УДК 533.6.011.5

Модовая декомпозиция возмущений в сверхзвуковом потоке*

И.С. Цырюльников, Ю.В. Громыко, Т.В. Поплавская

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: tsivan@ngs.ru, yurkonsk@gmail.com, popla@itam.nsc.ru

Реализован ввод контролируемых возмущений в поток аэродинамической трубы и проведены зондовые измерения полей амплитуды пульсаций давления и фазовых скоростей этих возмущений. По соотношениям для невязкого взаимодействия длинноволновых вихревых, энтропийных и акустических возмущений с ударной волной на клине и прямого численного моделирования определены коэффициенты преобразования различных мод в пульсации давления на поверхности модели в условиях экспериментов в сверхзвуковом потоке аэродинамической трубы периодического действия Т-327Б ИТПМ СО РАН. Реализован метод модовой декомпозиции для контролируемых возмущений в потоке с использованием коэффициентов преобразования возмущений. Реализация осуществлялась на модели плоской пластины с острой передней кромкой, выставляемой под заданными углами атаки и крена в потоке.

Ключевые слова: сверхзвуковой поток, возмущения, шум, акустика, восприимчивость, численное моделирование, аэродинамический эксперимент, декомпозиция мод возмущений.

Введение

Разработка новых принципов и создание устройств разделения суммарного поля пульсаций потока (модовой декомпозиции) на вихревую, энтропийную и акустическую моды необходимы для исследования восприимчивости и развития возмущений в сверхзвуковых пограничных слоях с использованием данных трубного эксперимента [1, 2]. Известны способы такого разделения на основе термоанемометрических измерений [3–6], связанные с различной чувствительностью датчика термоанемометра к разным типам возмущений [6] в зависимости от перегрева нити датчика. Альтернативным подходом к определению состава возмущений могут быть методы, основанные на измерениях пульсаций давления. Например, в работе [7] был описан метод определения модового состава высокоэнтальпийного потока на основе измерения среднеквадратичных пульсаций специальным датчиком в потоке. В настоящей работе рассматривается способ разделения пульсаций внешнего потока на различные моды пульсаций, который в отличие от вышеприведенных способов потенциально позволяет проводить разложение для мгновенных пульсаций потока. Метод использует особенности взаимодействия длинноволновых возмущений с ударной волной (УВ), формирующейся при сверхзвуковом обтекании клина. Модовая

^{*} Работа выполнена при финансовой поддержке РНФ (проект № 19-71-00031).

[©] Цырюльников И.С., Громыко Ю.В., Поплавская Т.В., 2020

декомпозиция проводится по измерениям пульсаций давления на поверхности клина и значениям коэффициентов преобразования возмущений за УВ. Согласно исследованиям [8] и [9], где было получено общее решение невязкой задачи о взаимодействии плоских волн различной природы с УВ на клине, в результате воздействия внешнего возмущения, вне зависимости от природы последнего, на поверхности клина возникают пульсации давления. При этом их амплитуда может сложным образом варьироваться вдоль продольной координаты x^{*} поверхности клина в зависимости от типа, длины и угла падения волны внешнего возмущения. Однако при увеличении длины волны λ внешнего потока до значений $\lambda >> x^*$ разложение общего решения по малому параметру x^*/λ приводит к упрощению зависимости амплитуды пульсаций от x^* . В работе [9] методом численного моделирования были получены аналогичные соотношения для амплитуды длинноволновых возмущений на клине в вязкой постановке и определены значения коэффициентов преобразования возмущений различных мод. Простые аналитические соотношения для определения коэффициентов преобразования возмущений в пульсации на поверхности клина могут быть использованы для определения амплитуды пульсаций различных мод в набегающем потоке в трубном эксперименте с применением специальных зондов.

Цель данной работы — определение амплитуды и моды контролируемых акустических возмущений в рабочей части сверхзвуковой аэродинамической трубы Т-327Б ИТПМ СО РАН. Клин моделируется пластиной с известными углами атаки и крена в потоке, а модель оснащена высокочастотными датчиками для измерения поверхностных пульсаций давления. Для получения значений коэффициентов преобразования возмущений проводится численное моделирование взаимодействия возмущений с УВ на клине и на цилиндрическом приемнике пульсаций давления.

1. Коэффициенты преобразования длинноволновых возмущений при взаимодействии с УВ на клине

В работе [8] было получено общее решение задачи о взаимодействии возмущений с углом распространения φ в плоскости (*x*, *y*) с ударной волной на клине с углом полураствора β (см. рис. 1) в невязком случае в двумерной постановке в виде бесконечного набора слагаемых. Возмущения внешнего потока представляются в виде суперпозиции плоских монохроматических волн следующих мод:

акустической:

$$p' = \varepsilon_{a} \cos\left(k_{x}^{a}x + k_{y}^{a}y - 2\pi ft\right), \quad s' = 0, \quad u'_{x} = \pm \frac{p'}{\rho_{\infty}c_{\infty}} \cos\varphi, \quad u'_{y} = \pm \frac{p'}{\rho_{\infty}c_{\infty}} \sin\varphi,$$

где верхний знак «+» соответствует так называемой быстрой акустической волне, а «-» — медленной акустической волне;

— энтропийной:

$$p' = 0, \ s' = \varepsilon_e \cos\left(k_x^e x + k_x^e y - 2\pi ft\right), \ u'_x = u'_y = 0;$$

вихревой:

$$p'=0, \ s'=0, \ u'_x=-\varepsilon_v \cos\left(k_x^v x+k_x^v y-2\pi ft\right)\sin\phi, \ u'_y=\varepsilon_v \cos\left(k_x^v x+k_y^v y-2\pi ft\right)\cos\phi.$$

Здесь p', s', u'_x, u'_y — мгновенные амплитуды пульсаций давления, энтропии и x- и y- компонент скорости, ε_i , k_x^i , k_y^i — амплитуды и x- и y-компоненты волнового вектора пульсаций соответствующей моды возмущений, $\rho_{\infty}, c_{\infty}$ — средняя плотность и скорость звука набегающего потока, f — частота пульсаций.

Путем разложения по малому параметру x^*/λ из общего решения невязкой задачи [8] можно определить зависимости коэффициентов преобразования длинноволновых возмущений набегающего потока в пульсации давления p'_w на поверхности клина.

Полученные из разложения коэффициенты преобразования возмущений для акустических быстрых $g_{\rm af} = p'_{\rm w}/p'$, акустических медленных $g_{\rm as}$, вихревых $g_{\rm v} = \frac{c_{\infty}p'_{\rm w}}{p_{\infty}\varepsilon_{\rm v}}$ и энтропий-

ных $g_e = \frac{c_p p'_w}{p_{\infty} s'}$ возмущений в двумерном случае имеют вид

$$g_{af} = C_1 + C_2 \cos(\pi/2 - \beta^* - \varphi),$$

$$g_{as} = C_1 + C_2 \cos(-\pi/2 - \beta^* - \varphi),$$

$$g_v = \gamma C_2 \sin(\pi/2 - \beta^* - \varphi), \quad g_e = C_3,$$

(1)

где p_{∞} , C_p — давление и изобарная теплоемкость газа соответственно, C_i и β^* — функции от числа Маха набегающего потока (М) и β . Нужно отметить, что зависимости коэффициентов преобразования от угла падения возмущений связаны здесь только с влиянием x и y компонент пульсаций скорости набегающего потока. Поэтому для акустических возмущений независимо от их типа $g_a = C_1 + C_2 \cos(\pi/2 - \beta^* - \phi^*)$, где $\phi^* = \phi$ и $\phi^* = \phi + \pi$ — угол вектора пульсаций скорости для быстрых и медленных акустических волн соответственно. Дальнейший анализ результатов невязкой задачи в двумерной [8] и трехмерной [9] постановках относительно функций C_i и β^* , показывает, что $\beta^* \approx \beta$, C_3 пропорционален $C_p C_2 \sin \beta^* / c_{\infty}$, и, наконец, что в трехмерной постановке влияние трансверсальной компоненты пульсаций скорости u'_z оказывается незначительным и можно получить соотношения для коэффициентов преобразования возмущений аналогичные (1), при этом C_2 заменяется на $C_2 \cos(\zeta)$, где ζ — широтный угол вектора пульсаций скорости и скорости u'_z по вектора пульсаций скорости и скорости u'_z оказывается незначительным и можно получить соотношения для коэффициентов преобразования возмущений аналогичные (1), при этом C_2 заменяется на $C_2 \cos(\zeta)$, где ζ — широтный угол вектора пульсаций скорости.

2. Способ разделения суммарного поля мгновенных пульсаций сверхзвукового потока на компоненты пульсаций

Вид решения (1) задачи о воздействии длинноволновых возмущений на сверхзвуковое обтекание клина позволяет предложить способ модовой декомпозиции мгновенных пульсаций потока. Пусть имеется устройство, которое содержит два клина с острыми передними кромками и различными углами наклона симметричных боковых плоскостей. Датчики пульсаций давления размещаются на этих плоскостях на каждой стороне на расстояниях x^* от носика, как обозначено на рис. 1. Чтобы не происходило существенного набега фазы возмущения на масштабе всей системы клиньев, примем, что не только $x^*/\lambda \ll 1$, но и наибольший размер *H* всей системы клиньев такой, что $H/\lambda \ll 1$. Пульсации давления p'_w на поверхности клина 1, имеющего нормаль к поверхности в плоскости (x, y), для произвольного распределения набора плоских волн круговой частоты $\omega = 2\pi f$ записываются как

$$p'_{w} = C_{11} \sum_{j} p'_{j} +$$

$$+ \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \sum_{j} u'_{j} \cos \zeta_{j} \cos \left(\frac{\pi}{2} - \beta_{1}^{*} - \varphi_{j}^{*}\right) +$$

$$+ C_{31} \frac{p_{\infty}}{c_{p}} \sum_{j} s'_{j}, \qquad (2)$$

677

где $p'_j = \varepsilon_{aj} e^{-i\omega t + i\phi_{pj}}$, $s'_i = \varepsilon_{ej} e^{-i\omega t + i\phi_{ej}}$, $u'_j = \varepsilon_{vj} e^{-i\omega t + i\phi_{hj}} + \frac{\varepsilon_{aj}}{\rho_{\infty}c_{\infty}} e^{-i\omega t + i\phi_{pj}}$ — пульсации давления, энтропии и скорости набегающего потока с соответствующими амплитудами

ления, энтропии и скорости наостающего потока с соответствующими амплитудами ε_{aj} , ε_{ej} , ε_{vj} и фазами ϕ_{aj} , ϕ_{ej} , ϕ_{uj} ; C_{i1} и β^*_1 — функции C_i и β^* для клина 1. Пульсации на поверхностях верхней и нижней граней клина (y+ и y-) составляют:

$$p'_{w+} = C_{11} \sum_{j} p'_{j} + \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \cos\left(\frac{\pi}{2} - \beta_{1}^{*}\right) \sum_{j} u'_{j} \cos\zeta_{j} \cos\varphi_{j}^{*} - \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \sin\left(\frac{\pi}{2} - \beta_{1}^{*}\right) \sum_{j} u'_{j} \cos\zeta_{j} \sin\varphi_{j}^{*} + C_{31} \frac{p_{\infty}}{c_{p}} \sum_{j} s'_{j},$$

$$p'_{w-} = C_{11} \sum_{j} p'_{j} + \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \cos\left(\frac{\pi}{2} - \beta_{1}^{*}\right) \sum_{j} u'_{j} \cos\zeta_{j} \cos\varphi_{j}^{*} + \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \sin\left(\frac{\pi}{2} - \beta_{1}^{*}\right) \sum_{j} u'_{j} \cos\zeta_{j} \sin\varphi_{j}^{*} + C_{31} \frac{p_{\infty}}{c_{p}} \sum_{j} s'_{j}.$$

$$(3)$$

Учитывая, что $u'_j \cos \zeta_j \cos \varphi_j^* = u'_{xj}$, а $u'_j \cos \zeta_j \sin \varphi_j^* = u'_{yj}$, получим соответственно следующие выражения для полусуммы и полуразности пульсаций на верхней и нижней гранях:

$$\sigma_{1} = \frac{p'_{w+} + p'_{w-}}{2} = C_{11} \sum_{j} p'_{j} + \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \sin \beta_{1}^{*} \sum_{j} u'_{xj} + C_{31} \frac{p_{\infty}}{C_{p}} \sum_{j} s'_{j},$$
(5)

$$\delta_{1} = \frac{p'_{w+} + p'_{w-}}{2} = \gamma C_{21} \frac{p_{\infty}}{c_{\infty}} \cos \beta_{1}^{*} \sum_{j} u_{y'j}^{'}.$$
 (6)

Поскольку в невязкой задаче C_3 пропорционален $C_2 \sin\beta^*$, то полусумму пульсаций можно представить в виде

$$\sigma_{1} = C_{11} \sum_{j} p'_{j} + C_{31} \frac{p_{\infty}}{C_{p}} \left(k \frac{C_{p}}{c_{\infty}} \sum_{j} u'_{xj} + \sum_{i} s'_{j} \right),$$
(7)

где k — коэффициент пропорциональности. Полусумма пульсаций не зависит от u'_y и u'_z компонент пульсаций скорости, а полуразность пульсаций зависит только от u'_y . Применяя аналогичные рассуждения для клина 2, имеющего нормаль к поверхности в плоскости (x, z), получим следующие выражения для пульсаций набегающего потока:

$$\sum_{i} p_{i}' = \frac{\sigma_{1}C_{32} - \sigma_{2}C_{31}}{C_{32}C_{11} - C_{31}C_{12}}, \quad k \frac{C_{p}}{c_{\infty}} \sum_{i} u_{x\,i}' + \sum_{i} s_{i}' = \frac{C_{p}}{p_{\infty}} \cdot \frac{\sigma_{1}C_{12} - \sigma_{2}C_{11}}{p_{\infty}C_{31}C_{12} - C_{32}C_{11}}, \tag{8}$$

$$\sum_{i} u_{y\,i}' = \frac{c_{\infty}}{p_{\infty}} \cdot \frac{\delta_{1}}{\gamma C_{21} \cos \beta_{1}^{*}}, \quad \sum_{i} u_{z\,i}' = \frac{c_{\infty}}{p_{\infty}} \cdot \frac{\sigma_{2}}{\gamma C_{22} \cos \beta_{2}^{*}},$$

где $\sigma_2, \, \delta_2, \, C_{i2}, \, \beta^*_2$ — соответствующие величины для клина 2.

Из (8) следует, что предложенный способ разделения пульсаций позволяет получить суперпозиции мгновенных пульсаций набегающего потока — давления, y и z компонент вектора скорости, комбинацию возмущений энтропии и продольной скорости. Возможность определения мгновенных значений компонент пульсаций потока из (8) ранее была продемонстрирована в численном эксперименте [10] в двумерной вязкой постановке при M = 7,8.

3. Численное моделирование

Практическая реализация метода декомпозиции сопряжена с изготовлением устройств небольшого масштаба для увеличения частотного диапазона исследуемых возмущений. При этом влияние вязких эффектов на течение и взаимодействие с возмущениями будут возрастать, и решение (1) потребует коррекции функций C_i и β^* на случай вязкого обтекания модели. Такую коррекцию можно выполнить, если известны коэффициенты преобразования возмущений на модели в вязком потоке. Для определения коэффициентов преобразования длинноволновых возмущений на поверхности клина в сверхзвуковом потоке вязкого газа проведено прямое численное моделирование на основе решения уравнений Навье-Стокса в трехмерной постановке. Параметры течения соответствовали условиям экспериментов в аэродинамической трубе Т-327Б ИТПМ СО РАН с числом Маха M = 4,85 и единичным числом Рейнольдса $Re_1 = 2,6 \cdot 10^6 1/M$. В численном моделировании при обтекании пластины шириной 18 мм и длиной 36 мм расчетная область представляла собой прямоугольный параллелепипед, часть нижней стороны которого совпадала с поверхностью пластины, где задавались условие прилипания и температура поверхности $T_{\rm w}$ = 300 К. На левой, верхней и боковых границах задавались условия набегающего потока: давление $p_{\infty} = 186$ Па, температура $T_{\infty} = 50,8$ К и компоненты вектора скорости в соответствии с углом атаки пластины. Возмущения набегающего потока в виде плоских монохроматических волн различных мод частотой f = 10 кГц генерировались на входной границе в соответствии с [10, 12]. Положение выходных границ расчетной области определялось таким образом, чтобы на них обеспечивался сверхзвуковой поток. Расчетная сетка содержала приблизительно 107 гексаэдральных ячеек со сгущением к поверхности пластины и в зоне расположения УВ. Дополнительно для получения коэффициентов преобразования пульсаций различных мод на поверхности переднего торца цилиндрического датчика в сверхзвуковом потоке было проведено численное моделирование в осесимметричной постановке с вышеуказанными параметрами потока и возмущений.

4. Результаты расчетов

На рис. 2 представлены примеры численного моделирования изолиний среднеквадратичных пульсаций давления при воздействии на модели и датчики акустической волны быстрой моды с углом распространения $\varphi = 0^{\circ}$ в набегающем потоке. На рис. 2*a* показаны

Рис. 2. Изолинии среднеквадратичных пульсаций давления за УВ при воздействии быстрой акустической волны с f = 10 кГц, ε_a = 0,03p_∞ на поверхности пластины (a),
 в плоскости симметрии пластины, расположенной под углом атаки β = 10° (b), и торца цилиндра (c).

изолинии среднеквадратичных пульсаций давления на поверхности, а на рис. 2b — в плоскости симметрии пластины, расположенной под углом атаки $\beta = 10^{\circ}$. Видно, что амплитуда пульсаций как за УВ, так и на поверхности пластины вдоль оси симметрии x^* меняется слабо, за исключением небольшого участка вблизи передней кромки. Следовательно, место расположения датчиков на пластине незначительно влияет на измерения пульсаций давления.

На рис. 2*с* изображено поле изолиний среднеквадратичных пульсаций давления за УВ при обтекании торца цилиндра. Видно, что наибольшая интенсивность пульсаций реализуется в области между УВ и поверхностью торца. Оказалось, что амплитуда пульсаций давления в лобовой точке цилиндра и осредненное значение этой амплитуды по всей лобовой поверхности практически равны. Исходя из этого, коэффициент преобразования возмущений потока за УВ на цилиндрическом датчике определялся по значению пульсаций давления в лобовой точке. В условиях экспериментов для быстрых и медленных акустических волн он принимал значения $g_{af0} = 32,675$ и $g_{as0} = 15,31$ соответственно.

На рис. З представлены коэффициенты преобразования плоских волн различных мод с $\varphi = 0^{\circ}$ на поверхности пластины при $x^* = 14$ мм в зависимости от ее угла атаки β , полученные из соотношений (1) по невязкой теории (кривые 1-4) и путем моделирования (кривые 5-8). Сравнение зависимостей коэффициентов показывает, что в случае быстрой акустической волны в рассматриваемых условиях существенных отличий коэффициента g_{af} от невязкого случая не наблюдаются, в то время как для коэффициентов g_v, g_{as} отклонения составляют 10 и 15 % соответственно. Для коэффициента g_e отклонения от невязкой теории наблюдаются при углах атаки, меньших 5°.

По набору полученных в расчете коэффициентов преобразования акустических и вихревых мод возмущений с различными углами распространения и соотношениям (1) были определены функции $C_1, C_2, \mu \beta^*$. На рис. 4 представлены их значения в зависимости от β в сравнении с невязким случаем (1–4). Видно, что значения C_1 и C_2 по данным численного моделирования (4–6) на 5–10 % меньше, чем для невязкого случая. Значения β^* в расчетах оказались на 3–7 градусов больше, чем в невязком обтекании можно отнести существенно больший угол наклона УВ на модели, чем при невязком обтекании. Следует отметить, что полученные в расчетах значения $C_3/(C_2 \sin \beta^*)$ в диапазоне углов β от 10° до 20° практически постоянны, что позволяет использовать этот диапазон для определения пульсаций набегающего потока из соотношений (8).

5. Экспериментальное оборудование

Для оценки возможности модовой декомпозиции предложенным в работе методом требуется его апробация на возмущениях сверхзвукового потока с известным модовым составом, углами распространения и амплитудой, что предполагает использование источника контролируемых возмущений с известными из независимых измерений фазовыми скоростями и полями амплитуд. Для создания контролируемых возмущений были выполнены эксперименты на малой аэродинамической трубе Т-327б ИТПМ СО РАН с профилированным соплом с диаметром выходного сечения 110 мм. Установка позволяет получать постоянные параметры потока в течение 10÷50 секунд. Эксперименты проводились при давлении торможения $P_0 = 1$ атм и при температуре торможения $T_0 = 293$ К. В форкамере установки устанавливался источник контролируемых акустических возмущений (динамик) с номинальным уровнем звукового давления 106 дБ при атмосферном давлении в полосе частот 3,5-27 кГц, на который подавался гармонический сигнал частотой 10 кГц. Возможность такого расположения источника для создания контролируемых возмущений в потоке рассматривалось в работе [13]. Для обеспечения стабилизации амплитудно-фазовых характеристик излучателя и оценки влияния когерентных электромагнитных и вибрационных шумов на датчики запуск излучателя осуществлялся за 10 с до запуска аэродинамической трубы в предварительно вакуумированном газодинамическом тракте установки.

Исследование пространственного распределения амплитуды и фазы контролируемых возмущений в рабочей части установки проводилось с помощью измерительного стенда, состоящего из цилиндрического насадка, в лобовой точке которого размещался датчик пульсаций давления PCB132A31 (см. рис. 5a). Измерительный стенд был установлен на координатное устройство, позволяющее передвигаться в поперечном (по координатам y и z) от оси сопла направлении, а также по оси сопла в продольном направлении x. Для дополнительного контроля амплитуды и фазы пульсаций в различных пусках аэродинамической трубы использовался опорный датчик, установленный в фиксированной точке в потоке.

Так как реализация метода модовой декомпозиции в настоящей работе выполнялась для контролируемых гармонических возмущений с постоянными амплитудно-фазовыми характеристиками в точке измерений в ядре потока, то это позволило заменить четыре параллельных измерения пульсаций на четыре последовательных, синхронизованных по фазе источника, измерения пульсаций. Это дало возможность упростить экспериментальную модель и уменьшить пространственные ограничения метода. Таким образом, вместо модели с четырьмя наклонными поверхностями была использована остроконечная

Рис. 5. Схема измерительного стенда амплитуды и фазы контролируемых возмущений (a) и экспериментальной модели в рабочей части ИТ-3276 (b). 1 — сопло, 2 — опорный датчик пульсаций давления, 3 — датчик пульсаций давления PCB132A31, 4 — саблевидная державка, 5 — пластина.

пластина, устанавливаемая под углом атаки (см. рис. 5*b*). В экспериментах менялся угол атаки и осуществлялось вращение модели относительно оси *x* так, чтобы пространственные координаты датчика пульсаций давления PCB132A31, установленного на поверхности пластины ($x^* = 14$ мм), не менялись. Державка модели имела саблевидный вид и позволяла выставлять угол атаки модели в диапазоне от 0° до 25°. При этом на срезе сопла был расположен датчик давления PCB113B28 для контрольного измерения пульсаций давления в потоке. Датчики давления использовались совместно с преобразователем сигнала PCB Piezotronics 482C05. Сбор данных с датчиков PCB с частотой 400 кГц, кратной частоте излучения звука, осуществлялся модулями АЦП L-card E20-10, время сбора данных составляло 20 с. Для исключения влияния естественного некогерентного шума в потоке установки для каждого временного диапазона 100 мс ($4 \cdot 10^4$ измерений) производилось усреднение сигнала по 10^3 периодов вводимых возмущений. Усредненный сигнал, состоящий из 40 точек, аппроксимировался гармонической функцией $|p'_w| \cos(2\pi f + \phi) + \text{const}$ для получения амплитуды $|p'_w|$ и фазы ϕ пульсаций давления.

6. Результаты экспериментов

Первоначально проводились измерения пульсаций давления вдоль координаты x при y = z = 0 мм (по оси сопла) с целью определения продольной фазовой скорости контролируемых возмущений. На рис. 6a показана амплитуда, нормированная на g_{af0} , а на рис. 6b — фаза возмущений и ее линейная аппроксимация. Длина волны возмущений вычислялась как $\lambda = 2\pi (d\phi/dx)^{-1}$ и по данным фазовых измерений составила 83,3 мм. Продольная фазовая скорость возмущения $v_{\phi} = \lambda f = 833$ м/с. Оказалось, что $v_{\phi} \approx c_{\infty}$ (M + 1), что соответствует фазовой скорости быстрой акустической волны. При этом амплитуда возмущений немного уменьшается с увеличением x. Отсутствие вариаций амплитуды вдоль продольной координаты позволяет исключить наличие взаимодействия возмущений основной моды с какими-либо другими когерентными возмущениями с продольной длиной волны менее 40 мм (наклонные волны). Вид зависимости амплитуды от x позволяет также оценить сверху значения амплитуды p'_{as} когерентной медленной акустической волны в набегающем потоке: $p'_{as}/p' < 0,12$.

Далее были выполнены измерения пульсаций давления вдоль потока и для профилей вдоль оси z в диапазоне значений y от -25 до 25 мм при удалении от выходного сечения сопла на x = 14 мм. На рис. 6c показаны примеры радиальных профилей амплитуды возмущений. Нормированные амплитуды пульсаций в ядре потока с радиусом R при R < 30 мм лежат в диапазоне $p'/g_{af0} = 0,62 \div 0,74$ Па, при удалении от оси сопла наблюдается увеличение амплитуды пульсаций до значений ~ 1,5 Па на границе пограничного слоя сопла.

На рис. 6d представлены зависимости фазы возмущений от радиуса. Видно, что фазы волн не испытывают существенного сдвига в радиальном направлении в ядре потока. Максимально возможные углы распространения возмущений относительно оси потока составляют 7° в плоскости (x, y) и 6° — в плоскости (x, z). Таким образом, были определены амплитудно-фазовые характеристики поля контролируемых акустических возмущений и установлено, что возмущения относятся к быстрой моде акустических волн, распространяющихся практически параллельно потоку. Наличие быстрых акустических волн в ядре сверхзвукового потока при возбуждении контролируемых возмущений в форкамере аэродинамической трубы было также показано в работах [13, 14].

На следующем этапе проводились эксперименты по реализации метода модовой декомпозиции (см. рис. 5*b*). Для каждого угла θ при углах атаки $\beta = 10^{\circ}$ и $\beta = 15^{\circ}$, а также

683

при $\theta = 0^{\circ}$, 180° и $\beta = 20^{\circ}$ проводились запуски аэродинамической трубы и определялись усредненные значения амплитуды пульсаций давления на датчике на пластине за время установившегося сверхзвукового течения.

На рис. 7 показаны примеры зависимостей амплитуды пульсаций давления на пластине для разных значений углов β и θ от времени t. При t < 0 (до запуска аэродинамической трубы) принимаемый датчиками сигнал (когерентные электромагнитные наводки и вибрация) практически отсутствует, а при t > 0 (после запуска установки) наблюдаются переходные процессы в течение 1-2 с, после чего амплитуды возмущений практически постоянны во времени. По усредненным значениям амплитуды пульсаций на пластине определялись значения σ и δ в плоскостях (x, y) и (x, z) и вычислялись значения амплитуд пульсаций различных типов из соотношений (8). Полученные по всему набору экспериментов данные по средним значениям амплитуды пульсаций А каждого типа представлены в таблице с использованием C_i и β^* для каждой пары углов β из трехмерных расчетов (строка 1) и разложения невязкой теории [8] по малому параметру x^*/λ (строка 2). В третьей строке таблицы показаны максимальные отклонения ΔА/А. Видно, что амплитуды пульсаций давления p', полученные из соотношений (8), согласуются с данными нормированных амплитуд при измерениях контролируемых пульсаций в ядре потока. Максимальное отклонение в значениях амплитуд р', полученное в экспериментах при всех вариациях угла β составило 10 %. Поскольку уравнения не позволяют разделить пульсации u'_x и s', то выделение энтропийной моды пульсаций по измерениям в одной точке пространства неосуществимо без дополнительных предположений. Однако вследствие особенностей источника возмущений можно не принимать во внимание наличие энтропийных пульсаций в потоке. Тогда значение $\rho_{\infty}c_{\infty}u'_{x} + ks'$ соответствует распространению быстрой акустической волны: $u'_x \approx p'/\rho_{\infty} c_{\infty}$. В то же время, данные по u'_x имеют значительный разброс (40 %)

Таблица

Параметры	Амплитуды возмущений			
	ho, Па	$\rho_{\infty}c_{\infty}u'_{x} + ks', \Pi a$	$\rho_{\infty}c_{\infty}u'_{y}, \Pi a$	$\rho_{\infty}c_{\infty}u'_{z}, \Pi a$
C_i и β^* — 3D расчет	0,639	0,642	-0,063	0,044
C_i и β^* — теория [8]	0,62	0,733	-0,057	0,039
Максимальное отклонение <u> </u> <u> </u>	10,4	40,2	19,7	47,8

Амплитудный состав контролируемых возмущений в потоке

в зависимости от β , что связано с высокой чувствительностью решения (8) к ошибкам измерений. Это требует повышения точности измерений. Большое максимальное отклонение в значениях величин $\rho_{\infty} c_{\infty} u'_{y}$ и $\rho_{\infty} c_{\infty} u'_{z}$ обусловлено их малостью по сравнению с пульсациями $\rho_{\infty} c_{\infty} u'_{x}$ и p'. При этом угол распространения возмущений по данным измерений поперечных пульсаций скорости также мал и составляют 6,8° относительно оси потока, что согласуется с измерениями полей фазы возмущений.

Следует отметить, что применение в соотношениях (8) значений C_i и β^* из разложения невязкого решения по малому параметру x^*/λ в данной серии измерений не приводит к большим отличиям в восстановленных амплитудах пульсаций набегающего потока по сравнению с данными коэффициентов из трехмерного расчета взаимодействия длинноволновых возмущений с клином в сверхзвуковом потоке с учетом вязкости. Это показывает возможность применения невязкого решения для оценки амплитуд пульсаций в набегающем потоке без использования трудоемких вычислительных процедур.

Заключение

Предложен метод разделения суммарного поля мгновенных пульсаций набегающего потока на компоненты пульсаций на основе измерений пульсаций давления на поверхности клина, обтекаемого сверхзвуковым потоком газа. В методе используются коэффициенты преобразования длинноволновых возмущений при их взаимодействии с ударной волной на клине, которые определяются из решения невязкой задачи и прямым численным моделированием. С помощью предложенного метода выполнены измерения пульсаций давления набегающего потока в аэродинамической трубе Т-327Б ИТПМ СО РАН. Полученные данные согласуются с данными предварительно измеренных амплитуднофазовых характеристик и моды контролируемых акустических возмущений в потоке.

Список литературы

- 1. Гапонов С.А., Маслов А.А. Развитие возмущений в сжимаемых потоках. Новосибирск: Наука, 1980. 144 с.
- 2. Жигулев В.Н., Тумин А.М. Возникновение турбулентности. Новосибирск: Наука, 1987. 282 с.
- 3. Kovasznay L.S.G. Turbulence in supersonic flow // J. the Aeronautical Sci. 1953. Vol. 20, No. 10. P. 657-674.
- 4. Лебига В.А., Зиновьев В.Н., Пак А.Ю. Применение термоанемометра для измерения характеристик произвольного акустического поля в сжимаемых потоках // Прикл. механика и техн. физика. 2002. Т. 43, № 3. С. 176–181.
- Weiss J., Knauss H., Wagner S. Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel // Experiments in Fluids. 2003. Vol. 35. P. 291–302.
- 6. Morkovin M.V. Fluctuations and hot-wire anemometry in compressible flows // RTO/STO Technical Report AGARD-AG-24, AGARDograph, NATO AGARD, 1956. ISSN: 0365–2467.
- Tsyryulnikov I.S., Kirilovskiy S.V., Poplavskaya T.V. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations // AIP Conf. Proceedings. 2016. Vol. 1770. P. 030040-1–030040-7.
- 8. Duck P.W., Lasseigne D.G., Hussaini M.Y. On the interaction between the shock wave attached to a wedge and freestream disturbance // Theor. Comp. Fluid Dyn. 1995. Vol. 7. P. 119–139.
- Duck P.W., Lasseigne D.G., Hussaini M.Y. The effect of three-dimensional freestream disturbances on the supersonic flow past a wedge // ICASE Report No. 97-26. 1997. P. 1–32.
- 10. Цырюльников И.С., Кириловский С.В., Поплавская Т.В. Коэффициенты преобразования длинноволновых возмущений набегающего потока в пульсации давления на поверхности клина в сверхзвуковом потоке // Письма в ЖТФ. 2016. Т. 42, № 21. С. 70–78.
- 11. Tsyryulnikov I.S., Kirilovskiy S.V., Poplavskaya T.V. Interaction of long-wave perturbations with a shock wave on a wedge and method of mode decomposition of supersonic flow pulsations // J. Physics: Conf. Series. 2017. Vol. 894. P. 012103-1–012103-7.
- 12. Кириловский С.В., Поплавская Т.В., Цырюльников И.С., Маслов А.А. Развитие возмущений в ударном слое на пластине в потоке смеси колебательно-возбужденных газов // Теплофизика и аэромеханика. 2017. Т. 24, № 3. С. 433–442.

- 13. Цырюльников И.С., Миронов С.Г. Исследование волнового поля контролируемых периодических возмущений двух источников // Теплофизика и аэромеханика. 2005. Т. 12, № 3. С. 379–386.
- 14. Цырюльников И.С., Маслов А.А., Миронов С.Г., Поплавская Т.В., Кириловский С.В. Об эффективности метода звукопоглощающих покрытий в колебательно-возбужденном гиперзвуковом потоке // Письма в ЖТФ. 2015. Т. 41, № 4. С. 61–67.

Статья поступила в редакцию 28 мая 2020 г., после доработки — 31 июля 2020 г., принята к публикации 5 августа 2020 г.