{M_1 + M_2} + \left[I(t) - \frac{I(t_1)}{\gamma} - \frac{Q_0 \tau_0(t - t_1)}{\tau_*} \right] \frac{H(t - t_1)H(t_2 - t)}{M_1}.$$
(32)

Модель V. Рассмотрим модель IV и предположим следующее. Во-первых, площадь соприкосновения трубы и внешнего грунта пропорциональна перемещению трубы U. Во-вторых, масса пробки и площадь соприкосновения трубы и пробки пропорциональны длине пробки, которая меняется в процессе погружения трубы по закону $\tilde{L}_2 = L_2 + U - V$. В этом случае уравнения движения с учетом закона постоянного сухого трения на внутренней и внешней поверхности трубы примут следующий вид:

$$M_{1}\ddot{U} = F_{0} - P_{1}\tau_{1}k_{1}U - P_{2}\tau_{2}k_{2}\tilde{L}_{2} - S_{1}(\rho_{2}a\dot{V} + \sigma_{0}),$$

$$\tilde{M}_{2}\ddot{V} = P_{2}\tau_{2}k_{2}\tilde{L}_{2} + S_{2}(P_{a} - \rho_{2}a\dot{V} - \sigma_{0}), \quad \tilde{M}_{2} = S_{2}\rho_{2}\tilde{L}_{2}.$$
(33)

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Расчеты по моделям I–V проводились методом конечных разностей по явным схемам. Особенности численных расчетов нелинейного взаимодействия трубы и грунта по закону сухого трения описаны в [20–22].

На рис. 2 приведены примеры расчета по модели II сдвиговых напряжений грунта τ_2 на поверхности трубы при импульсном продольном воздействии на трубу в случае упругого взаимодействия трубы и грунта ($\gamma \tau_0 > \tau_*$) на всем интервале времени. Параметры разностной сетки: $h_r = 0.01R_2$ — шаг сетки по радиусу, $h_i = h_r / b$ — шаг по времени. Остальные параметры: $P_0 = 23$ кH, $E = 1.95 \cdot 10^5$ МПа, h = 0.003 м, $R_2 = 0.035$ м, $\rho_1 = 7800$ кг/м³, $\rho_2 = 1800$ кг/м³, b = 0.373 м/мс, $L = L_2 = 1$ м — в дальнейшем взяты в качестве базового набора. Длительность импульса $t_0 = nR_2 / b$, значение n указано на каждом графике. Сплошные кривые — конечноразностное решение, штриховые — приближенное аналитическое (15), штрихпунктирные значение τ_* / γ . Сравнение аналитического решения (15) и численных расчетов показывает, что если $t_0 \ge 5R_2 / b$, то максимальные сдвиговые напряжения грунта на поверхности трубы и качественно и количественно верно описываются асимптотическим решением (15). Если $t \ge t_0$, то хорошо видны колебания, вызванные отражением волн от границ r = 0 и $r = R_2$. Заметим, что для четных значений n амплитуда осцилляций сдвигового напряжения τ_2 больше, чем в случае нечетных n.

36

На рис. 3 представлен расчет по модели II зависимости скоростей перемещений трубы и грунта от времени при $\tau_0 = 0.03$ МПа ($\tau_0 < \tau_3 < \tau_* / \gamma$) и $\tau_0 = 0.05$ МПа ($\tau_3 < \tau_0 < \tau_* / \gamma$). Длительность импульса $t_0 = 2$ мс, остальные параметры взяты из базового набора. Сплошные кривые — конечно-разностное решение, штриховые — аналитическое решение (31), (32), полученное по модели IV при $\tau_1 = 0$, $P_a = 0$, $\alpha = 0$, $\sigma_0 = 0$, штрихпунктирные — аналитическое решение (15). При данных параметрах имеем $\tau_* / \gamma = 0.0589$ МПа, $\tau_3 = 0.0427$ МПа. Расчеты показывают, что чем больше τ_0 , тем меньше различаются скорости трубы и пробки на этапе проскальзывания и тем раньше их значения начинают совпадать между собой и с решением (15), полученным в предположении, что взаимодействие трубы и грунта на всем временном интервале упругое. Видно, что учет распространения волн в радиальном направлении практически не влияет на результаты: аналитическое решение (31), (32) совпадает с большой точностью с численным решением, полученным по модели II.

Рис. 3. Зависимости скоростей перемещений трубы (1) и грунта (2) от времени (модель II)

На рис. 4 приведен расчет по модели I зависимости скоростей перемещений трубы и грунта в сечении z = 0.5 м от времени при $\tau_0 = 0.02$ МПа $< \tau_* / \gamma$, $\tau_1 = 0$. Остальные параметры взяты из базового набора. Параметры разностной сетки: $h_z = 0.01$ м — шаг сетки по координате z, $h_t = h_z / c$, $h_r = h_z b / \sqrt{c^2 - a^2}$. Сплошные кривые — конечно-разностное решение, штриховые — решение (31), (32). Наблюдаются всплески, связанные с отражениями от торцов трубы и пробки волн, распространяющихся в продольном направлении. Сравнение расчетов, полученных по модели I, с аналитическим решением (31), (32) показывает, что можно использовать более простую модель IV, в которой распространение продольных и радиальных волн не учитывается, если $t_0 > 2L/c$.

Рис. 4. Зависимости скоростей перемещений трубы (1) и грунта (2) от времени (модель I)

На рис. 5 выполнен конечно-разностный расчет по моделям III, IV зависимостей скоростей перемещений трубы и грунта в сечении z = 0.5 м от времени при $\tau_2 = 0.02$ МПа $< \tau_* / \gamma$, $t_0 = 1$ мс, $P_a = 0$, $\sigma_0 = 0$. Сплошные кривые — результаты расчета по модели III, штриховые — по модели IV. Параметры разностной сетки для модели III — $h_z = 0.01$ м, $h_t = h_z / c$, для модели IV — $h_t = 0.02$ мс. Остальные параметры взяты из базового набора. Учет лобового сопротивления грунта на торце z = L приводит к затуханию скоростей трубы и грунта. Если учитывается сухое трение на внешней поверхности трубы, то степень затухания скоростей трубы и грунта. Сравнение результатов расчета по моделям III, IV показывает, что с достаточной точностью можно использовать модель IV.

Рис. 5. Зависимости скоростей перемещений трубы (1) и грунта (2) от времени ($\tau_2 = 0.02$ МПа, модели III, IV)

На рис. 6 представлены зависимости перемещений трубы, их скоростей и напряжений в пробке от времени, рассчитанные по модели III в сечении z = 0.5 м при различных предельных касательных напряжениях $\tau_1 = \tau_2 = \tau$ и $\alpha = 1$, $t_0 = 50$ мс, $P_a = 0.1$ МПа, $\sigma_0 = 0.035$ МПа, $\sigma_2 = E_2(\partial V / \partial z)$. Параметры разностной сетки: $h_z = 0.01$ м, $h_t = h_z / c$. Остальные параметры взяты из базового набора. Видно, что чем больше τ , тем меньше максимальные амплитуды скоростей трубы и пробки и их перемещения.

Зависимости максимальных перемещений трубы и грунта от предельных напряжений сдвига $\tau_1 = \tau_2 = \tau$, рассчитанные по модели III в сечении z = 0.5 м, показаны на рис. 7. Параметры задачи те же, что и на рис. 6. При $\tau < 0.046$ МПа максимальные амплитуды перемещений трубы и пробки имеют разные значения и падают с ростом τ , при $\tau > 0.046$ МПа труба и пробка слипаются и их перемещения имеют равные значения, которые стремятся к нулю с ростом τ .

Рис. 6. Зависимости перемещений трубы и грунта, их скоростей и напряжений в грунтовой пробке от времени (модель III): $a - \tau = 0.025$; $b - \tau = 0.035$; $b - \tau = 0.045$ МПа. Жирные кривые соответствуют трубе, тонкие — грунтовой пробке

Рис. 7. Зависимости максимальных перемещений трубы и грунта от предельных напряжений сдвига ($\tau_1 = \tau_2 = \tau$) в сечении z = 0.5 м (модель III)

На рис. 8 приведен конечно-разностный расчет по модели III зависимости плотности грунта в пробке от координаты z в момент времени T = 200 мс при различных значениях предельных сдвиговых напряжений $\tau_1 = \tau_2 = \tau$ и $\alpha = 1$, $t_0 = 50$ мс, $P_a = 0.1$ МПа, $\sigma_0 = 0.035$ МПа. Остальные параметры взяты из базового набора. Момент времени T выбирался так, чтобы к этому времени скорости трубы и пробки стали равными нулю. Расчет относительной плотности грунта в пробке $\hat{\rho}_2$ проводился по формуле $\hat{\rho}_2 = \tilde{\rho}_2 / \rho_2 = 1 - (\partial V / \partial z)$, где $\tilde{\rho}_2$ — плотность грунта, вызванная сжатием пробки вследствие прохождения ударного импульса. Горизонтальная штриховая линия соответствует $\hat{\rho}_2 = 1 + P_a / E_2$. Видно, что при стремлении силы трения τ к нулю напряжение в пробке стремится к атмосферному давлению.

Рис. 8. Зависимость относительной плотности грунта в пробке от координаты z при различных предельных сдвиговых напряжениях τ (модель III)

Значение $\tau \simeq 0.046$ МПа на рис. 8 является критическим для плотности пробки. При $\tau \le 0.046$ МПа плотность грунта $\tilde{\rho}_2$ увеличивается по сравнению с начальной ρ_2 по всей длине пробки, и максимум достигается приблизительно в середине пробки. При $\tau > 0.046$ МПа есть зона в пробке, где плотность грунта $\tilde{\rho}_2$ практически совпадает с начальной ρ_2 , а максимум сдвигается к правому концу пробки и его значение падает с ростом τ . Из анализа рис. 7 и 8 следует, что при данных параметрах задачи предельное сдвиговое напряжение $\tau \simeq 0.046$ МПа, при котором происходит слипание трубы и грунтовой пробки, является критическим для плотности пробки.

На рис. 9 представлены зависимости от времени скоростей трубы и пробки и их перемещений, рассчитанных по модели V, при различных значениях предельных сдвиговых напряжений $\tau_1 = \tau_2 = \tau = 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.18, 0.20, 0.23, 0.26, 0.30, 0.36, 0.43, 0.51, 0.60 МПа при L₂ = 0.1 м. Остальные параметры задачи те же, что и на рис. 8.$

Рис. 9. Зависимости скоростей трубы и пробки и их перемещений от времени при различных предельных сдвиговых напряжениях τ (модель V)

На рис. 9 видно, что с ростом напряжения сдвига τ максимальные значения перемещения трубы и ее скорости монотонно падают, в то время как для перемещения пробки и ее скорости монотонная зависимость от значения τ не наблюдается. При $\tau = 0.6$ МПа происходит слипание трубы и пробки и нет взаимного проскальзывания. Расчеты по модели V по сравнению с расчетами по модели III дают существенно более высокие значения перемещений трубы и пробки.

выводы

Исследовано перемещение открытой трубы, взаимодействующей с внутренней грунтовой пробкой по закону сухого трения Кулона при продольном импульсном воздействии на трубу. Получены аналитические оценки для упругого взаимодействия трубы с грунтовой пробкой и для скольжения с учетом внешнего сухого трения. Показано, что численные и аналитические решения хорошо согласуются. Из расчетов следует, что можно использовать более простую модель для описания движения грунтовой пробки, в которой не учитывается распространение радиальных волн. Влияние продольных волн можно также не учитывать, если длительность импульса существенно меньше времени пробега продольной волны в трубе туда и обратно. Если предположить, что площадь соприкосновения трубы и внешнего грунта зависит от перемещения трубы, а масса пробки и площадь соприкосновения трубы и пробки зависят от длины пробки, которая меняется при погружении трубы, то результаты расчетов по такой модели дают существенно более высокие значения перемещений трубы и пробки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Randolph M. F., Leong E. C., and Houlsby G. T. One-dimensional analysis of soil plugs in pipe piles, Geotechnique, 1991, Vol. 41, No. 4. P. 587–598.
- 2. Liyanapathirana D. S., Deeks A. J., and Randolph M. F. Numerical analysis of soil plug behaviour inside open-ended piles during driving, Int. J. Numer. Analyt. Meth. Geomech., 1998, Vol. 22, No. 4. P. 303–322.
- Liyanapathirana D. S., Deeks A. J., and Randolph M. F. Numerical modelling of the driving response of thin-walled open-ended piles, Int. J. Numer. Analyt. Meth. Geomech., 2001, Vol. 25, No. 9. — P. 933–953.
- 4. Paik K. H., Salgado R., Lee J. H., and Kim B. J. The behavior of open- and closed-ended piles driven into sands, ASCE, 2003, Vol. 129, No. 4. P. 296–306.
- 5. Henke S. and Grabe J. Numerical investigation of soil plugging inside open-ended piles with respect to the installation method, Acta Geotechnica, 2008, Vol. 3, No. 3. P. 215–223.
- 6. Igoe D., Gavin K. G., and O'Kelly B. C. Shaft capacity of open-ended piles in sand, J. Geotech. Geoenviron. Eng., 2011, Vol. 137, No. 10. P. 903–913.
- Henke S. Large deformation numerical simulations regarding soil plugging behaviour inside open-ended piles, Proceedings of ASME 2012 31st Int. Conference on Ocean, Offshore and Artic Engineering (OMAE2012), Rio de Janeiro, Brazil, 2012, — P. 37–46.
- **8.** Grabe J. and Pucker T. Improvement of bearing capacity of vibratory driven open-ended tubular piles, Frontiers in Offshore Geotechnics III, London (UK): Taylor & Francis Group, 2015. P. 551–556.
- **9.** Fattah M. Y. and Al-Soudani W. H. S. Bearing capacity of open ended pipe piles with restricted soil plug, Ships and Offshore Structures, 2015, No. 11. P. 501–516.
- Ko J., Jeong S., and Lee J. K. Large deformation FE analysis of driven steel pipe piles with soil plugging, Computers and Geotechnics, 2016, Vol. 71. — P. 82–97.
- Labenski J., Moormann C., Aschrafi J., and Bienen B. Simulation of the plug inside open steel pipe pile with regards to different installation methods, Proceedings of 13th Baltic Sea Geotechnical Conference, Vilnius, Lithuania, 2016. — P. 223–230.

- Yong Jie Xiao, Fu Quan Chen, and Yi Zhi Dong. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays, SpringerPlus, 2016, Vol. 5, No. 1. P. 755–773.
- **13.** Червов В. В. Условия самоочистки полости трубы от грунтового керна при бестраншейной прокладке коммуникаций // ФТПРПИ. — 2005. — № 2. — С. 67–73.
- 14. Кондратенко А. С., Петреев А. М. Особенности процесса удаления грунтового керна при виброударном воздействии на трубу и статическом воздействии на керн // ФТПРПИ. — 2008. — № 6. — С. 36–46.
- **15.** Meskele T. and Stuedlein A. Attenuation of pipe ramming-induced ground vibrations, J. of Pipeline Systems Engineering and Practice, 2016, Vol. 7, No. 1, 04015021. P. 1–12.
- 16. Данилов Б. Б., Кондратенко А. С., Смоляницкий Б. Н., Смоленцев А. С. Совершенствование технологии проходки скважин в грунте методом продавливания // ФТПРПИ. 2017. № 3. С. 57–64.
- 17. Goodman R. E., Taylor R. L., and Brekke T. L. A model for the mechanics of jointed rock, J. Soil Mech. Found. Div., ASCE, 1968, Vol. 94, SM 3. P. 637–659.
- **18.** Деч Г. Руководство по практическому применению преобразования Лапласа и Z-преобразования. М.: Наука, 1971. 288 с.
- **19.** Динник А. Н. О давлении горных пород и расчет крепи круглой шахты // Инж. работник. 1925. № 7. С. 1–12.
- **20.** Александрова Н. И. Численно-аналитическое исследование процесса ударного погружения трубы в грунт с сухим трением. Ч. І. Внешняя среда не деформируема // ФТПРПИ. — 2012. — № 5. — С. 104–119.
- 21. Александрова Н. И. Численно-аналитическое исследование процесса ударного погружения трубы в грунт с сухим трением. Ч. І. Внешняя среда деформируема // ФТПРПИ. — 2013. — № 3. — С. 91–106.
- **22.** Александрова Н. И. Влияние внутренней грунтовой пробки на процесс ударного забивания трубы // ФТПРПИ. 2017. № 6. С. 114–126.

Поступила в редакцию 04/V 2018